ASCII Art

Homework Assignment 1

Rostislav Horc¢ik

February 23, 2023

1 Introduction

This homework assignment aims to practice applications of higher-order functions for processing
lists of elements. You are supposed to implement a function generating an ASCII art from input
images following the specification in Section [2| Examples of such a transformation are depicted

in Figures[I] and

CHE
@EEHF 5555 xxxx

THHEREHEFETRASIRERREIHETRE

B L

Figure 2: Another example

2 Specification

2.1 General setting

The implementation has to be done in the programming language racket. In order to work with
images, it has to import the library 2htdp/image. All your code is required to be in a single
file called hwl.rkt. The file should behave as a module providing two functions img->mat and
ascii-art. Thus your file should start with the following lines:

#lang racket
(require 2htdp/image)

#B232/FUP

(provide img->mat
ascii-art)

To test your implementation you need to work with images. The images can be either loaded
from a file for example as follows:

(define img (bitmap "grad.png"))

or can be created by the function provided by the library 2htdp/image. For instance

(define img (circle 20 "solid" "blue"))

defines a blue disc of radius 20. For further details see https://docs.racket—lang.org/
teachpack/2htdpimage.html|

2.2 Functions to be implemented

The first function (img—->mat img) is a helper function transforming color images into matrices
of intensities. To do that you need a couple of functions. First, the function (image-width img)
returns the width of the image in pixels. Second, the function (image->color-list img)
transforms the image into a list of pixels colors, reading from left to right, top to bottom. For
instance,

"solid"
=>

(define img (triangle 5 "violet"))

(image—->color-list img)

(# (struct
(struct
(struct
(struct
(struct

)

:color 255
:color 255
:color 238
:color 255
:color 255

255
255
130
128
255

255
255
238
255
255

0)
1)
149)
2)
0)

The colors should be converted into a grayscale intensity by the following function:

(define
(+

(« O.
(» O.

(RGB->grayscale color)
(» O.

3 (color-red color))

59
11

(color—green color))
(color-blue color))))

Now applying the function RGB->grayscale to the list of colors, we get a list of intesities:

(map RGB->grayscale
(255.0 255.0 174.28 180.07 255.0 255.0 174.69 174.28 174.1 255.0
171.46 174.28 174.28 174.28 172.69 174.28 174.28 174.28 174.28 173.69)

(image—->color-list img))

=>

The function img->mat should return a matrix of intensities. So your task is to take the above
list of intensities and transform it into a matrix, i.e., a list of rows where each row represents a
horizontal line of pixels in the image. As the width of the above triangle image is 5, the output
should look like

(img->mat img) =>
((255.0 255.0 174.28 180.07 255.0)
(255.0 174.69 174.28 174.1 255.0)
(171.46 174.28 174.28 174.28 172.69)
(174.28 174.28 174.28 174.28 173.69))

As a second function, you are supposed to implement the function

(ascii-art width height chars)

returning a function of a single argument img. The returned function takes an image img and
transforms it into a string approximating the input image. Thus the function is going to be called
e.g. as follows:

(define chars " ., :;ox%#Q@")
((ascii-art 5 8 chars) (bitmap "grad.png"))

The chars argument is a string of characters we want to use to approximate intervals of intensities.
Let d be the length of chars. An intensity ¢ should be represented by a character whose index k
in chars is computed by the following formula:

b= {WJ (1)

The notation |z| denotes the maximum integer number below z, which can be computed in racket
by the function floor. Thus for the highest intensity 255, we have k = 0, and for the lowest
intensity 0, we have k = d — 1. The reason there is the inner floor function [i] is that ¢ might be
slightly larger than 255 due to rounding errors.

The function returned by ascii-art should split the matrix of intensities into blocks. The
size of blocks is given by the arguments width and height. The separation of the matrix into
blocks is depicted in Figure In case the width (resp. height) of the matrix is not divisible by
width (resp. height) the incomplete blocks have to be removed from the matrix as is illustrated
by the red area in Figure

Figure 3: Separation of the matrix of intensities into blocks.

Once the matrix is separated into blocks, intensities in each block have to be averaged. The
average intensities are then transformed into the corresponding characters by the formula , ie.,
applying the function 1ist-ref to chars and the index computed by . Finally, the resulting
matrix of characters is transformed into a string composed of the characters in each row, followed
by the newline character "\n".

3 Example

Consider the following simple image composed of four gray rectangles of different intensities. The
function (make-color r g b) creates a color object with respective RGB components. The
function above places its image arguments on top of each other and analogously beside next to
each other.

(define example

(above
(beside (rectangle 2 1 "solid" (make-color 0 0 0))
(rectangle 3 1 "solid" (make-color 75 75 75)))
(beside (rectangle 2 3 "solid" (make-color 180 180 180))
(rectangle 3 3 "solid" (make-color 225 225 225)))))

Evaluating the function img—>mat on this image results in

((0 0 75.0 75.0 75.0)

180.0 180.0 225.0 225.0 225.0)
180.0 180.0 225.0 225.0 225.0)

(
(
(
(180.0 180.0 225.0 225.0 225.0))

After splitting into blocks of size 2 x 2 (the last column is omitted as the matrix width is 5) and
computing average intensities we obtain
((90.0 150.0) (180.0 225.0))
Assuming that our characters approximating intensities are
(define chars " ., :;ox%#Q@")

the above intensities are represented by the following characters

((#\x #\;)
(#\, #\.))

After transforming the above matrix of characters into a string, the function returned by ascii-art
produces the following output:

((ascii—-art 2 2 chars) example) => "x;\n,.\n"
To see the result better, you can use the function display as follows:

(display ((ascii-art 2 2 chars) example)) =>

X7

7 .

