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Probability Density Estimation

Parametric Methods for Density Estimation

⌅ Have been dealt with in the previous lecture

⌅ Advantage: Low number of parameters to estimate

⌅ Disadvantage: The resulting estimated density can be arbitrarily wrong if the underlying
distribution does not agree with the assumed parametric model.

Non-Parametric Methods for Density Estimation

⌅ Histogram

⌅ Nearest Neighbor approach
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Histogram as piecewise constant density estimate:
Task formulation

Consider the following distribution q(x) on the interval [0, 1], and i.i.d. sampling from it.
We will fit the distribution by a ’histogram’ with B bins. More precisely, we will estimate a
piecewise-constant function on the interval [0, 1] with B segments of the same width.
For a given B, the parameters of this piecewise-constant function are the heights
d1, d2, ..., dB of the individual bins. This function is denoted p(x|{d1, d2, ..., dB}).

p(x|{d1, d2, .., dB}) to be
estimated

For the given number of bins B, d1, d2, ..., dB must conform to the constraint that the area
under the function must sum up to one,

1 =

⁄ Œ

≠Œ
p(x|{d1, d2, ..., dB})dx =

Bÿ

i=1

⁄ i
B

i≠1
B

di dx =
Bÿ

i=1

di

bin width
¿
w =

Bÿ

i=1

di

B
. (1)
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Histogram as piecewise constant density estimate:
Finding di’s using Maximum Likelihood

Let us estimate {di, i = 1, 2, ..., B} by Maximum Likelihood (ML) approach. Let Ni denote
the number of samples which belong the i-th bin (thus clearly,

qB
i=1 Ni = N). The

likelihood L(T ) of observing the samples T = {x1, x2, ..., xN} given the parameters
◊ = {d1, d2, ..., dB} is

L(T ) = p(T |◊) =
NŸ

i=1

p(xi|◊) =
BŸ

j=1

points in j-th bin˙ ˝¸ ˚Q

a
NjŸ

k=1

dj

R

b =
BŸ

j=1

d
Nj
j . (2)

The maximization task is then

¸(T ) =
Bÿ

j=1

Nj log dj æ max , subject to 1

B

Bÿ

j=1

dj = 1 , (3)

where maximization has been formulated using the log-likelihood ¸(T ) . The Lagrangian of
the optimization task and the conditions of optimality (using the derivative ˆ/ˆdk) are then:

Lagrangian:
Bÿ

j=1

Nj log dj + ⁄

Q

a 1

B

Bÿ

j=1

dj ≠ 1

R

b (4)

Nk

dk
+

⁄

B
= 0 ∆ dk

Nk
= const. ∆ dk = B

Nk

N
. (5)
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Histogram as piecewise constant density estimate:
Example, di�erent number of bins

dk = B
Nk

N
(6)

This result is in line with the common use of histograms for
approximating pdf’s. Results for di�erent B’s:
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Histogram as piecewise constant density estimate:
What number of bins produces closest pdf approximation?

Let us measure the di�erences between
the (actual) source distribution q(x) and
the piecewise-constant density estimate
p(x) = p(x|{d1, d2, ..., dB}) from the
N = 1000 samples, using B bins.

Measures used:
Kullback-Leibler divergence DKL:

DKL(pÎq) =

⁄ Œ

≠Œ
p(x) log

p(x)

q(x)
dx .

(7)
(Note that KL div. is not a metric.)

Sum of squared di�erences DSSD:

DSSD(p, q) =

⁄ Œ

≠Œ
(p(x) ≠ q(x))2 dx .

(8)
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Histogram as piecewise constant density estimate:
Choosing the number of bins B by ML

How can we find the optimal number of bins B? Let us try to employ the ML approach
again: find the B which maximizes the likelihood. Recall that:

parameters dj : dj = B
Nj

N
(ML estimate) (9)

likelihood L(T ): L(T ) = p(T |{d1, d2, ..., dB}) =
BŸ

j=1

d
Nj
j =

BŸ

j=1

3
BNj

N

4Nj

(10)

log-likelihood ¸(T ): ¸(T ) =
Bÿ

j=1

Nj log dj =
Bÿ

j=1

Nj log
BNj

N
(11)

For B = 4000, the
log-likelihood ¸ is the highest.
But the pdf estimate with this
B is poor, and very di�erent
from the source distribution as
measured by DKL or DSSD.
For B = 105, ¸(T ) ≥ 4600.
What went wrong?
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Histogram, choosing the number of bins B:
ML overfits and produces B = Œ

When B grows, eventually it will reach a number B̂ such that there is either no or one point
in every bin (assuming no two points in the data are identical), and this will stay true for any
B > B̂.

In such cases,

dj =

I
B
N if the bin is populated by a point,
0 if the bin is not populated.

(12)

As the number of bins B grows, the widths
of occupied bins get narrower and the heights
dj’s higher. If B æ Œ then also dj æ Œ for
the occupied bins, and therefore also
¸(T ) æ Œ. Thus, such an approach cannot
produce a “reasonable” answer to choosing B,
as the solution it provides is B = Œ.

The problem is that the log-likelihood ¸ is computed using the same data used for fitting the
model (computing di’s). This is a similar concept to training a classifier on certain data and
testing on the same data, which is prone to over-fitting and poor generalization.
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Histogram, choosing the number of bins B:
Employing cross-validation

Let us compute the log likelihood using the following procedure: remove a given point from
the dataset for computing di’s and evaluate its contribution to the log-likelihood. Do this for
all the points. This approach is related to cross-validation technique (leave-one-out) for
choosing parameters of a classifier.

Let the point in question belong to the j-th bin. The ML estimate for dj, after removing
this point from the dataset, is

dj = B
Nj ≠ 1

N ≠ 1
, (Nj Ø 1) , (13)

where the subtractions of 1 reflect the fact that the considered point is not used for
estimating dj. Computing the log likelihood ¸ this way produces the following result:

¸ =
Bÿ

j=1
NjØ1

Nj log dj,

with dj = B
Nj≠1
N≠1

The ’failure’ for B > 7 is caused by singly-occupied bins (Nj = 1) for which the modified
ML estimate for dj becomes zero. This will be fixed by using di�erent estimates for dj’s.
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Histogram, choosing the number of bins B:
More suitable estimates for dj’s

The problem of di being estimated as 0 is similar to the one encountered previously: Recall
the example of tossing a coin three times, always getting heads (T = {H, H, H}). The ML
estimate is a fully unfair coin (probability of getting heads is 1, fihead = 1), thus making the
likelihood of any sequence containing tails zero. We have seen before that employing the
prior for the parameters to be estimated can mitigate this problem.
A (conjugate) prior for the histogram bin counts is the Dirichlet Distribution, with the pdf
p(d1, d2, ..., dB |–1, –2, ..., –B) ≥

r
d

–i≠1
i .

MAP Estimate:

di = B
Ni + –i ≠ 1

N +
qB

i=1 –i ≠ B

(14)

Bayes Estimate:

di = B
Ni + –i

N +
qB

i=1 –i

(15)

Interpretation: The parameters –i’s can be interpreted as ’virtual’ observations, as if –k

points have already been assigned to the k-th bin.

Example: The Bayes estimate using –i = 1 for all i = 1, 2, ..., B is

di = B
Ni+1
N+B . (16)

Using this estimate will enable us to make reasonable computation of likelihood for all B’s.
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Histogram, choosing the number of bins B:
ML to find B, cross-validation, Bayes esimate for dj’s

Let us now return to the previous task. Compute the log likelihood using the following
procedure: remove a given point from the dataset for computing di’s and evaluate its
contribution to the log-likelihood. Do this for all the points.

Use the Bayes estimate for dj from the previous example, dj = B
Nj+1
N+B . The modified

estimation of dj (omitting the point in question) will become

dj = B
Nj

N ≠ 1 + B
. (17)

This leads to the following result:

¸ =
qB

j=1 Nj log dj,

with dj = B
Nj

N≠1+B

This result is in agreement with distribution di�erences as measured by DKL or DSSD.
In particular, B = 30 is identified as the best-approximating number of bins.
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K-Nearest Neighbor Approach to Density Estimation

Find K neighbors, the density estimate is then p ≥ 1/V where V is the volume of a
minimum cell containing K NNs. Example (p ≥ inverse distance to K-th NN, same
1000 samples as before):
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K-Nearest Neighbor Approach to Classification

Outline:

⌅ Definition

⌅ Properties

⌅ Asymptotic error of NN classifier

⌅ Error reduction by edit operation on the training class

⌅ Fast NN search
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K-NN Classification Definition

Assumption:

⌅ Training set T = {(x1, k1), (x2, k2), ..., (xN , kN)}. There are R classes (letter K is
reserved for K-NN in this lecture)

⌅ A distance function d : X ◊ X ‘æ R+
0

Algorithm:

1. Given x, find K points S = {(xÕ
1, k

Õ
1), (x

Õ
2, k

Õ
2), ..., (xÕ

K, k
Õ
K)} from the training set T

which are closest to x in the metric d:

S ={(xÕ
1, k

Õ
1), (x

Õ
2, k

Õ
2), ..., (xÕ

K, k
Õ
K)} © {(xr1, kr1), (xr2, kr2), ..., (xrK , krK)} (18)

ri : the rank of (xi, ki) œ T as given by the ordering d(x, xi) (19)

2. Classify x to the class k which has majority in S:

k = argmax
lœR

Kÿ

i=1

JkÕ
i = lK (xÕ

i, k
Õ
i) œ S (20)
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K-NN Example (1)

Consider the two distributions
shown. The priors are assumed
to be the same,

p(1) = p(2) = 0.5.

Bayesian optimal decision
boundary is shown by the black
circle.
Bayesian error is ‘B = 0.026.
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K-NN Example (2)

N = 100 samples for each class. Bayes error ‘B = 0.026.
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K-NN Example (3)

T1 T2 T3

The results depend on the training set (result of a random process.)
Each of the training sets T1, T2, T3 contain 100 points for each class.
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K-NN Example (4)

K-NN error for di�erent K and di�erent sizes of the training set (N samples per class). 10
training sets have been generated randomly for each setting of K and N . Average error and
its std is shown. Minimum average error is highligted for each N . Bayes err. ‘B = 2.58%.

Error (in %)
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K-NN Properties

⌅ Trivial implementation (æ good baseline method)

⌅ 1-NN: Bayes error ‘B is the lower bound on error of classification ‘NN (in the
asymptotic case N æ Œ.) Upper bounds can also be constructed, e.g. ‘NN Æ 2‘B

⌅ Slow when implemented naively, but can be sped up (Voronoi, k-D trees)

⌅ High computer memory requirements (but training set can be edited and its cardinality
decreased)

⌅ How to construct the metric d? (problem of scales in di�erent axes)



20/33
K-NN : Speeding Up the Classification

⌅ Sophisticated algorithms for NN search:

• Classical problem in Comp. Geometry

• k-D trees

⌅ Removing the samples from the training class T which do not change the result of
classification

• Exactly: using Voronoi diagram

• Approximately: E.g. use Gabriel graph instead of Voronoi

• Condensation algorithm: iterative, also approximate.
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K-d Tree

k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)
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Condensation Algorithm

Input: The training set T .

Algorithm

1. Create two lists, A and B. Insert a randomly selected sample from T to A. Insert the
rest of the training samples to B.

2. Classify samples from B using 1NN with training set A. If an x œ B is mis-classified,
move it from B to A.

3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for 1NN classification)
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Condensation Algorithm, Example

The training dataset The dataset after the condensation.
Shown with the new decision boundary.
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1-NN Classification Error

Recall that a classification error ‘̄ for strategy q : X æ R is computed as

‘̄ =

⁄ ÿ

k:q(x) ”=k

p(x, k)dx =

⁄ ÿ

k:q(x) ”=k

p(k|x)

¸ ˚˙ ˝
‘(x)

p(x)dx =

⁄
‘(x)p(x)dx . (21)

We know that the Bayesian strategy qB decides for the highest posterior probability
q(x) = argmaxk p(k|x), thus the partial error ‘B(x) for a given x is

‘B(x) = 1 ≠ max
k

p(k|x) . (22)

Assume the asymptotic case. We will show that the following bounds hold for the partial
error ‘NN(x) and classification error ‘̄NN in the 1-NN classification,

‘B(x) Æ ‘NN(x) Æ 2‘B(x) ≠ R
R≠1‘

2
B(x) , (23)

‘̄B Æ ‘̄NN Æ 2‘̄B ≠ R
R≠1‘̄

2
B , (24)

where ‘̄B is the Bayes classification error and R is the number of classes.
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1-NN Classification Error, Example (1)

Consider two distributions as shown, a small interval ” on an x-axis, and a point s œ ”. Let
the class priors be p(1) = p(2) = 0.5. Assume ” æ 0 and number of samples N æ Œ.

Observe the following:

p(1|s) = 0.8 , p(2|s) = 0.2 , (25)
p(NN =1|s) = p(1|s) = 0.8 , p(NN =2|s) = p(2|s) = 0.2 , (26)

where p(NN =k|s) is the probability that the 1-NN of s is from class k (k = 1, 2) and thus
s is classified as k.
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1-NN Classification Error, Example (2)

The error ‘NN(s) at s is

‘NN(s) = p(1|s) p(NN =2|s) + p(2|s) p(NN =1|s) (27)
= 1 ≠ p(1|s) p(NN =1|s) ≠ p(2|s) p(NN =2|s) (28)
= 1 ≠ p

2(1|s) ≠ p
2(2|s) . (29)

Generally, for R classes, the error will be

‘NN(s) = 1 ≠
ÿ

kœR

p
2(k|s) . (30)
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1-NN Classification Error, Example (3)

The two distributions and the partial errors
(the Bayesian error ‘B(x) and the 1-NN error ‘NN(x))
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1-NN Classification Error Bounds (1)

Let us now return to the inequalities and prove them:

‘B(x) Æ ‘NN(x) Æ 2‘B(x) ≠ R
R≠1‘

2
B(x) , (31)

The first inequality follows from the fact that Bayes strategies are optimal.

To prove the second inequality, let P (x) denote the maximum posterior for x:

P (x) = max
k

p(k|x) (32)

∆ ‘B(x) = 1 ≠ P (x) . (33)

Let us rewrite the partial error ‘NN(x) using the Bayesian entities P (x) and q(x):

‘NN(x) = 1 ≠
ÿ

kœR

p
2(k|x) = 1 ≠ P

2(x) ≠
ÿ

k ”=q(x)

p
2(k|x) . (34)

We know that p(q(x)|x) = P (x), but the remaining posteriors can be arbitrary. Let us
consider the worst case. i.e. set p(k|x) for k ”= q(x) such that Eq. (34) is maximized. This
will provide the upper bound.
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1-NN Classification Error Bounds (2)

There are the following constraints on p(k|x) (k ”= q(x)):

ÿ

k ”=q(x)

p(k|x) + P (x) = 1 (posteriors sum to 1) (35)

ÿ

k ”=q(x)

p
2(k|x) æ min (36)

It is easy to show that this optimization problem is solved by setting all the posteriors to the
same number. Thus,

p(k|x) = 1 ≠ P (x)

R ≠ 1
=

‘B(x)

R ≠ 1
(k ”= q(x)) (37)

The upper bound can then be rewritten in terms of the Bayes partial error
‘B(x) = 1 ≠ P (x):

‘NN(x) Æ 1 ≠ P
2(x) ≠

ÿ

k ”=q(x)

p
2(k|x) = 1 ≠ (1 ≠ ‘B(x))

2 ≠ (R ≠ 1)
‘
2
B(x)

(R ≠ 1)2
. (38)
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1-NN Classification Error Bounds (3)

‘NN(x) Æ 1 ≠ P
2(x) ≠

ÿ

k ”=q(x)

p
2(k|x) = 1 ≠ (1 ≠ ‘B(x))

2 ≠ ‘
2
B(x)

R ≠ 1
. (39)

After expanding this, we get

‘NN(x) Æ 1 ≠ (1 ≠ ‘B(x))
2 ≠ ‘

2
B(x)

(R ≠ 1)
(40)

= 1 ≠ 1 + 2‘B(x) ≠ ‘
2
B(x) ≠ ‘

2
B(x)

R

R ≠ 1
(41)

= 2‘B(x) ≠ ‘
2
B(x)

R
R≠1 (42)

Note that for R = 2, the bound is tight because using ‘B(x) = 1 ≠ P (x) in Eq. (39) gives

‘NN(x) Æ 1 ≠ P
2(x) ≠ (1 ≠ P (x))2

1
= ‘NN(x) . (43)
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1-NN Classification Error Bounds (4)

The inequality for the local errors has been proven:

‘NN(x) Æ 2‘B(x) ≠ ‘
2
B(x)

R
R≠1 (44)

Is there a similar upper bound for the classification error ‘̄NN =
s

‘NN(x)p(x)dx, based on
the Bayes error ‘̄B =

s
‘B(x)p(x)dx?

Multiplying Eq. (45) by p(x), and integrating, gives

‘̄NN Æ 2‘̄B(x) ≠ R

R ≠ 1

⁄
‘
2
B(x)p(x)dx (45)

Let us use the known identity and inequality (where E (·) is the expectation operator)

var(x) = E
!
x
2
"

≠ E
2 (x) , var(x) Ø 0 ∆ E(x2) Ø E

2(x) (46)

Thus,
s

‘
2
B(x)p(x)dx Ø

!s
‘B(x)p(x)dx

"2, and

‘̄NN Æ 2‘̄B(x) ≠ R

R ≠ 1

⁄
‘
2
B(x)p(x)dx Æ 2‘̄B(x) ≠ R

R ≠ 1
‘̄
2
B . (47)
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K-NN Classification Error Bound

It can be shown that for K-NN, the following inequality holds:

‘̄KNN Æ ‘̄B + ‘̄1NN/

Ô
K const (48)
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Edit algorithm

The primary goal of this method is to reduce the classification error (not the speed-up of
classification.)

Input: The training set T .

Algorithm

1. Partition T to two sets, A and B (T = A fi B, A fl B = ÿ.)

2. Classify samples in B using K-NN with training set A. Remove all samples from B

which have been mis-classified.

Output: B the training set for 1-NN classification.

Asymptotic property:
‘̄edit = ‘̄B

1 ≠ ‘̄B

1 ≠ ‘̄KNN
(49)

If ‘̄KNN is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same
performance as Bayesian Classification.)
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