# **Non-Bayesian Methods**

lecturer: Jiří Matas, matas@cmp.felk.cvut.cz

authors: Ondřej Drbohlav, Jiří Matas, Václav Hlaváč

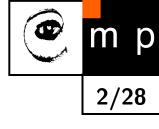
Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

http://cmp.felk.cvut.cz

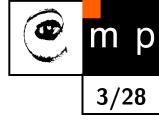
Oct 2023

# **Lecture Outline**

- 1. Limitations of Bayesian Decision Theory
- 2. Neyman Pearson Task
- 3. Minimax Task
- 4. Wald Task



# **Bayesian Decision Theory**



Recall:

- X set of observations
- K set of hidden states
- D set of decisions
- $p_{XK}$ :  $X \times K \rightarrow \mathbb{R}$ : joint probability
- $W: K \times D \rightarrow \mathbb{R}:$  loss function,
- $q: X \to D: \text{ strategy}$

R(q): risk:

$$R(q) = \sum_{x \in X} \sum_{k \in K} p_{XK}(x,k) \ W(k,q(x))$$
(1)

Bayesian strategy  $q^*$ :

$$q^* = \operatorname*{argmin}_{q \in X \to D} R(q) \tag{2}$$

# Limitations of the Bayesian Decision Theory



The limitations follow from the very ingredients of the Bayesian Decision Theory — the necessity to know all the probabilities and the loss function.

- The loss function W must make sense, but in many tasks it wouldn't
  - medical diagnosis task (W: price of medicines, staff labor, etc. but what penalty in case of patient's death?) Uncomparable penalties on different axes of X.
  - nuclear plant
  - judicial error
- The prior probabilities  $p_K(k)$ : must exist and be known. But in some cases it does not make sense to talk about probabilities because the events are not random.
  - $K = \{1, 2\} \equiv \{$ own army plane, enemy plane $\};$ p(x|1), p(x|2) do exist and can be estimated, but p(1) and p(2) don't.
- The conditionals may be subject to non-random intervention;  $p(x \mid k, z)$  where  $z \in Z = \{1, 2, 3\}$  are different interventions.
  - a system for handwriting recognition: The training set has been prepared by 3 different persons. But the test set has been constructed by one of the 3 persons only. This **cannot** be done:

(!) 
$$p(x \mid k) = \sum_{z} p(z)p(x \mid k, z)$$
 (3)

## **Neyman Pearson Task**

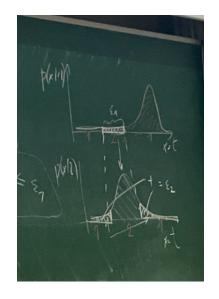


- X set of observations
- Conditionals p(x | 1), p(x | 2) are given
- p(KIA) The priors p(1) and p(2) are unknown or do not exist
- $q: X \to K$  strategy

The Neyman Pearson Task looks for the optimal strategy  $q^*$  for which

- i) the error of classification for class 1 is lower than a predefined threshold  $\bar{\epsilon}_1$  ( $0 < \bar{\epsilon}_1 < 1$ ), while
- ii) the classification error for class 2 is as low as possible.

This is formulated as an optimization task with an inequality constraint:



$$q^{*} = \underset{q:X \to K}{\operatorname{argmin}} \sum_{x:q(x) \neq 2} p(x \mid 2)$$
subject to: 
$$\sum_{x:q(x) \neq 1} p(x \mid 1) \leq \overline{\epsilon}_{1}.$$
(5)

5/28

p(x/2)

E

# Neyman Pearson Task



(copied from the previous slide:)

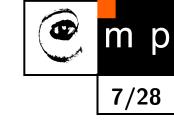
$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \sum_{x:q(x)\neq 2} p(x \mid 2)$$
(4)  
subject to: 
$$\sum_{x:q(x)\neq 1} p(x \mid 1) \leq \overline{\epsilon}_1.$$
(5)

A strategy is characterized by the classification error values  $\epsilon_2$  and  $\epsilon_1$ :

$$\epsilon_{1} = \sum_{x:q(x)\neq 1} p(x \mid 1)$$

$$\epsilon_{2} = \sum_{x:q(x)\neq 2} p(x \mid 2)$$
(6)
(7)

# Example: Male/Female Recognition (Neyman Pearson) (1)



(8)

A hotel has an advertising screen in an elevator. Based on recognition of gender, it wants to display a relevant advert for a shopping mall located at the ground floor. The shopping mall is primarily designed to be interesting for female customers. For this reason, the female classification error threshold is set to  $\bar{\epsilon}_1 = 0.2$ . At the same time, the objective is to minimize mis-classification of male customers.

- $K = \{1, 2\} \equiv \{\mathsf{F}, \mathsf{M}\}$  (female, male)
- measurements X = height × weight (height sensor = simple optical sensor, weight sensor = standard component of elevators)
- height  $\in \{h_1, h_2, h_3\}$ , weight  $\in \{w_1, w_2, w_3, w_4\}$   $(h_1 < h_2 < h_3)$ ,  $(w_1 < w_2 < w_3 < w_4)$
- Prior probabilities do not exist.
- Conditionals are given as follows:

| p(x F) |       |       |       |       |  |
|--------|-------|-------|-------|-------|--|
| $h_1$  | .197  | .145  | .094  | .017  |  |
| $h_2$  | .077  | .299  | .145  | .017  |  |
| $h_3$  | .001  | .008  | .000  | .000  |  |
|        | $w_1$ | $w_2$ | $w_3$ | $w_4$ |  |

| p(x M) |       |       |       |       |  |
|--------|-------|-------|-------|-------|--|
| $h_1$  | .011  | .005  | .011  | .011  |  |
| $h_2$  | .005  | .071  | .408  | .038  |  |
| $h_3$  | .002  | .014  | .255  | .169  |  |
|        | $w_1$ | $w_2$ | $w_3$ | $w_4$ |  |

#### Neyman Pearson : Solution

The optimal strategy  $q^*$  for a given  $x \in X$  is constructed using the likelihood ratio  $\frac{p(x|2)}{p(x|1)}$ . Let there be a constant  $\mu \ge 0$ . Given this  $\mu$ , a strategy q is constructed as follows:

$$\frac{p(x \mid 2)}{p(x \mid 1)} > \mu \quad \Rightarrow \quad q(x) = 2,$$

$$\frac{p(x \mid 2)}{p(x \mid 1)} \le \mu \quad \Rightarrow \quad q(x) = 1.$$
(9)
(10)

8/28

The optimal strategy  $q^*$  is obtained by selecting the minimal  $\mu$  for which there still holds that  $\epsilon_1 \leq \overline{\epsilon}_1$ .

Let us show this on an example.

# Example: Male/Female Recognition (Neyman Pearson) (2)



| p(x 1) |       |       |       |       |
|--------|-------|-------|-------|-------|
| $h_1$  | .197  | .145  | .094  | .017  |
| $h_2$  | .077  | .299  | .145  | .017  |
| $h_3$  | .001  | .008  | .000  | .000  |
|        | $w_1$ | $w_2$ | $w_3$ | $w_4$ |

|       | p(x  <b>2</b> ) |       |       |       |  |  |
|-------|-----------------|-------|-------|-------|--|--|
| $h_1$ | .011            | .005  | .011  | .011  |  |  |
| $h_2$ | .005            | .071  | .408  | .038  |  |  |
| $h_3$ | .002            | .014  | .255  | .169  |  |  |
|       | $  w_1$         | $w_2$ | $w_3$ | $w_4$ |  |  |

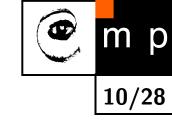
| r(x) = p(x 2)/p(x 1) |       |       |          |          |
|----------------------|-------|-------|----------|----------|
| $h_1$                | 0.056 | 0.034 | 0.117    | 0.647    |
| $h_2$                | 0.065 | 0.237 | 2.814    | 2.235    |
| $h_3$                | 2.000 | 1.750 | $\infty$ | $\infty$ |
|                      | $w_1$ | $w_2$ | $w_3$    | $w_4$    |

| rank order of $p(x 2)/p(x 1)$ |       |       |       |       |  |
|-------------------------------|-------|-------|-------|-------|--|
| $h_1$                         | 2     | 1     | 4     | 6     |  |
| $h_2$                         | 3     | 5     | 10    | 9     |  |
| $h_3$                         | 8     | 7     | 11    | 12    |  |
|                               | $w_1$ | $w_2$ | $w_3$ | $w_4$ |  |

Here, different  $\mu{\rm 's}$  can produce 11 different strategies.

First, let us take  $2.814 < \mu < \infty$ , e.g.  $\mu = 3$ . This produces a strategy  $q^*(x) = 1$  everywhere except where p(x|1) = 0. Obviously, classification error  $\epsilon_1 = 0$ , and  $\epsilon_2 = 1 - .255 - .169 = .576$ .

# Example: Male/Female Recognition (Neyman Pearson) (3)



| p(x 1) |       |       |       |       |  |
|--------|-------|-------|-------|-------|--|
| $h_1$  | .197  | .145  | .094  | .017  |  |
| $h_2$  | .077  | .299  | .145  | .017  |  |
| $h_3$  | .001  | .008  | .000  | .000  |  |
|        | $w_1$ | $w_2$ | $w_3$ | $w_4$ |  |

| p(x  <b>2</b> ) |       |       |       |       |
|-----------------|-------|-------|-------|-------|
| $h_1$           | .011  | .005  | .011  | .011  |
| $h_2$           | .005  | .071  | .408  | .038  |
| $h_3$           | .002  | .014  | .255  | .169  |
|                 | $w_1$ | $w_2$ | $w_3$ | $w_4$ |

| r(x) = p(x 2)/p(x 1) |       |       |          |          |
|----------------------|-------|-------|----------|----------|
| $h_1$                | 0.056 | 0.034 | 0.117    | 0.647    |
| $h_2$                | 0.065 | 0.237 | 2.814    | 2.235    |
| $h_3$                | 2.000 | 1.750 | $\infty$ | $\infty$ |
|                      | $w_1$ | $w_2$ | $w_3$    | $w_4$    |

| rank  | rank, and $q^*(x) = \{1, 2\}$ for $\mu = 2.5$ |       |       |       |  |
|-------|-----------------------------------------------|-------|-------|-------|--|
| $h_1$ | 2                                             | 1     | 4     | 6     |  |
| $h_2$ | 3                                             | 5     | 10    | 9     |  |
| $h_3$ | 8                                             | 7     | 11    | 12    |  |
|       | $w_1$                                         | $w_2$ | $w_3$ | $w_4$ |  |

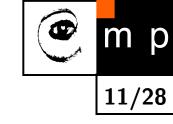
Next, take  $\mu$  which satisfies

$$r_9 < \mu < r_{10}$$
 (e.g.  $\mu = 2.5$ ) (11)

(where  $r_i$  is the likelihood ratios indexed by its rank.)

Here,  $\epsilon_1 = .145$ , and  $\epsilon_2 = 1 - .255 - .169 - .408 = .168$ .

# Example: Male/Female Recognition (Neyman Pearson) (4)



| p(x 1) |       |       |       |       |
|--------|-------|-------|-------|-------|
| $h_1$  | .197  | .145  | .094  | .017  |
| $h_2$  | .077  | .299  | .145  | .017  |
| $h_3$  | .001  | .008  | .000  | .000  |
|        | $w_1$ | $w_2$ | $w_3$ | $w_4$ |

| p(x 2) |       |       |       |       |
|--------|-------|-------|-------|-------|
| $h_1$  | .011  | .005  | .011  | .011  |
| $h_2$  | .005  | .071  | .408  | .038  |
| $h_3$  | .002  | .014  | .255  | .169  |
|        | $w_1$ | $w_2$ | $w_3$ | $w_4$ |

| r(x) = p(x 2)/p(x 1) |       |       |          |          |  |  |
|----------------------|-------|-------|----------|----------|--|--|
| $h_1$                | 0.056 | 0.034 | 0.117    | 0.647    |  |  |
| $h_2$                | 0.065 | 0.237 | 2.814    | 2.235    |  |  |
| $h_3$                | 2.000 | 1.750 | $\infty$ | $\infty$ |  |  |
|                      | $w_1$ | $w_2$ | $w_3$    | $w_4$    |  |  |

| rank  | rank, and $q^*(x) = \{1, 2\}$ for $\mu = 2.1$ |       |       |       |  |  |
|-------|-----------------------------------------------|-------|-------|-------|--|--|
| $h_1$ | 2                                             | 1     | 4     | 6     |  |  |
| $h_2$ | 3                                             | 5     | 10    | 9     |  |  |
| $h_3$ | 8                                             | 7     | 11    | 12    |  |  |
|       | $w_1$                                         | $w_2$ | $w_3$ | $w_4$ |  |  |

Do the same for  $\boldsymbol{\mu}$  satisfying

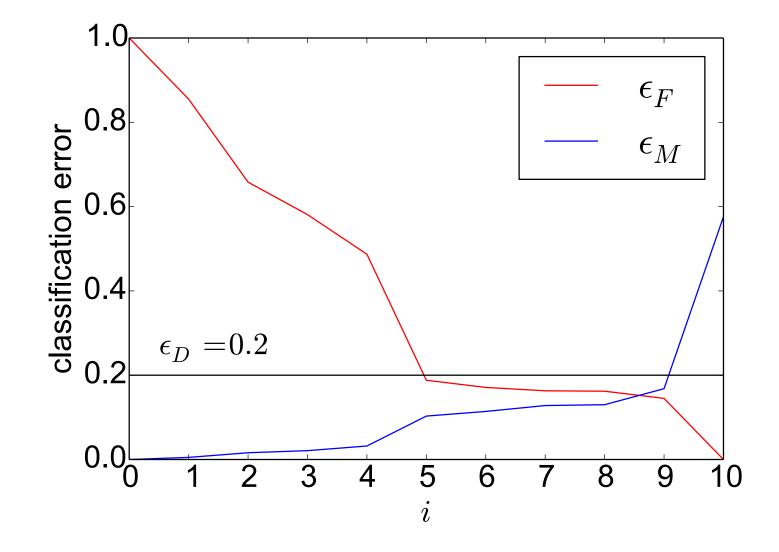
$$r_8 < \mu < r_9$$
 (e.g.  $\mu = 2.1$ ) (12)

 $\Rightarrow \epsilon_1 = .162$ , and  $\epsilon_2 = 0.13$ .

## Example: Male/Female Recognition (Neyman Pearson) (5)

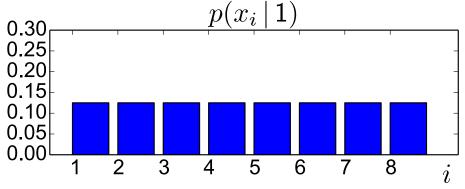


Classification errors for 1 and 2, for  $\mu_i = \frac{r_i + r_{i+1}}{2}$  and  $\mu_0 = 0$ .



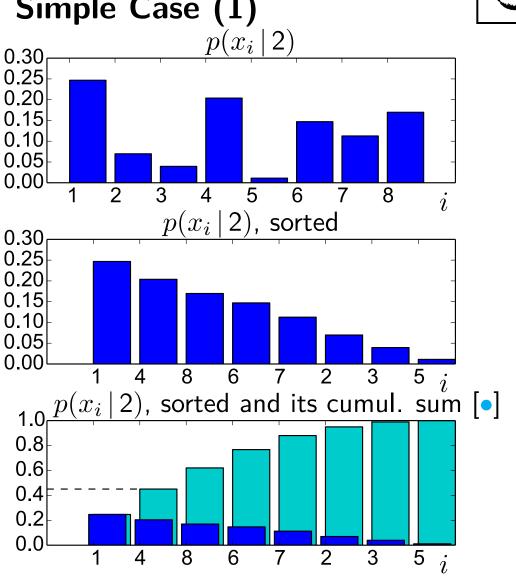
The optimum is reached for  $r_5 < \mu < r_6$ ;  $\epsilon_1 = .188$ ,  $\epsilon_2 = .103$ 

#### Neyman Pearson : Simple Case (1)



Consider a simple case when  $p(x_i | 1) = \text{const.}$  Possible values for  $\epsilon_1$ are  $0, \frac{1}{8}, \frac{2}{8}, ..., 1$ . If a strategy qclassifies P observations as normal then  $\epsilon_1 = \frac{P}{8}$ .

If P = 1 then  $\epsilon_1 = \frac{1}{8}$  and it is clear that  $\epsilon_2$  will attain minimum if the (one) observation which is classified as normal is the one with the highest  $p(x_i | 2)$ . Similarly, if P = 2 then the two observations to be classified as normal are the one with the first two highest  $p(x_i | 2)$ . Etc.



 $\uparrow$  cumulative sum of sorted  $p(x_i | 2)$  shows the classification success rate for 2, that is,  $1 - \epsilon_2$ , for  $\epsilon_1 = \frac{1}{8}, \frac{2}{8}, ..., 1$ . For example, for  $\epsilon_1 = \frac{2}{8}$   $(P = 2), \epsilon_2 = 1 - 0.45 = 0.55$ (as shown, dashed.)

# Neyman Pearson : Towards General Case (2)

In general,  $p(x_i | 1) \neq \text{const.}$  Consider the following example:

| $p(x_i \mid 1)$ |       |       | $p(x_i \mid 2)$ |       |       |       |
|-----------------|-------|-------|-----------------|-------|-------|-------|
| $x_1$           | $x_2$ | $x_3$ |                 | $x_1$ | $x_2$ | $x_3$ |
| 0.5             | 0.25  | 0.25  |                 | 0.6   | 0.35  | 0.05  |

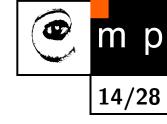
But this can easily be converted to the previous special case by (only formally) splitting  $x_1$  to two observations  $x'_1$  and  $x''_1$ :

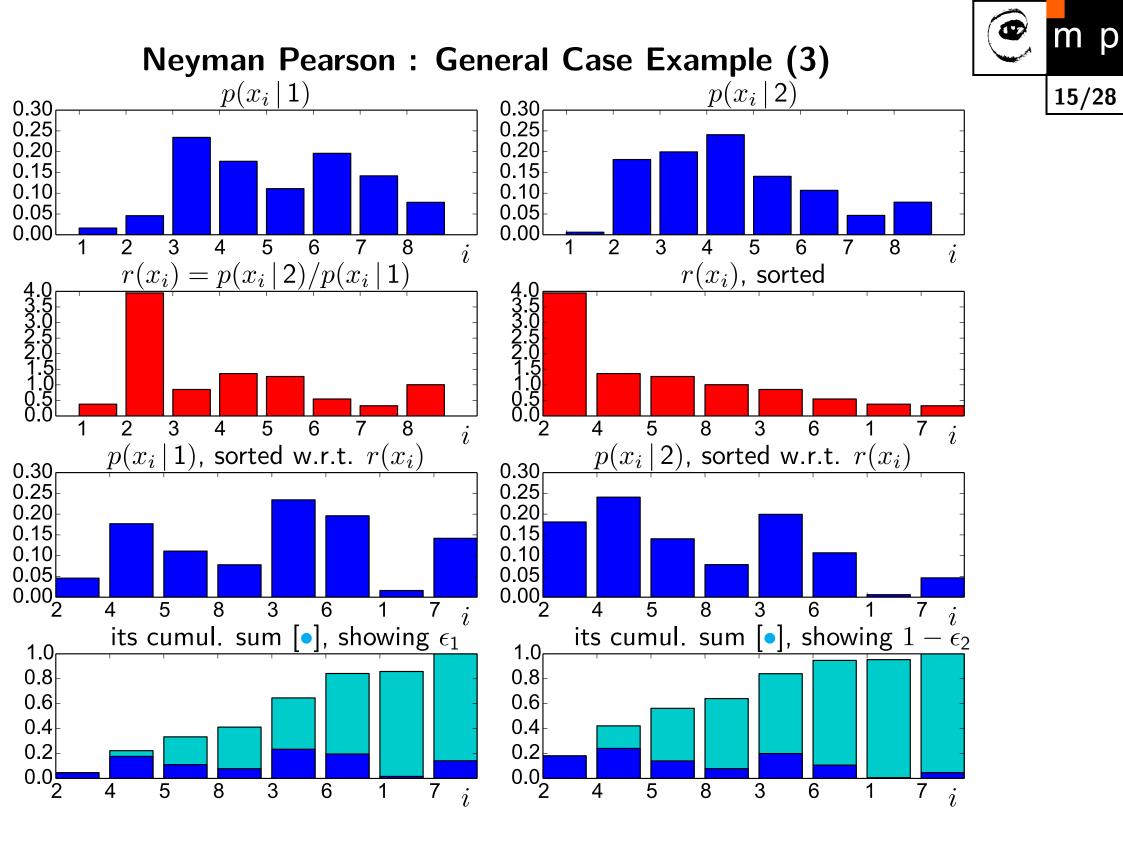
| $\underline{\qquad} p(x_i   1)$ |         |       |       | p(z) | $x_i   2)$ |         |       |       |
|---------------------------------|---------|-------|-------|------|------------|---------|-------|-------|
| $x'_1$                          | $x_1''$ | $x_2$ | $x_3$ |      | $x'_1$     | $x_1''$ | $x_2$ | $x_3$ |
| 0.25                            | 0.25    | 0.25  | 0.25  |      | 0.3        | 0.3     | 0.35  | 0.05  |

which would result in ordering the observations by decreasing  $p(x_i | 2)$  as:  $x_2, x_1, x_3$ .

Obviously, the same ordering is obtained when  $p(x_i | 2)$  is 'normalized' by  $p(x_i | 1)$ , that is, using the likelihood ratio

$$r(x_i) = \frac{p(x_i \mid 2)}{p(x_i \mid 1)}.$$
(13)





#### Neyman Pearson Solution : Illustration of Principle

Lagrangian of the Neyman Pearson Task is

$$L(q) = \sum_{\substack{x: q(x)=1}} p(x \mid 2) + \mu \left( \sum_{x: q(x)=2} p(x \mid 1) - \bar{\epsilon}_D \right)$$
(14)  
=  $\overbrace{1 - \sum_{x: q(x)=2}}^{=} p(x \mid 2) + \mu \left( \sum_{x: q(x)=2} p(x \mid 1) \right) - \mu \bar{\epsilon}_1$ (15)  
=  $1 - \mu \bar{\epsilon}_1 + \sum_{x: q(x)=2} \underbrace{\{\mu p(x \mid 1) - p(x \mid 2)\}}_{T(x)}$ (16)

If T(x) is negative for an x then it will decrease the objective function and the optimal strategy  $q^*$  will decide  $q^*(x) = 2$ . This illustrates why the solution to the Neyman Pearson Task has the form

$$\frac{p(x \mid 2)}{p(x \mid 1)} > \mu \quad \Rightarrow \quad q(x) = 2,$$

$$\frac{p(x \mid 2)}{p(x \mid 1)} \le \mu \quad \Rightarrow \quad q(x) = 1.$$
(9)
(10)



#### Neyman Pearson : Derivation (1)



$$q^* = \min_{q:X \to K} \sum_{x:q(x)\neq 2} p(x \mid 2) \qquad \text{subject to:} \sum_{x:q(x)\neq 1} p(x \mid 1) \le \overline{\epsilon}_1.$$
(17)

Let us rewrite this as

$$q^* = \min_{q:X \to K} \sum_{x \in X} \alpha(x) p(x \mid 2) \qquad \text{subject to:} \qquad \sum_{x \in X} [1 - \alpha(x)] p(x \mid 1) \le \bar{\epsilon}_1. \tag{18}$$
  
and: 
$$\alpha(x) \in \{0, 1\} \ \forall x \in X \tag{19}$$

This is a combinatorial optimization problem. If the relaxation is done from  $\alpha(x) \in \{0, 1\}$  to  $0 \le \alpha(x) \le 1$ , this can be solved by **linear programming** (LP). The Lagrangian of this problem with inequality constraints is:

$$L(\alpha(x_1), \alpha(x_2), ..., \alpha(x_N)) = \sum_{x \in X} \alpha(x) p(x \mid 2) + \mu \left( \sum_{x \in X} [1 - \alpha(x)] p(x \mid 1) - \bar{\epsilon}_1 \right)$$
(20)  
$$- \sum_{x \in X} \mu_0(x) \alpha(x) + \sum_{x \in X} \mu_1(x) (\alpha(x) - 1)$$
(21)

# Neyman Pearson : Derivation (2)

$$L(\alpha(x_1), \alpha(x_2), ..., \alpha(x_N)) = \sum_{x \in X} \alpha(x) p(x \mid 2) + \mu \left( \sum_{x \in X} [1 - \alpha(x)] p(x \mid 1) - \bar{\epsilon}_1 \right)$$
(20)  
$$- \sum_{x \in X} \mu_0(x) \alpha(x) + \sum_{x \in X} \mu_1(x) (\alpha(x) - 1)$$
(21)

The conditions for optimality are  $(\forall x \in X)$ :

$$\frac{\partial L}{\partial \alpha(x)} = p(x \mid 2) - \mu p(x \mid 1) - \mu_0(x) + \mu_1(x) = 0, \quad (22)$$

р

$$\mu \ge 0, \ \mu_0(x) \ge 0, \ \mu_1(x) \ge 0, \quad 0 \le \alpha(x) \le 1,$$
 (23)

$$\mu_0(x)\alpha(x) = 0, \ \mu_1(x)(\alpha(x) - 1) = 0, \ \mu\left(\sum_{x \in X} [1 - \alpha(x)]p(x \mid 1) - \bar{\epsilon}_1\right) = 0.$$
(24)

#### **Case-by-case analysis:**

| case                                                          | implications                                                                                                               |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| $\mu = 0$                                                     | L minimized by $\alpha(x) = 0  \forall x$                                                                                  |
| $\mu \neq 0,  \alpha(x) = 0$                                  | $\mu_1(x) = 0 \Rightarrow \mu_0(x) = p(x \mid 2) - \mu p(x \mid 1) \Rightarrow \frac{p(x \mid 2)}{p(x \mid 2)} \le \mu$    |
| $\mu \neq 0,  \alpha(x) = 1$                                  | $\mu_0(x) = 0 \Rightarrow \mu_1(x) = -[p(x \mid 2) - \mu p(x \mid 1)] \Rightarrow \frac{p(x \mid 2)}{p(x \mid 2)} \ge \mu$ |
| $egin{array}{ccc} \mu &  eq 0, \ 0 < lpha(x) < 1 \end{array}$ | $\mu_0(x) = \mu_1(x) = 0 \Rightarrow \frac{p(x \mid 2)}{p(x \mid 1)} = \mu$                                                |

# Neyman Pearson : Derivation (3)



#### **Case-by-case analysis:**

| case                                           | implications                                                                                                               |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| $\mu = 0$                                      | L minimized by $\alpha(x) = 0  \forall x$                                                                                  |
| $\mu \neq 0,  \frac{\alpha(x) = 0}{\alpha(x)}$ | $\mu_1(x) = 0 \Rightarrow \mu_0(x) = p(x \mid 2) - \mu p(x \mid 1) \Rightarrow \frac{p(x \mid 2)}{p(x \mid 2)} \le \mu$    |
| $\mu \neq 0,  \alpha(x) = 1$                   | $\mu_0(x) = 0 \Rightarrow \mu_1(x) = -[p(x \mid 2) - \mu p(x \mid 1)] \Rightarrow \frac{p(x \mid 2)}{p(x \mid 2)} \ge \mu$ |
| $\mu  eq 0, \ 0 < lpha(x) < 1$                 | $\mu_0(x) = \mu_1(x) = 0 \Rightarrow \frac{p(x \mid 2)}{p(x \mid 1)} = \mu$                                                |

**Optimal Strategy** for a given  $\mu \ge 0$  and particular  $x \in X$ :

$$\frac{p(x \mid 2)}{p(x \mid 1)} \quad \begin{cases} < \mu \quad \Rightarrow q(x) = 1 \text{ (as } \alpha(x) = 0) \\ > \mu \quad \Rightarrow q(x) = 2 \text{ (as } \alpha(x) = 1) \\ = \mu \quad \Rightarrow \text{LP relaxation does not give the desired solution, as } \alpha \notin \{0, 1\} \end{cases}$$
(25)



(26)

#### Consider:

| p(x 1) |       |       |  |  |
|--------|-------|-------|--|--|
| $x_1$  | $x_2$ | $x_3$ |  |  |
| 0.9    | 0.09  | 0.01  |  |  |

|  | p(x 2) |       |       |  |  |
|--|--------|-------|-------|--|--|
|  | $x_1$  | $x_2$ | $x_3$ |  |  |
|  | 0.09   | 0.9   | 0.01  |  |  |

| r(x) = p(x 2)/p(x 1) |       |       |  |  |
|----------------------|-------|-------|--|--|
| $x_1$                | $x_2$ | $x_3$ |  |  |
| 0.1                  | 10    | 1     |  |  |

and  $\bar{\epsilon}_1 = 0.03$ .

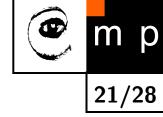
- $q_1: (x_1, x_2, x_3) \to (1, 1, 1) \Rightarrow \epsilon_1 = 0.00, \epsilon_2 = 1.00$
- $q_2: (x_1, x_2, x_3) \to (1, 1, 2) \implies \epsilon_1 = 0.01, \ \epsilon_2 = 0.99$
- ullet no other deterministic strategy q is feasible, that is all other ones have  $\epsilon_1 > ar \epsilon_1$
- q<sub>2</sub> is the best deterministic strategy but it does not comply with the previous basic result of constructing the optimal strategy because it decides for 2 for likelihood ratio 1 but decides for 1 for likelihood ratios 0.01 and 10. Why is that?
  - we can construct a randomized strategy which attains  $\overline{\epsilon}_1$  and reaches lower  $\epsilon_2$ :

$$q(x_1) = q(x_3) = 1, \quad q(x_2) = egin{cases} 2 & 1/3 \text{ of the time} \ 1 & 2/3 \text{ of the time} \ 1 & 2/3 \text{ of the time} \end{cases}$$

For such strategy,  $\epsilon_1 = 0.03$ ,  $\epsilon_2 = 0.7$ .

# Neyman Pearson : Note on Randomized Strategies (2)

- This is not a problem but a feature which is caused by discrete nature of X (does not happen when X is continuous).
- This is exactly what the case of  $\mu = p(x \mid 2)/p(x \mid 1)$  is on slide 18.

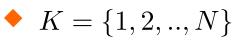


# Neyman Pearson : Notes (1)

- The task can be generalized to 3 hidden states, of which 2 are dangerous,  $K = \{2, D_1, D_2\}$ . It is formulated as an analogous problem with two inequality constraints and minimization of classification error for 2.
- Neyman's and Pearson's work dates to 1928 and 1933.
- A particular strength of the approach lies in that the likelihood ratio r(x) or even p(x | 2) need not be known. For the task to be solved, it is enough to know the p(x | 1) and the rank order of the likelihood ratio (to be demonstrated on the next page)

22/28

## Minimax Task



- X set of observations
- Conditionals  $p(x \mid k)$  are known  $\forall k \in K$
- The priors p(k) are unknown or do not exist
- $q: X \to K$  strategy

The Minimax Task looks for the optimum strategy  $q^*$  which minimizes the classification error of the worst classified class:

$$q^* = \underset{q:X \to K}{\operatorname{argmin}} \max_{k \in K} \epsilon(k), \quad \text{where}$$

$$\epsilon(k) = \sum_{x:q(x) \neq k} p(x \mid k)$$
(27)
(28)

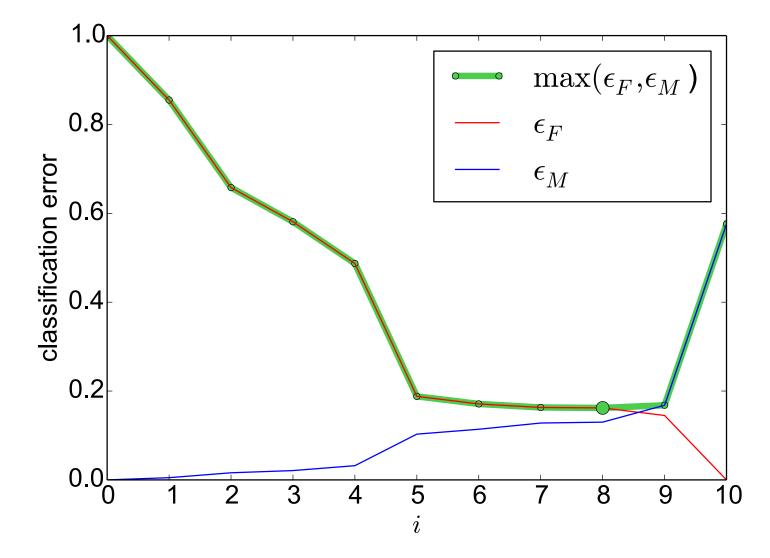
Example: A recognition algorithm qualifies for a competition using preliminary tests.
 During the final competition, only objects from the hardest-to-classify class are used.

- For a 2-class problem, the strategy is again constructed using the likelihood ratio.
- In the case of continuous observations space X, equality of classification errors is attained:  $\epsilon_1 = \epsilon_2$
- The derivation can again be done using Linear Programming.

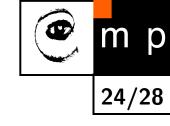


#### Example: Male/Female Recognition (Minimax)

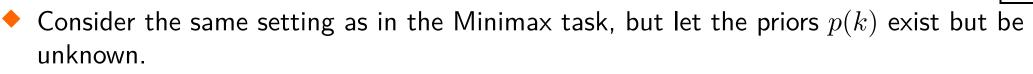
Classification errors for 1 and 2, for  $\mu_i = \frac{r_i + r_{i+1}}{2}$  and  $\mu_0 = 0$ .



The optimum is attained for i = 8,  $\epsilon_1 = .162$ ,  $\epsilon_2 = .13$ . The corresponding strategy is as shown on slide 11.



# Minimax: Comparison with Bayesian Decision with Unknown Priors



• The Bayesian error  $\epsilon$  for strategy q is

$$\epsilon = \sum_{k} \sum_{x: q(x) \neq k} p(x, k) = \sum_{k} p(k) \underbrace{\sum_{x: q(x) \neq k} p(x \mid k)}_{\epsilon(k)}$$
(29)

р

25/28

- We want to minimize  $\epsilon$  but we do not know p(k)'s. What is the maximum it can attain? Obviously, the p(k)'s do the convex combination of the class errors  $\epsilon(k)$ ; the maximum Bayesian error will be attained when p(k) = 1 for the class k with the highest class error  $\epsilon(k)$ .
- Thus, to minimize the Bayesian error  $\epsilon$  under this setting, the solution is to minimize the error of the hardest-to-classify class.
- Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors lead to the same solution.

# Wald Task (1)

- Let us consider classification with two states,  $K = \{1, 2\}$ .
- We want to set a threshold  $\epsilon$  on the classification error of both of the classes:  $\epsilon_1 \leq \epsilon$ ,  $\epsilon_2 \leq \epsilon$ .
- It is clear that there may be **no** feasible solution if  $\epsilon$  is set too low.
- That is why the possibility of decision "do not know" is introduced. Thus  $D = K \cup \{?\}$

• A strategy  $q: X \to D$  is characterized by:

$$\epsilon_1 = \sum_{x: q(x)=2} p(x \mid 1) \quad \text{(classification error for 1)} \tag{30}$$

р

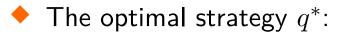
26/28

$$\epsilon_2 = \sum_{x: q(x)=1} p(x \mid 2) \quad \text{(classification error for 2)} \tag{31}$$

$$\kappa_1 = \sum_{x: q(x)=?} p(x \mid 1) \quad \text{(undecided rate for 1)}$$
(32)

$$\kappa_2 = \sum_{x: q(x)=?} p(x \mid 2) \quad \text{(undecided rate for 2)}$$
(33)

# Wald Task (2)



$$q^* = \underset{q:X \to D}{\operatorname{argmin}} \max_{i=\{1,2\}} \kappa_i$$
subject to:  $\epsilon_1 \le \epsilon, \epsilon_2 \le \epsilon$ 
(34)
(35)

The task is again solvable using LP (even for more than 2 classes)

The optimal solution is again based on the likelihood ratio

$$r(x) = \frac{p(x \mid 1)}{p(x \mid 2)}$$
(36)

The optimal strategy is constructed using suitably chosen thresholds  $\mu_l$  and  $\mu_h$  such that:

$$q(x) = \begin{cases} 2 & \text{for } r(x) < \mu_l \\ 1 & \text{for } r(x) > \mu_h \\ ? & \text{for } \mu_l \le r(x) \le \mu_h \end{cases}$$
(37)





# Example: Male/Female Recognition (Wald)

Solve the Wald task for  $\epsilon=0.05.$ 

|       |       | p(x F) | )     |       |       |          |
|-------|-------|--------|-------|-------|-------|----------|
| $h_1$ | .197  | .145   | .094  | .017  | $h_1$ | .01      |
| $h_2$ | .077  | .299   | .145  | .017  | $h_2$ | .00      |
| $h_3$ | .001  | .008   | .000  | .000  | $h_3$ | .00      |
|       | $w_1$ | $w_2$  | $w_3$ | $w_4$ |       | $\mid w$ |

| p(x M) |         |       |       |       |  |  |
|--------|---------|-------|-------|-------|--|--|
| $h_1$  | .011    | .005  | .011  | .011  |  |  |
| $h_2$  | .005    | .071  | .408  | .038  |  |  |
| $h_3$  | .002    | .014  | .255  | .169  |  |  |
|        | $  w_1$ | $w_2$ | $w_3$ | $w_4$ |  |  |

|       | r(x) = p(x 2)/p(x 1) |       |          |          |  |  |  |
|-------|----------------------|-------|----------|----------|--|--|--|
| $h_1$ | 0.056                | 0.034 | 0.117    | 0.647    |  |  |  |
| $h_2$ | 0.065                | 0.237 | 2.814    | 2.235    |  |  |  |
| $h_3$ | 2.000                | 1.750 | $\infty$ | $\infty$ |  |  |  |
|       | $w_1$                | $w_2$ | $w_3$    | $w_4$    |  |  |  |

| rank, and $q^*(x) = \{1, 2, ?\}$ |  |       |       |       |       |       |
|----------------------------------|--|-------|-------|-------|-------|-------|
| -7                               |  | $h_1$ | 2     | 1     | 4     | 6     |
| 5                                |  | $h_2$ | 3     | 5     | 10    | 9     |
|                                  |  | $h_3$ | 8     | 7     | 11    | 12    |
| 1                                |  |       | $w_1$ | $w_2$ | $w_3$ | $w_4$ |

**Result:**  $\epsilon_2 = 0.032$ ,  $\epsilon_1 = 0$ ,  $\kappa_2 = 0.544$ ,  $\kappa_1 = 0.487$ 

$$(r_4 < \mu_l < r_5, r_{10} < \mu_h < \infty)$$