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Probability Density Estimation

2/33

Parametric Methods for Density Estimation
Have been dealt with in the previous lecture
Advantage: Low number of parameters to estimate

Disadvantage: The resulting estimated density can be arbitrarily wrong if the underlying
distribution does not agree with the assumed parametric model.

Non-Parametric Methods for Density Estimation
Histogram

Nearest Neighbor approach




Histogram as piecewise constant density estimate: @ -
Task formulation 3/33

Consider the following distribution ¢(x) on the interval [0, 1], and i.i.d. sampling from it.
We will fit the distribution by a 'histogram’ with B bins. More precisely, we will estimate a
piecewise-constant function on the interval [0, 1] with B segments of the same width.

For a given B, the parameters of this piecewise-constant function are the heights

dy,ds, ...,dp of the individual bins. This function is denoted p(x|{d1,ds,...,dB}).

A distribution ¢(x) | | p(x|{di,ds,..,dB}) to be
| estimated
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For the given number of bins B, dl, da, ..., dB must conform to the constraint that the area
under the function must sum up to one,

bin Width



Histogram as piecewise constant density estimate: @ IIIII o
Finding d;’s using Maximum Likelihood 4/33

Let us estimate {d;,i = 1,2, ..., B} by Maximum Likelihood (ML) approach. Let N; denote

the number of samples which belong the i-th bin (thus clearly, Zil N; = N). The
likelihood L(7T) of observing the samples T = {x1, x>, ..., x5} given the parameters

0 = {dl, dz, cees dB} IS points ig\j—th bin
N B [N, ) N
L(T) = p(T10) = ] | p(x:16) = H 114 =114 (2)
i=1 j= k=1 j=1

The maximization task is then

B B
_ 1
= ZNj logd; — max, subject to 5 Zdj =1, (3)
71=1 71=1
where maximization has been formulated using the log-likelihood 6(7’) . The Lagrangian of
the optimization task and the conditions of optimality (using the derivative 0/0dy) are then:

B B
: 1
Lagrangian: jEZl Njlogd; 4+ A 3 E_ dj — 1 (4)
N A d N,
d — 0= — = const. = dj = B—~ . (5)

d—k+§ N, N
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Histogram as piecewise constant density estimate: @ o
Example, different number of bins
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g BNk 6 This result is in line with the common use of histograms for
F— 2N (6) approximating pdf's. Results for different B's:
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Histogram as piecewise constant density estimate: @ o

What number of bins produces closest pdf approximation?

Let us measure the differences between
the (actual) source distribution ¢(x) and

the piecewise-constant density estimate
p(x) = p(x|{di,da,...,dg}) from the
N = 1000 samples, using B bins.

Measures used:

Kullback-Leibler divergence Dxz;:

O

DKU@Wﬁ=:[:.M@)bg§83dw-
(7)

(Note that KL div. is not a metric.)

Sum of squared differences Dggp:

Dsso(p.0) = [ (ow) — 4(a)*do
(8)
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Histogram as piecewise constant density estimate: @ o

Choosing the number of bins B by ML 7/33
How can we find the optimal number of bins B? Let us try to employ the ML approach
again: find the B which maximizes the likelihood. Recall that:
N, _
parameters d; : d; = B— (ML estimate) (9)
N
B B oA\ N
. . . o L j
likelihood L(T): L(T) = p(T|{dy,ds,...,dg}) = ]:[1 Hl( ~ ) (10)
B B _B -
log-likelihood £(T): ¢ = N;logd; = N;1 J 11
og-likelihood £(T): - £(T) =} _ Njlogd, ZﬂogN (1)
1800— ‘ ‘ ‘ ‘ ‘ ‘ ‘ - For B = 4000, the
1283 s log-likelihood £ is the highest.
:_é 1200} P But the pdf estimate with this
e 16(3)88: o : B is poor, and very different
o> 600 . | from the source distribution as
2 ‘2188- eI )l - measured by Dy or Dssp.
oL_a R For B = 10, £(T") ~ 4600.
3 7 15 30 60 120 250 1000 4000

number of bins What went wrong?
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Histogram, choosing the number of bins B: @ o
ML overfits and produces B = oo
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When B grows, eventually it will reach a number B such that there is either no or one point
in every bin (assuming no two points in the data are identical), and this will stay true for any

B> B.

In such cases,

a; {ﬁ if the bin is populated by a point, (12)

0 if the bin is not populated.

As the number of bins B grows, the widths ®
of occupied bins get narrower and the heights

d;'s higher. If B — oo then also d; — oo for i

the occupied bins, and therefore also °

¢(T) — oo. Thus, such an approach cannot

produce a “reasonable” answer to choosing B, E - -

as the solution it provides is B = oo. m

The problem is that the log-likelihood ¢ is computed using the same data used for fitting the
model (computing d;'s). This is a similar concept to training a classifier on certain data and
testing on the same data, which is prone to over-fitting and poor generalization.
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Histogram, choosing the number of bins B: @ o
Employing cross-validation 0/33

Let us compute the log likelihood using the following procedure: remove a given point from
the dataset for computing d;'s and evaluate its contribution to the log-likelihood. Do this for
all the points. This approach is related to cross-validation technique (leave-one-out) for
choosing parameters of a classifier.

Let the point in question belong to the j-th bin. The ML estimate for d;, after removing
this point from the dataset, is

N;—1

N-—-1"
where the subtractions of 1 reflect the fact that the considered point is not used for
estimating d;. Computing the log likelihood ¢ this way produces the following result:

dj = B (Nj > 1), (13)

400 |
300! 2
8 B
£ . t= " Nylogd,
2 -100| j=1
> -200/ N;>1
S ] |
- . N.—1
el o — - - - - —-X with deBN’_l

3 7 15 30 60 120 250 1000 4000
number of bins

The 'failure’ for B > 7 is caused by singly-occupied bins (/N; = 1) for which the modified
ML estimate for d; becomes zero. This will be fixed by using different estimates for d;’s.



Histogram, choosing the number of bins B: @ """ m p
More suitable estimates for d;’s

10/33
The problem of d; being estimated as 0 is similar to the one encountered previously: Recall
the example of tossing a coin three times, always getting heads (T = {H,H,H}). The ML
estimate is a fully unfair coin (probability of getting heads is 1, Theaq = 1), thus making the
likelihood of any sequence containing tails zero. We have seen before that employing the

prior for the parameters to be estimated can mitigate this problem.

A (conjugate) prior for the histogram bin counts is the Dirichlet Distribution, with the pdf
p(dl, dz, cony dB‘Oél, g, ..., CVB) ~ H d?i_l.

MAP Estimate: Bayes Estimate:

Ni‘l'@z’—l
N+Y7 o,—B

N; + o,
N + Zle 87

Interpretation: The parameters o;'s can be interpreted as 'virtual’ observations, as if a;
points have already been assigned to the k-th bin.

(15)

Example: The Bayes estimate using a; =1 forall : =1,2,.... B is

d; = BREL. (16)

Using this estimate will enable us to make reasonable computation of likelihood for all B's.
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Histogram, choosing the number of bins B: @ o

ML to find B, cross-validation, Bayes esimate for d;’s 11/33
Let us now return to the previous task. Compute the log likelihood using the following
procedure: remove a given point from the dataset for computing d;'s and evaluate its
contribution to the log-likelihood. Do this for all the points.
Nj+1 .
Use the Bayes estimate for d; from the previous example, d; = BN:B The modified
estimation of d; (omitting the point in question) will become
N.
d; = B I 17
J N—-1+1B (17)
This leads to the following result:
450 — , —
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L / N —_ . .
i _ = T Ny logds
5’188: | with d; = Bx—55 1+B
50/ ° ]
o2
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number of bins

This result is in agreement with distribution differences as measured by Dk or Dssp.
In particular, B = 30 is identified as the best-approximating number of bins.
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K -Nearest Neighbor Approach to Density Estimation @
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Find K neighbors, the density estimate is then p ~ 1/V where V is the volume of a
minimum cell containing K NNs. Example (p ~ inverse distance to K-th NN, same
1000 samples as before):
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K-Nearest Neighbor Approach to
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Outline:
Definition
Properties
Asymptotic error of NN classifier
Error reduction by edit operation on the training class

Fast NN search
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K-NN Classification Definition

Assumption:

Training set T = {(x1, k1), (x2, k2), ..., (xn, kn)}. There are R classes (letter K is
reserved for K-NN in this lecture)

A distance function d : X x X — RE)L

Algorithm:

1. Given z, find K points S = {(z, k}), (x5, k3), ..., (¢, k%) } from the training set T
which are closest to x in the metric d:

SZ{('xllak/) (:Cé,ké) (x,Kvk/K)} = {(xﬁ?k"“l) (xm?k?“z) (xTK7kTK)} (18)
r;: the rank of (x;, k;) € T as given by the ordering d(x, x;) (19)

2. Classify x to the class £ which has majority in S

k= argmaxZ[[k' = {] (z}, k) e S (20)
I€R




K-NN Example (1)

3.7e-04 7.3e-04
. |
3.2e-05 6.4e-05
—  p(z1)
—  p(x]2)

optimal decision
boundary

@

Consider the two distributions
shown. The priors are assumed

to be the same,
p(1) = p(2) = 0.5.

Bayesian optimal decision
boundary is shown by the black

circle.
Bayesian error is eg = 0.026.

15/33




K-NN Example (2)
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K =1, error e=0.044 K =3, error e=0.034 K =5, error e =0.032

K =7, error e=0.030 K =9, error e=0.031 K =11, error e=0.032

N = 100 samples for each class. Bayes error eg = 0.026.



K-NN Example (3)
Ti 72

Ts
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K =1, error e=0.044 K =1, error e=0.038 K =1, error e=0.043

The results depend on the training set (result of a random process.)
Each of the training sets 71, 72, 73 contain 100 points for each class.
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K-NN Example (4)
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K-NN error for different K and different sizes of the training set (/N samples per class). 10

training sets have been generated randomly for each setting of K and IN. Average error and
its std is shown. Minimum average error is highligted for each IN. Bayes err. eg = 2.58%.

10, 9:69 17.04 2385
+3.44 +3.26 =£+3.16

Error (in %)

20_6.02 6.61 9.78 11.36 18.08
+212 +211 +343 £2.70 +£3.53

50l 422 4.16 3.93 413 460 574 8.86 17.84
+044 +051 +0.65 +£062 +1.35 +1.12 £2.66 +£2.59

100. 425 3.30  3.29 3.25 333 351 388 462 654 1048
+0.58 +0.26 +0.18 +£0.12 +0.27 +0.27 +0.37 +0.52 +£1.72 +1.79

200l 419 323 305 303 3.04 3.07 3.01 318 351 358 483 6.72 |
+0.52 +0.21 +0.22 +£0.16 +0.16 +0.13 £0.13 +0.17 +£0.20 +0.17 +0.44 +£1.91

500l 404 310 297 288 283 281 2.79 280 285 292 298 3.21 |
+0.28 +0.14 =+0.10 £0.09 +0.06 +0.06 +£0.08 +0.07 +£0.08 =+£0.08 +0.11 +£0.12

1000L 394 312 291 283 283 275 271 2.70 274 272 277 2.80
+0.15 £013 £0.05 +£0.07 +0.04 +0.06 +0.05 +0.04 +0.04 +0.04 +0.05 =+0.05

N: number of training data (per class)

10000L 390 3.08 287 280 275 269 267 264 263 262 261 2.60
+0.04 +0.07 +0.04 +£0.03 +0.03 +0.01 £0.01 +£0.01 +0.01 =£0.01 =+£0.01 =+0.01

1 3 5 7 9 13 17 23 31 41 53 69
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K-NN Properties C

Trivial implementation (— good baseline method)

1-NN: Bayes error €p is the lower bound on error of classification ey (in the
asymptotic case N — o0.) Upper bounds can also be constructed, e.g. enny < 2¢p

Slow when implemented naively, but can be sped up (Voronoi, k-D trees)

High computer memory requirements (but training set can be edited and its cardinality
decreased)

How to construct the metric d? (problem of scales in different axes)
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K-NN : Speeding Up the Classification
20/33

Sophisticated algorithms for NN search:
e Classical problem in Comp. Geometry
o k-D trees

Removing the samples from the training class 7 which do not change the result of
classification

e Exactly: using Voronoi diagram
e Approximately: E.g. use Gabriel graph instead of Voronoi

e Condensation algorithm: iterative, also approximate.
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K-d Tree
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k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)

10
gl
°
or °
X—— == = = — — — (7,2)
N
4 ®
S Y- ———— @ Qg 6)
2+ ®
° X— — ((2,3) (4,7) (8,1)
0
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Condensation Algorithm
22/33

Input: The training set 7T .

Algorithm

1. Create two lists, A and B. Insert a randomly selected sample from 7 to A. Insert the
rest of the training samples to B.

2. Classify samples from B using 1NN with training set A. If an x € B is mis-classified,
move it from B to A.

3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for INN classification)




Condensation Algorithm, Example
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o 1P 0 0
& 5 o % * o (] a\)&&’o
- ¢ +0 o od & ©

The dataset after the condensation.

The training dataset Shown with the new decision boundary.
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1-NIN Classification Error C

Recall that a classification error € for strategy q: X — R is computed as

= [ Y sabde= [ Y pla) s = [ c@pds. (@)

kiq(a) £k kiq(x) 7k

€(r)

We know that the Bayesian strategy gp decides for the highest posterior probability
q(x) = argmax;, p(k|x), thus the partial error eg(x) for a given x is

eg(r) =1— mgxp(k\a:) : (22)

Assume the asymptotic case. We will show that the following bounds hold for the partial
error ey () and classification error €xy in the 1-NN classification,

ep(r) < enn(z) < 2ep(e) — grgep(a), (23)
€B§€NN§2€B—%€QB, (24)

where €g is the Bayes classification error and R is the number of classes.
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1-NN Classification Error, Example (1) C
25/33

i

Consider two distributions as shown, a small interval d on an x-axis, and a point s € 0. Let
the class priors be p(1) = p(2) = 0.5. Assume § — 0 and number of samples N — oc.

Observe the following:

p(l]s) =0.8, p(2]s) =0.2, (25)
p(NN=1]s) =p(1l]s) =0.8, p(NN=2]s)=p(2|s) =0.2, (26)

where p(INN =k|s) is the probability that the 1-NN of s is from class k (k = 1,2) and thus
s is classified as k.
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1-NN Classification Error, Example (2) C 2

26/33
1{s) =0.80
g&;s;:ogo J — )
— —_— p(il?’Q)
The error enn(s) at s is

enn(s) = p(1[s) p(NN =2[s) + p(2]s) p(NN =1[s) (27)
— 1= p(1]s) (NN =1]s) — p(2]s) p(NN =2]5) (28)
=1-p*(1]s) —p*(2]s). (29)

Generally, for R classes, the error will be

env(s) =1-) p(kls). (30)

keR




1-NN Classification Error, Example (3)

The two distributions and the partial errors
(the Bayesian error eg(x) and the 1-NN error enn(z))

0.5

0.4}
0.3}
0.2¢
0.1

0.0

— €p(2)

enn(T)
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1-NN Classification Error Bounds (1) C

28/33
Let us now return to the inequalities and prove them:
ep(z) < enn(z) < 2ep(z) — sogep(x), (31)
The first inequality follows from the fact that Bayes strategies are optimal.
To prove the second inequality, let P(x) denote the maximum posterior for x:
P(x) = mgxp(k\:c) (32)
= ep(x)=1— P(x). (33)

Let us rewrite the partial error ey () using the Bayesian entities P(x) and g(x):

enn (T —1—217 (klz) =1— P*(x Z p*(k|x) (34)

keR k#q(x)

We know that p(q(x)|x) = P(x), but the remaining posteriors can be arbitrary. Let us
consider the worst case. i.e. set p(k|x) for k # q(x) such that Eq. (34) is maximized. This
will provide the upper bound.




1-NN Classification Error Bounds (2) C i

29/33
There are the following constraints on p(k|x) (k # q(x)):
Z p(klx)+ P(z) =1 (posteriors sum to 1) (35)
k#q(x)
> p*(k|x) — min (36)
k#q(x)

It is easy to show that this optimization problem is solved by setting all the posteriors to the
same number. Thus,

1—P(x) ep(x)

plkle) = ——— = P (k£ g(x) (37)

The upper bound can then be rewritten in terms of the Bayes partial error
eg(r) =1— P(x):

(@) <1 Pa)— Y pA(klr) =1 (1 - ep(a))? — (R— D20 (39
k#q(z)
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1-NN Classification Error Bounds (3) C 2

30/33
() S 1-P(a) = Y 2kl) =1 (1 ep@)? - 2 (39)
After expanding this, we get A
nv() < 1- (1 = ena))? — 20 (40
=11+ 2e5(2) — () ~ la) 5 (41)
= 2e(e) — o) (2

Note that for R = 2, the bound is tight because using eg(z) =1 — P(z) in Eq. (39) gives

(1 - P(x))’

eNN(x) S 1—P2(£U)— 1

= ENN(ZL‘) . (43)
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1-NN Classification Error Bounds (4) C

The inequality for the local errors has been proven:

enn () < 2ep(x) — eQB(J;)% (44)
Is there a similar upper bound for the classification error éxy = [ enn(z)p(x)dzx, based on
the Bayes error ég = [ ep(x)p(z)dz?
Multiplying Eq. (45) by p(x), and integrating, gives

ey < 25(1) — —— | & (2)p(x)da (45)

Let us use the known identity and inequality (where F (-) is the expectation operator)

var(z) = E (z%) — E* (x), var(z) > 0 = E(x*) > E*(2) (46)

Thus, [ €% (z)p(x)dz > ([ EB(ZU)p(ZIZ‘)dZC)Q, and

R R
eny < 2€p(x) — 1 e5(z)p(x)dr < 2ep(z) — 7 1623 :

(47)
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K-NN Classification Error Bound
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It can be shown that for K-NN, the following inequality holds:

EXNN < € + E]_NN/V K const (48)



Edit algorithm

33/33

The primary goal of this method is to reduce the classification error (not the speed-up of
classification.)

Input: The training set 7.

Algorithm
1. Partition 7 to two sets, Aand B (7T =AUB, ANB=10.)

2. Classify samples in B using K-NN with training set A. Remove all samples from B
which have been mis-classified.

Output: B the training set for 1-NN classification.

Asymptotic property: .

€edit = EB1 _ (49)
— EKNN
If €xnn is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same

performance as Bayesian Classification.)




	First page
	Probability Density Estimation
	Histogram as piecewise constant density estimate:\Task formulation
	Histogram as piecewise constant density estimate:\Finding $d_i$'s using Maximum Likelihood
	Histogram as piecewise constant density estimate:\Example, different number of bins
	Histogram as piecewise constant density estimate:\What number of bins produces closest pdf approximation?
	Histogram as piecewise constant density estimate:\Choosing the number of bins $B$ by ML
	Histogram, choosing the number of bins $B$:\ML overfits and produces $B = infty $
	Histogram, choosing the number of bins $B$:\Employing cross-validation
	Histogram, choosing the number of bins $B$:\More suitable estimates for $d_j$'s
	Histogram, choosing the number of bins $B$:\ML to find $B$, cross-validation, Bayes esimate for $d_j$'s
	$K$-Nearest Neighbor Approach to {cre Density Estimation}
	$K$-Nearest Neighbor Approach to {cre Classification}
	$K$-NN Classification Definition
	$K$-NN Example (1)
	$K$-NN Example (2)
	$K$-NN Example (3)
	$K$-NN Example (4)
	$K$-NN Properties
	$K$-NN : Speeding Up the Classification
	K-d Tree
	Condensation Algorithm
	Condensation Algorithm, Example
	1-NN Classification Error
	1-NN Classification Error, Example (1)
	1-NN Classification Error, Example (2)
	1-NN Classification Error, Example (3)
	1-NN Classification Error Bounds (1)
	1-NN Classification Error Bounds (2)
	1-NN Classification Error Bounds (3)
	1-NN Classification Error Bounds (4)
	$K$-NN Classification Error Bound
	Edit algorithm
	Last page

