Nonparametric Methods for Density Estimation Nearest Neighbour Classification

Lecturer: Ondřej Drbohlav

Authors: Ondřej Drbohlav, Jiří Matas

Centre for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz

Last update: Oct 2022

Probability Density Estimation

Parametric Methods for Density Estimation

- Have been dealt with in the previous lecture
- Advantage: Low number of parameters to estimate
- Disadvantage: The resulting estimated density can be arbitrarily wrong if the underlying distribution does not agree with the assumed parametric model.

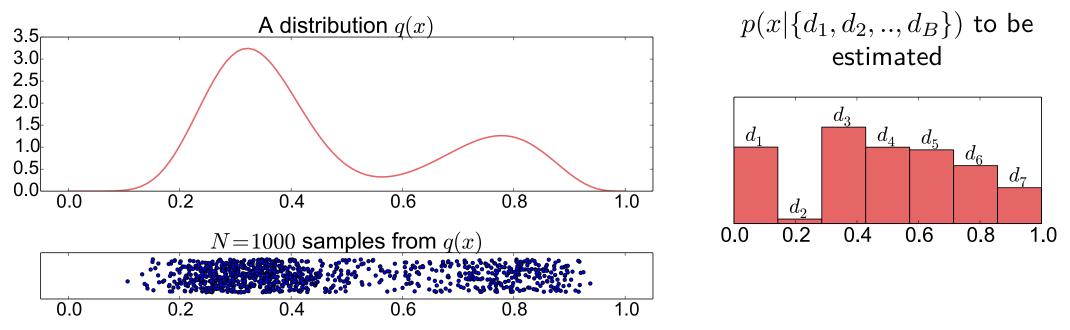
Non-Parametric Methods for Density Estimation

- 🔶 Histogram
- Nearest Neighbor approach

Histogram as piecewise constant density estimate: Task formulation

(2) m p 3/33

Consider the following distribution q(x) on the interval [0,1], and i.i.d. sampling from it. We will fit the distribution by a 'histogram' with B bins. More precisely, we will estimate a piecewise-constant function on the interval [0,1] with B segments of the same width. For a given B, the parameters of this piecewise-constant function are the heights $d_1, d_2, ..., d_B$ of the individual bins. This function is denoted $p(x|\{d_1, d_2, ..., d_B\})$.



For the given number of bins B, $d_1, d_2, ..., d_B$ must conform to the constraint that the area under the function must sum up to one,

$$1 = \int_{-\infty}^{\infty} p(x|\{d_1, d_2, ..., d_B\}) dx = \sum_{i=1}^{B} \int_{\frac{i-1}{B}}^{\frac{i}{B}} d_i dx = \sum_{i=1}^{B} d_i \frac{\downarrow}{w} = \sum_{i=1}^{B} \frac{d_i}{B}.$$
 (1)

Histogram as piecewise constant density estimate: Finding d_i 's using Maximum Likelihood

Let us estimate $\{d_i, i = 1, 2, ..., B\}$ by Maximum Likelihood (ML) approach. Let N_i denote the number of samples which belong the *i*-th bin (thus clearly, $\sum_{i=1}^{B} N_i = N$). The likelihood $L(\mathcal{T})$ of observing the samples $\mathcal{T} = \{x_1, x_2, ..., x_N\}$ given the parameters $\boldsymbol{\theta} = \{d_1, d_2, ..., d_B\}$ is

$$L(\mathcal{T}) = p(\mathcal{T}|\boldsymbol{\theta}) = \prod_{i=1}^{N} p(x_i|\boldsymbol{\theta}) = \prod_{j=1}^{B} \left(\prod_{k=1}^{N_j} \overline{d_j} \right) = \prod_{j=1}^{B} d_j^{N_j}.$$
 (2)

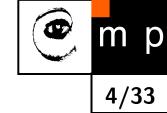
The maximization task is then

$$\ell(\mathcal{T}) = \sum_{j=1}^{B} N_j \log d_j \to \max, \quad \text{subject to } \frac{1}{B} \sum_{j=1}^{B} d_j = 1, \quad (3)$$

where maximization has been formulated using the log-likelihood $\ell(\mathcal{T})$. The Lagrangian of the optimization task and the conditions of optimality (using the derivative $\partial/\partial d_k$) are then:

Lagrangian:
$$\sum_{j=1}^{B} N_j \log d_j + \lambda \left(\frac{1}{B} \sum_{j=1}^{B} d_j - 1 \right)$$
(4)

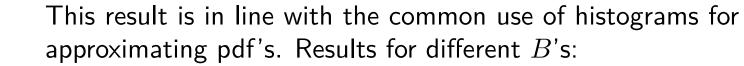
$$\frac{N_k}{d_k} + \frac{\lambda}{B} = 0 \Rightarrow \frac{d_k}{N_k} = \text{const.} \Rightarrow \quad d_k = B \frac{N_k}{N} \quad . \tag{5}$$

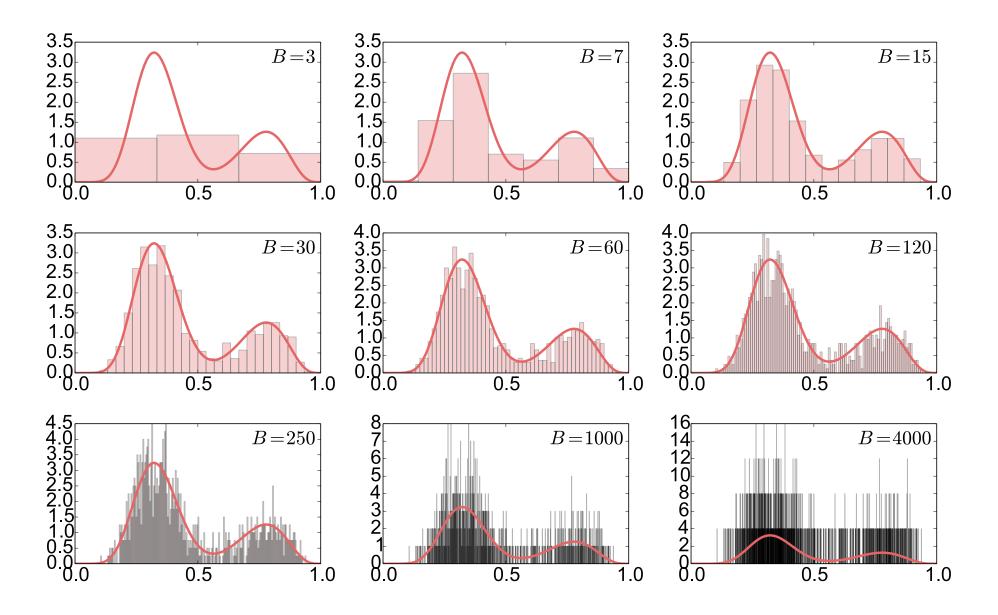


Histogram as piecewise constant density estimate: Example, different number of bins

 $d_k = B \frac{N_k}{N}$

(6)





Histogram as piecewise constant density estimate: What number of bins produces closest pdf approximation?

Let us measure the differences between the (actual) source distribution q(x) and the piecewise-constant density estimate $p(x) = p(x|\{d_1, d_2, ..., d_B\})$ from the N = 1000 samples, using B bins.

Measures used:

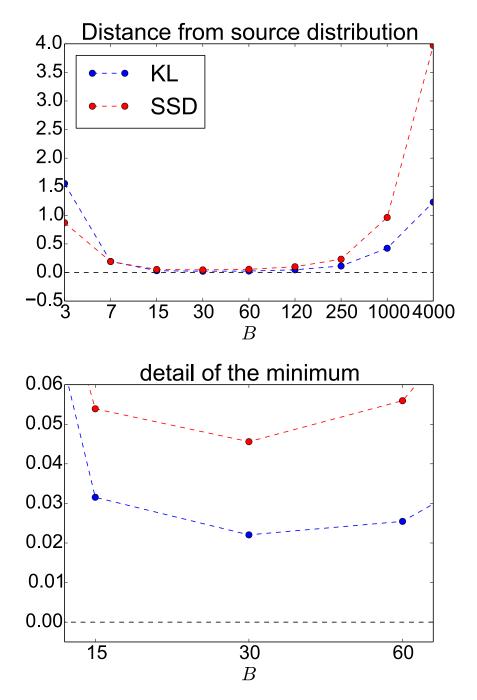
Kullback-Leibler divergence D_{KL} :

$$D_{\mathrm{KL}}(p||q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} \,\mathrm{d}x \,.$$
(7)

(Note that KL div. is not a metric.)

Sum of squared differences D_{SSD} :

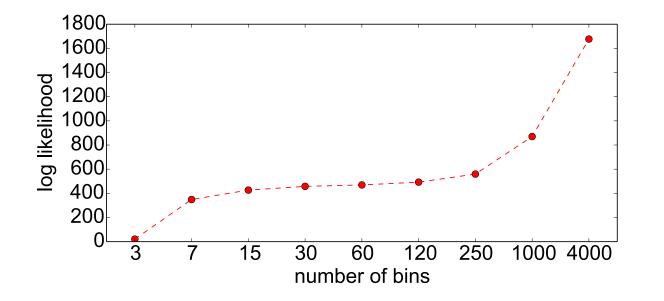
$$D_{\rm SSD}(p,q) = \int_{-\infty}^{\infty} \left(p(x) - q(x) \right)^2 \mathrm{d}x \,. \tag{8}$$



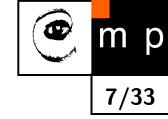
Histogram as piecewise constant density estimate: Choosing the number of bins B by ML

How can we find the optimal number of bins B? Let us try to employ the ML approach again: find the B which maximizes the likelihood. Recall that:

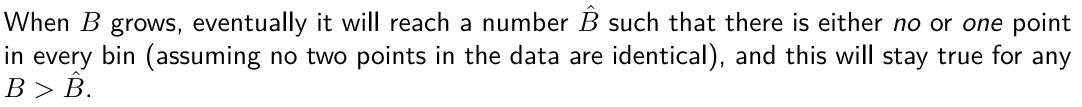
parameters
$$d_j$$
: $d_j = B \frac{N_j}{N}$ (ML estimate) (9)
likelihood $L(\mathcal{T})$: $L(\mathcal{T}) = p(\mathcal{T} | \{d_1, d_2, ..., d_B\}) = \prod_{j=1}^B d_j^{N_j} = \prod_{j=1}^B \left(\frac{BN_j}{N}\right)^{N_j}$ (10)
log-likelihood $\ell(\mathcal{T})$: $\ell(\mathcal{T}) = \sum_{j=1}^B N_j \log d_j = \sum_{j=1}^B N_j \log \frac{BN_j}{N}$ (11)



For B = 4000, the log-likelihood ℓ is the highest. But the pdf estimate with this B is poor, and very different from the source distribution as measured by $D_{\rm KL}$ or $D_{\rm SSD}$. For $B = 10^5$, $\ell(\mathcal{T}) \sim 4600$. What went wrong?



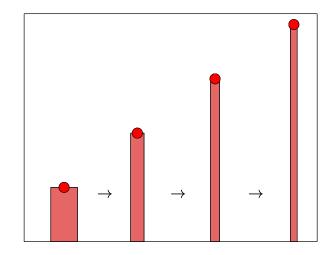
Histogram, choosing the number of bins B: ML overfits and produces $B = \infty$



In such cases,

$$d_j = \begin{cases} \frac{B}{N} & \text{if the bin is populated by a point,} \\ 0 & \text{if the bin is not populated.} \end{cases}$$

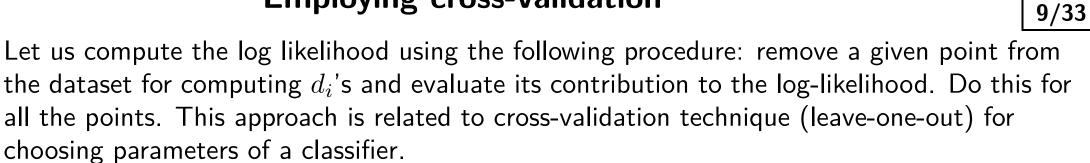
As the number of bins B grows, the widths of occupied bins get narrower and the heights d_j 's higher. If $B \to \infty$ then also $d_j \to \infty$ for the occupied bins, and therefore also $\ell(\mathcal{T}) \to \infty$. Thus, such an approach cannot produce a "reasonable" answer to choosing B, as the solution it provides is $B = \infty$.



The problem is that the log-likelihood ℓ is computed using the same data used for fitting the model (computing d_i 's). This is a similar concept to training a classifier on certain data and testing on the same data, which is prone to over-fitting and poor generalization.

(12)

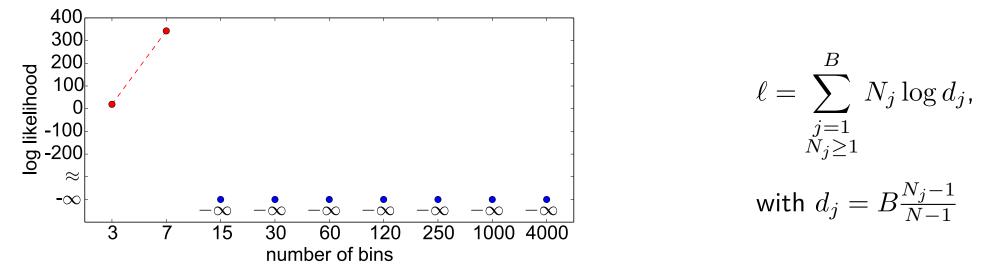
Histogram, choosing the number of bins B: Employing cross-validation



Let the point in question belong to the j-th bin. The ML estimate for d_j , after removing this point from the dataset, is

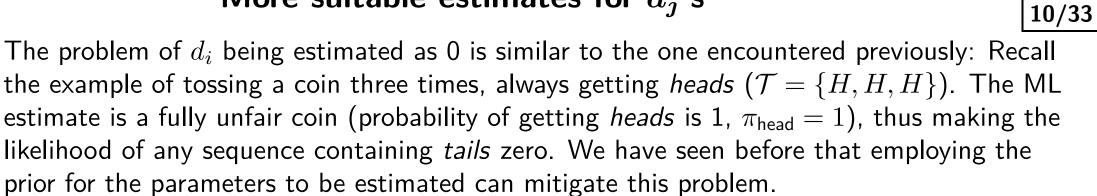
$$d_j = B \frac{N_j - 1}{N - 1}, \quad (N_j \ge 1),$$
(13)

where the subtractions of 1 reflect the fact that the considered point is not used for estimating d_j . Computing the log likelihood ℓ this way produces the following result:



The 'failure' for B > 7 is caused by singly-occupied bins $(N_j = 1)$ for which the modified ML estimate for d_j becomes zero. This will be fixed by using different estimates for d_j 's.

Histogram, choosing the number of bins B: More suitable estimates for d_j 's



A (conjugate) prior for the histogram bin counts is the Dirichlet Distribution, with the pdf $p(d_1, d_2, ..., d_B | \alpha_1, \alpha_2, ..., \alpha_B) \sim \prod d_i^{\alpha_i - 1}$.

MAP Estimate:

Bayes Estimate:

$$d_{i} = B \frac{N_{i} + \alpha_{i} - 1}{N + \sum_{i=1}^{B} \alpha_{i} - B}$$
(14)
$$d_{i} = B \frac{N_{i} + \alpha_{i}}{N + \sum_{i=1}^{B} \alpha_{i}}$$
(15)

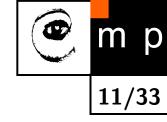
Interpretation: The parameters α_i 's can be interpreted as 'virtual' observations, as if α_k points have already been assigned to the k-th bin.

Example: The Bayes estimate using $\alpha_i = 1$ for all i = 1, 2, ..., B is

$$d_i = B \frac{N_i + 1}{N + B}.\tag{16}$$

Using this estimate will enable us to make reasonable computation of likelihood for all B's.

Histogram, choosing the number of bins B: ML to find B, cross-validation, Bayes esimate for d_j 's

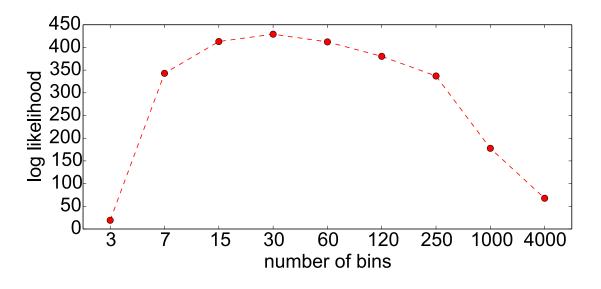


Let us now return to the previous task. Compute the log likelihood using the following procedure: remove a given point from the dataset for computing d_i 's and evaluate its contribution to the log-likelihood. Do this for all the points.

Use the Bayes estimate for d_j from the previous example, $d_j = B \frac{N_j+1}{N+B}$. The modified estimation of d_j (omitting the point in question) will become

$$d_j = B \frac{N_j}{N - 1 + B}.$$
(17)

This leads to the following result:

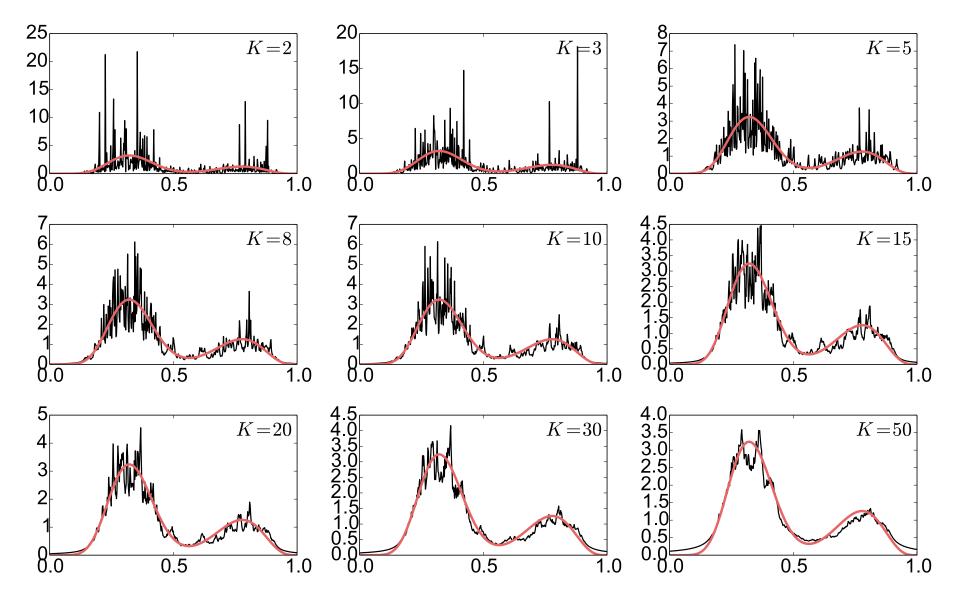


 $\ell = \sum_{j=1}^{B} N_j \log d_j$, with $d_j = B \frac{N_j}{N-1+B}$

This result is in agreement with distribution differences as measured by D_{KL} or D_{SSD} . In particular, B = 30 is identified as the best-approximating number of bins.

K-Nearest Neighbor Approach to Density Estimation

Find K neighbors, the density estimate is then $p \sim 1/V$ where V is the volume of a minimum cell containing K NNs. Example ($p \sim$ inverse distance to K-th NN, same 1000 samples as before):



K-Nearest Neighbor Approach to Classification

- Definition
- Properties
- Asymptotic error of NN classifier
- Error reduction by edit operation on the training class
- Fast NN search

K-NN Classification Definition

Assumption:

- Training set $\mathcal{T} = \{(x_1, k_1), (x_2, k_2), ..., (x_N, k_N)\}$. There are R classes (letter K is reserved for K-NN in this lecture)
- A distance function $d: X \times X \mapsto \mathbb{R}_0^+$

Algorithm:

1. Given x, find K points $S = \{(x'_1, k'_1), (x'_2, k'_2), ..., (x'_K, k'_K)\}$ from the training set \mathcal{T} which are closest to x in the metric d:

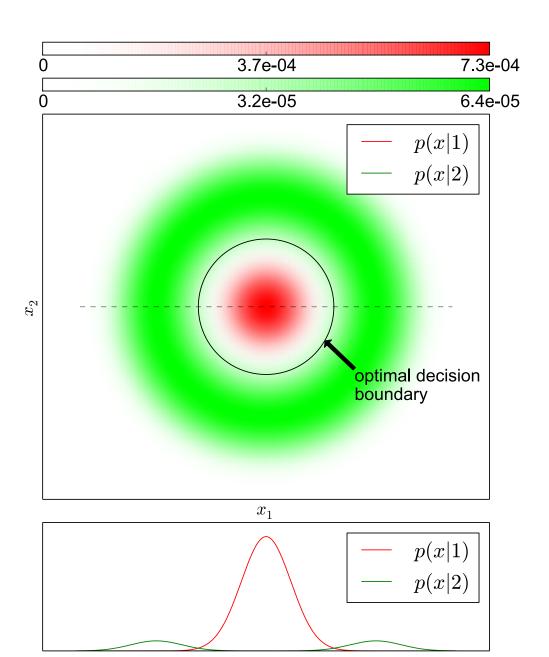
$$S = \{ (x'_1, k'_1), (x'_2, k'_2), \dots, (x'_K, k'_K) \} \equiv \{ (x_{r_1}, k_{r_1}), (x_{r_2}, k_{r_2}), \dots, (x_{r_K}, k_{r_K}) \}$$
(18)

 r_i : the rank of $(x_i, k_i) \in \mathcal{T}$ as given by the ordering $d(x, x_i)$ (19)

2. Classify x to the class k which has majority in S:

$$k = \underset{l \in R}{\operatorname{argmax}} \sum_{i=1}^{K} [\![k'_i = l]\!] \qquad (x'_i, k'_i) \in S$$
 (20)

K-NN Example (1)



Consider the two distributions shown. The priors are assumed to be the same, m p

15/33

$$p(1) = p(2) = 0.5.$$

Bayesian optimal decision boundary is shown by the black circle.

Bayesian error is $\epsilon_B = 0.026$.

K-NN Example (2)

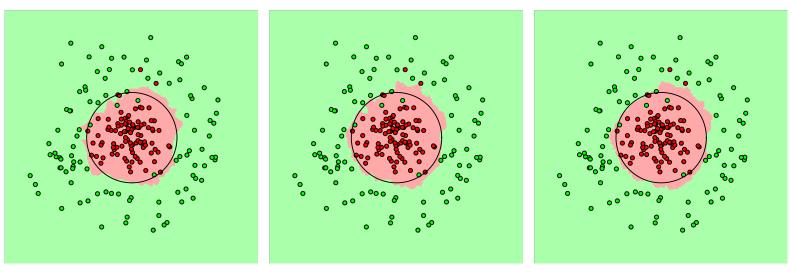
@ m p 16/33

K = 1, error $\epsilon = 0.044$ K = 3, error $\epsilon = 0.034$ K = 5, error $\epsilon = 0.032$ ii<tr

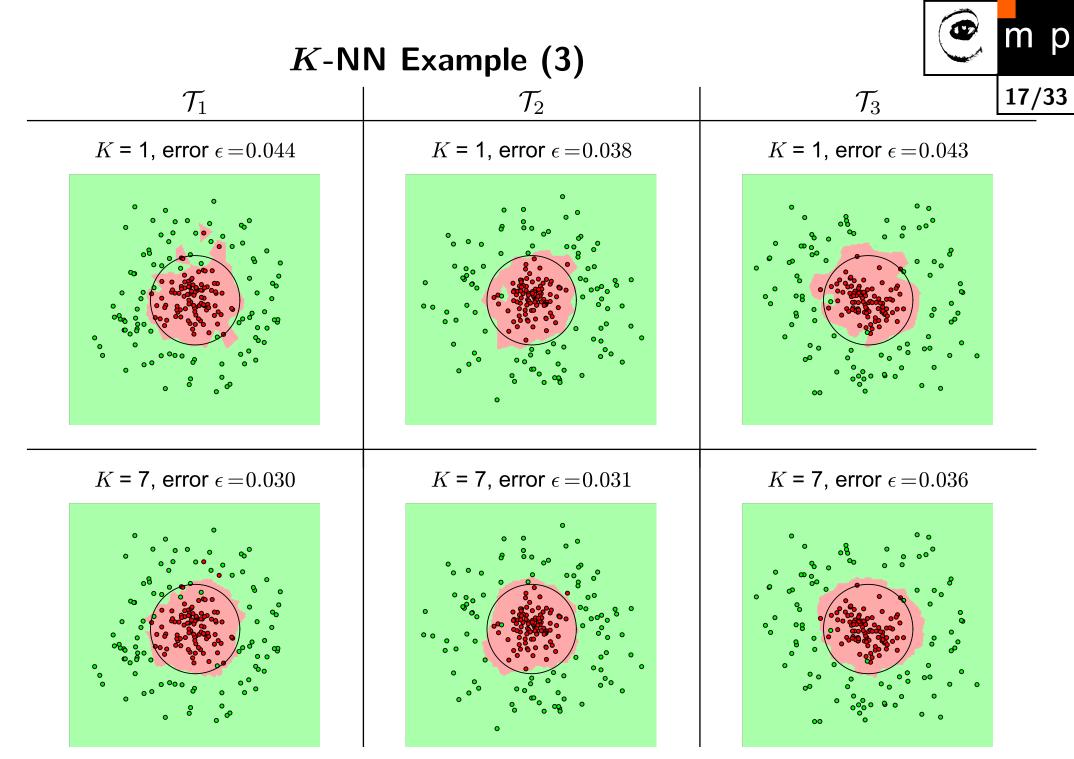
K = 7, error $\epsilon = 0.030$

K = 9, error $\epsilon = 0.031$

K = 11, error $\epsilon = 0.032$



N = 100 samples for each class. Bayes error $\epsilon_B = 0.026$.



The results depend on the training set (result of a random process.) Each of the training sets T_1 , T_2 , T_3 contain 100 points for each class.

K-NN Example (4)

K-NN error for different K and different sizes of the training set (N samples per class). 10 training sets have been generated randomly for each setting of K and N. Average error and its std is shown. Minimum average error is highligted for each N. Bayes err. $\epsilon_B = 2.58\%$.

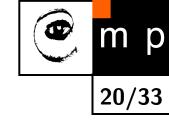
18/33

	10	9.69 ±3.44	17.04 ±3.26	23.85 ±3.16	I	I	Error (in %)						
N: number of training data (per class)	20	6.02 ±2.12	6.61 ±2.11	9.78 ±3.43	11.36 ±2.70	18.08 ±3.53							
	50	4.22 ±0.44	4.16 ±0.51	3.93 ±0.65	4.13 ±0.62	4.60 ±1.35	5.74 ±1.12	8.86 ±2.66	17.84 ±2.59	_			
	100 ⁻	4.25 ±0.58	$\begin{array}{c} 3.30 \\ \pm 0.26 \end{array}$	3.29 ±0.18	3.25 ±0.12	$\begin{array}{c} 3.33 \\ \pm 0.27 \end{array}$	3.51 ±0.27	3.88 ±0.37	4.62 ±0.52	6.54 ±1.72	10.48 ±1.79		-
	200	4.19 ±0.52	3.23 ±0.21	3.05 ±0.22	3.03 ±0.16	3.04 ±0.16	3.07 ±0.13	3.01 ±0.13	3.18 ±0.17	3.51 ±0.20	3.58 ±0.17	4.83 ±0.44	6.72 ±1.91
	500	4.04 ±0.28	3.10 ±0.14	2.97 ±0.10	2.88 ±0.09	2.83 ±0.06	2.81 ±0.06	2.79 ±0.08	2.80 ±0.07	$\begin{array}{c} 2.85 \\ \pm 0.08 \end{array}$	2.92 ±0.08	2.98 ±0.11	3.21 ±0.12
	1000	3.94 ±0.15	3.12 ±0.13	2.91 ±0.05	2.83 ±0.07	2.83 ±0.04	2.75 ±0.06	2.71 ±0.05	2.70 ±0.04	2.74 ±0.04	2.72 ±0.04	2.77 ±0.05	2.80 ±0.05
	10000-	3.90 ±0.04	$\begin{array}{c} \textbf{3.08} \\ \pm \textbf{0.07} \end{array}$	2.87 ±0.04	2.80 ±0.03	$\begin{array}{c} 2.75 \\ \pm 0.03 \end{array}$	2.69 ±0.01	2.67 ±0.01	2.64 ±0.01	$\begin{array}{c} \textbf{2.63} \\ \pm \textbf{0.01} \end{array}$	2.62 ±0.01	2.61 ±0.01	2.60 ±0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									53	69			

K-NN Properties

- Trivial implementation (\rightarrow good baseline method)
- 1-NN: Bayes error ϵ_B is the lower bound on error of classification ϵ_{NN} (in the asymptotic case $N \to \infty$.) Upper bounds can also be constructed, e.g. $\epsilon_{NN} \leq 2\epsilon_B$
- Slow when implemented naively, but can be sped up (Voronoi, k-D trees)
- High computer memory requirements (but training set can be edited and its cardinality decreased)
- How to construct the metric d? (problem of scales in different axes)

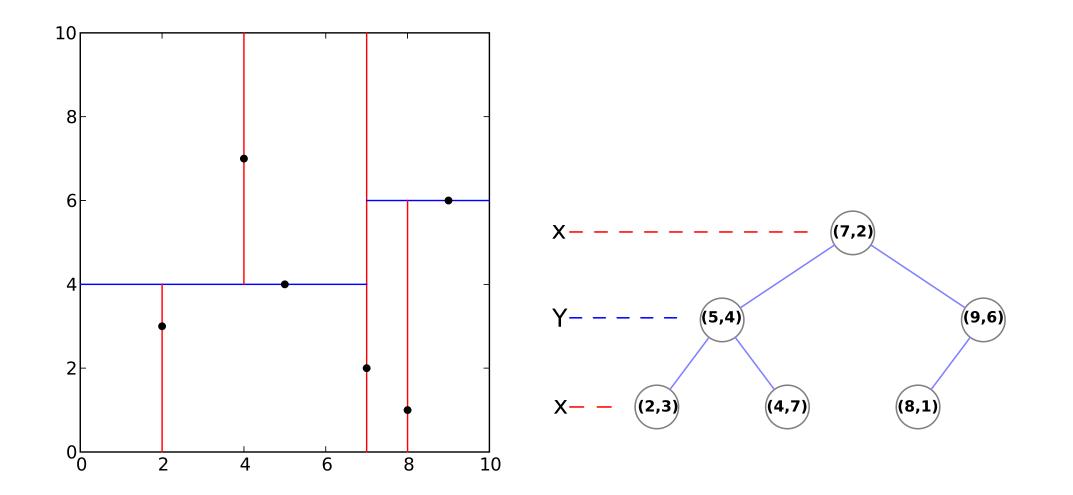
K-NN : Speeding Up the Classification



- Sophisticated algorithms for NN search:
 - Classical problem in Comp. Geometry
 - k-D trees
- Removing the samples from the training class \mathcal{T} which do not change the result of classification
 - Exactly: using Voronoi diagram
 - Approximately: E.g. use Gabriel graph instead of Voronoi
 - Condensation algorithm: iterative, also approximate.

K-d Tree

k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)



Condensation Algorithm

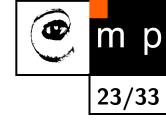
Input: The training set \mathcal{T} .

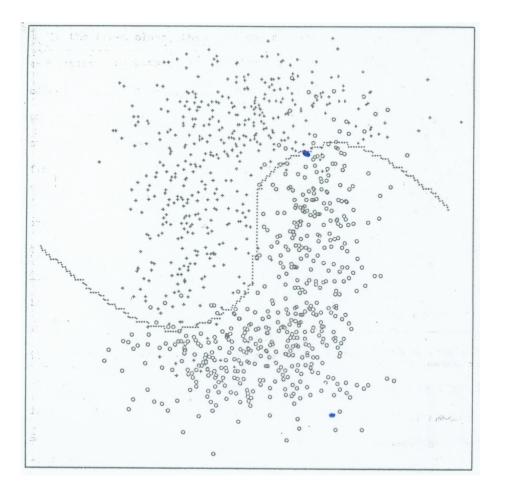
Algorithm

- 1. Create two lists, A and B. Insert a randomly selected sample from \mathcal{T} to A. Insert the rest of the training samples to B.
- 2. Classify samples from B using 1NN with training set A. If an $x \in B$ is mis-classified, move it from B to A.
- 3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for 1NN classification)

Condensation Algorithm, Example





The training dataset

The dataset after the condensation. Shown with the new decision boundary.

1-NN Classification Error

Recall that a classification error $\bar{\epsilon}$ for strategy $q\colon X\to R$ is computed as

$$\bar{\epsilon} = \int \sum_{k:q(x)\neq k} p(x,k) dx = \int \underbrace{\sum_{k:q(x)\neq k} p(k|x) p(x) dx}_{\epsilon(x)} = \int \epsilon(x) p(x) dx.$$
(21)

We know that the Bayesian strategy q_B decides for the highest posterior probability $q(x) = \operatorname{argmax}_k p(k|x)$, thus the partial error $\epsilon_B(x)$ for a given x is

$$\epsilon_B(x) = 1 - \max_k p(k|x).$$
(22)

Assume the asymptotic case. We will show that the following bounds hold for the partial error $\epsilon_{NN}(x)$ and classification error $\bar{\epsilon}_{NN}$ in the 1-NN classification,

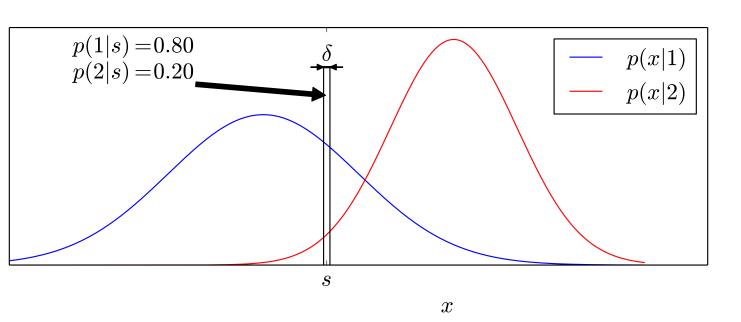
$$\epsilon_B(x) \le \epsilon_{NN}(x) \le 2\epsilon_B(x) - \frac{R}{R-1}\epsilon_B^2(x),$$
(23)

$$\overline{\epsilon}_B \le \overline{\epsilon}_{NN} \le 2\overline{\epsilon}_B - \frac{R}{R-1}\overline{\epsilon}_B^2, \qquad (24)$$

where $\bar{\epsilon}_B$ is the Bayes classification error and R is the number of classes.

f

1-NN Classification Error, Example (1)



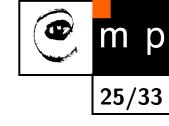
Consider two distributions as shown, a small interval δ on an x-axis, and a point $s \in \delta$. Let the class priors be p(1) = p(2) = 0.5. Assume $\delta \to 0$ and number of samples $N \to \infty$.

Observe the following:

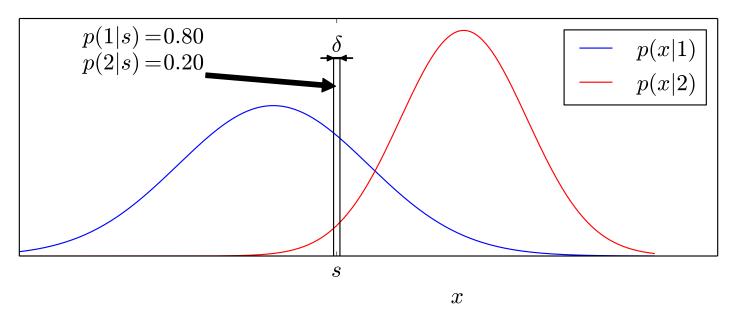
$$p(1|s) = 0.8, \quad p(2|s) = 0.2,$$
(25)

$$p(NN=1|s) = p(1|s) = 0.8, \quad p(NN=2|s) = p(2|s) = 0.2, \tag{26}$$

where p(NN=k|s) is the probability that the 1-NN of s is from class k (k = 1, 2) and thus s is classified as k.



1-NN Classification Error, Example (2)



The error $\epsilon_{NN}(s)$ at s is

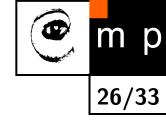
$$\epsilon_{NN}(s) = p(1|s) p(NN=2|s) + p(2|s) p(NN=1|s)$$

$$= 1 - p(1|s) p(NN=1|s) - p(2|s) p(NN=2|s)$$

$$= 1 - p^{2}(1|s) - p^{2}(2|s).$$
(27)
(28)
(29)

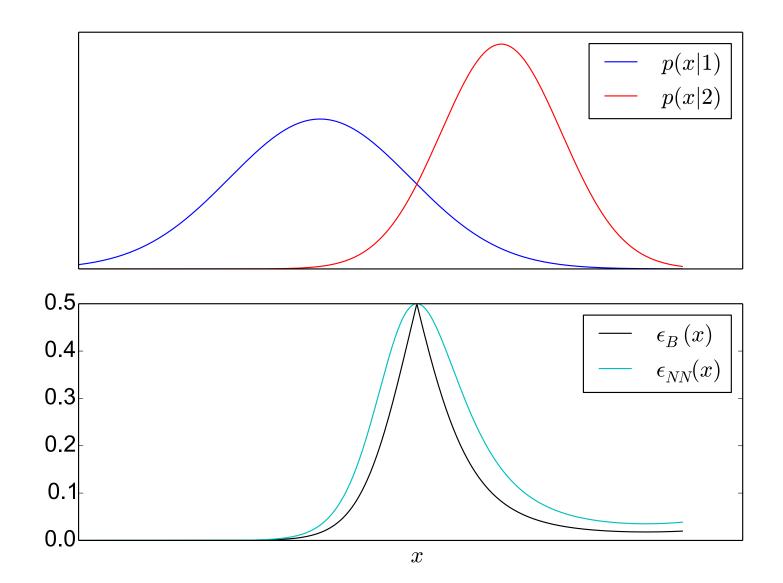
Generally, for R classes, the error will be

$$\epsilon_{NN}(s) = 1 - \sum_{k \in R} p^2(k|s).$$
 (30)



1-NN Classification Error, Example (3)

The two distributions and the partial errors (the Bayesian error $\epsilon_B(x)$ and the 1-NN error $\epsilon_{NN}(x)$)



1-NN Classification Error Bounds (1)

Let us now return to the inequalities and prove them:

$$\epsilon_B(x) \le \epsilon_{NN}(x) \le 2\epsilon_B(x) - \frac{R}{R-1}\epsilon_B^2(x), \tag{31}$$

The **first** inequality follows from the fact that Bayes strategies are optimal.

To prove the **second** inequality, let P(x) denote the maximum posterior for x:

$$P(x) = \max_{k} p(k|x) \tag{32}$$

28/33

$$\Rightarrow \epsilon_B(x) = 1 - P(x). \tag{33}$$

Let us rewrite the partial error $\epsilon_{NN}(x)$ using the Bayesian entities P(x) and q(x):

$$\epsilon_{NN}(x) = 1 - \sum_{k \in R} p^2(k|x) = 1 - P^2(x) - \sum_{k \neq q(x)} p^2(k|x).$$
(34)

We know that p(q(x)|x) = P(x), but the remaining posteriors can be arbitrary. Let us consider the worst case. i.e. set p(k|x) for $k \neq q(x)$ such that Eq. (34) is maximized. This will provide the upper bound.

1-NN Classification Error Bounds (2)

(29/33

There are the following constraints on p(k|x) $(k \neq q(x))$:

$$\sum_{k \neq q(x)} p(k|x) + P(x) = 1 \quad \text{(posteriors sum to 1)} \tag{35}$$
$$\sum_{k \neq q(x)} p^2(k|x) \rightarrow \min \tag{36}$$

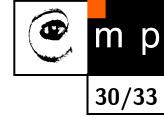
It is easy to show that this optimization problem is solved by setting all the posteriors to the same number. Thus,

$$p(k|x) = \frac{1 - P(x)}{R - 1} = \frac{\epsilon_B(x)}{R - 1} \qquad (k \neq q(x))$$
(37)

The upper bound can then be rewritten in terms of the Bayes partial error $\epsilon_B(x) = 1 - P(x)$:

$$\epsilon_{NN}(x) \le 1 - P^2(x) - \sum_{k \ne q(x)} p^2(k|x) = 1 - (1 - \epsilon_B(x))^2 - (R - 1) \frac{\epsilon_B^2(x)}{(R - 1)^2}.$$
 (38)

1-NN Classification Error Bounds (3)



$$\epsilon_{NN}(x) \le 1 - P^2(x) - \sum_{k \ne q(x)} p^2(k|x) = 1 - (1 - \epsilon_B(x))^2 - \frac{\epsilon_B^2(x)}{R - 1}.$$
 (39)

After expanding this, we get

$$\epsilon_{NN}(x) \le 1 - (1 - \epsilon_B(x))^2 - \frac{\epsilon_B^2(x)}{(R-1)}$$

$$= 1 - 1 + 2\epsilon_B(x) - \epsilon_B^2(x) - \epsilon_B^2(x) \frac{R}{R-1}$$

$$= 2\epsilon_B(x) - \epsilon_B^2(x) \frac{R}{R-1}$$
(40)
(41)
(42)

Note that for R = 2, the bound is tight because using $\epsilon_B(x) = 1 - P(x)$ in Eq. (39) gives

$$\epsilon_{NN}(x) \le 1 - P^2(x) - \frac{(1 - P(x))^2}{1} = \epsilon_{NN}(x).$$
 (43)

1-NN Classification Error Bounds (4)

The inequality for the local errors has been proven:

$$\epsilon_{NN}(x) \le 2\epsilon_B(x) - \epsilon_B^2(x) \frac{R}{R-1} \tag{44}$$

31/33

Is there a similar upper bound for the classification error $\bar{\epsilon}_{NN} = \int \epsilon_{NN}(x)p(x)dx$, based on the Bayes error $\bar{\epsilon}_B = \int \epsilon_B(x)p(x)dx$?

Multiplying Eq. (45) by p(x), and integrating, gives

$$\bar{\epsilon}_{NN} \le 2\bar{\epsilon}_B(x) - \frac{R}{R-1} \int \epsilon_B^2(x) p(x) \mathrm{d}x \tag{45}$$

Let us use the known identity and inequality (where $E(\cdot)$ is the expectation operator)

$$\operatorname{var}(x) = E\left(x^{2}\right) - E^{2}\left(x\right), \, \operatorname{var}(x) \ge 0 \qquad \Rightarrow \qquad E(x^{2}) \ge E^{2}(x) \tag{46}$$

Thus, $\int \epsilon_B^2(x) p(x) dx \ge \left(\int \epsilon_B(x) p(x) dx\right)^2$, and

$$\bar{\epsilon}_{NN} \le 2\bar{\epsilon}_B(x) - \frac{R}{R-1} \int \epsilon_B^2(x) p(x) \mathrm{d}x \le \frac{2\bar{\epsilon}_B(x) - \frac{R}{R-1}\bar{\epsilon}_B^2}{R-1} \,. \tag{47}$$

K-NN Classification Error Bound

It can be shown that for K-NN, the following inequality holds:

 $\bar{\epsilon}_{KNN} \leq \bar{\epsilon}_B + \bar{\epsilon}_{1NN} / \sqrt{K \operatorname{const}}$

(48)

Edit algorithm

The primary goal of this method is to reduce the classification error (not the speed-up of classification.)

Input: The training set \mathcal{T} .

Algorithm

- 1. Partition \mathcal{T} to two sets, A and B ($\mathcal{T} = A \cup B, A \cap B = \emptyset$.)
- 2. Classify samples in B using K-NN with training set A. Remove all samples from B which have been mis-classified.

Output: B the training set for **1**-NN classification.

Asymptotic property:

$$\bar{\epsilon}_{edit} = \bar{\epsilon}_B \frac{1 - \bar{\epsilon}_B}{1 - \bar{\epsilon}_{KNN}} \tag{49}$$

33/33

If $\bar{\epsilon}_{KNN}$ is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same performance as Bayesian Classification.)