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Preface 

Preface to the English edition 
This monograph Ten Lectur,es on Statistical and Structural Pattern Recognition 
uncovers the close relationship between various well known pattern recognition 
problems that have so far been considered independent. These relationships 
became apparent when formal procedures addressing not only known prob
lems but also their generalisations were discovered. The generalised problem 
formulations were analysed mathematically and unified algorithms were found. 

The book unifies of two main streams ill pattern recognition-the statisti
cal a11d structural ones. In addition to this bridging on the uppermost level, 
the book mentions several other unexpected relations within statistical and 
structural methods. 

The monograph is intended for experts, for students, as well as for those 
who want to enter the field of pattern recognition. The theory is built up 
from scratch with almost no assumptions about any prior knowledge of the 
reader. Even when rigorous mathematical language is used we make an effort 
to keep the text easy to comprehend. This approach makes the book suitable 
for students at the beginning of their scientific career. Basic building blocks are 
explained in a style of an accessible intellectual exercise, thus promoting good 
practice in reading mathematical text. The paradoxes, beauty, and pitfalls 
of scientific research are shown on examples from pattern recognition. Each 
lecture is amended by a discussion with an inquisitive student that elucidates 
and deepens the explanation, providing additional pointers to computational 
procedures and deep rooted errors. 

We have tried to formulate clearly and cleanly individual pattern recognition 
problems, to find solutions, and to prove their properties. We hope that this 
approach will attract mathematically inclined people to pattern recognition, 
which is often not the case if they open a more practically oriented literature. 
The precisely defined domain and behaviour of the method can be very substan
tial for the user who creates a complicated machine or algorithm from simpler 
modules. 

XI 
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The computational complexity of some of the proposed algorithms was re
duced, with important practical consequences. For the practitioners we provide 
WWW addresses of MATLAB toolboxes written by our students, which imple
ment many algorithms from the book. 

Both authors come from Eastern Europe and still live there. The book builds 
on the Eastern European tradition and gives references to several works which 
have appeared there, and many of them have remained unknown in other parts 
of the globe. This view might be of interest for the wider scientific community. 

We are interested in readers' feedback. Do not hesitate to send us an email 
(schles<Oimage. kiev. ua, hlavac<Ofel. cvut. cz). We wish the reader enjoy
able and profitable reading. 

M. I. Schlesinger, Y. Hlavac, May 2001 

A letter from the doctoral student Jifl Pecha prior to 
publication of the lectures 
Dear Professor Hlavac, Cesky Krumlov, November 25, 1996 

I am a doctoral student of the Electrical Engineering Faculty, Czech Technical 
University, in my first year of PhD studies. I learned that in the summer term 
of 1996 a course of lectures on the mathematical theory of pattern recognition 
had been delivered at our faculty by a professor from Ukraine. Unfortunately, I 
found it out too late to be able to attend his lectures. Other doctoral students 
refer to those lectures very often and I am only too sorry to have missed them. 
I was told that the lectures were not published. It occurred to me whether the 
lecturer had left any texts related to the lectures with you. If it is so, please, 
allow me to make a copy of them. 

I myself would like to deal with image processing and pattern recognition 
in my PhD research. I admit I have already gathered some not very positive 
experience, as well. I have written a relatively complicated program recognising 
characters from their digital images, without much reading and studying. My 
work was, rather, based on my own considerations, which seemed natural to 
me. I am quite good at programming and was surprised by bad results of my 
program. 

I can see now that pattern recognition is an immense field which is hard to 
enter, and after entering it one can easily lose one's way. I have tried to learn 
more about pattern recognition, and so I looked at some textbooks and journal 
articles. Some publications I have come across refer to pattern recognition in 
a popular way. And on the other hand, I am not at home with more profound 
books and articles. They seem to me as if they were a part of a novel that I 
have not begun reading from the very beginning but from somewhere in the 
middle. Perhaps in reading I have missed the important fundamental knowledge 
which is no longer quoted in those publications., That is natural because those 
publications have not been intended for novices such as myself. 

My professors tell me that the mathematical foundations of pattern recog
nition are more extensive today than they were thirty years ago, when pat-
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tern recognition was based almost entirely on mathematical statistics in multi
dimensional linear spaces. At present the pattern recognition theory is de
veloping further and its mathematical foundations are much richer. Modern 
pattern recognition makes use of the results of graph theory, formal languages 
and grammars, automata theory, ll1arkovian chains and fields, mathematical 
programming, computational and discrete geometry, and, moreover, pattern 
recognition applies new algebraic constructs. But in these domains I am far 
less at home than is needed for an active orientation in the present day field. 

In studying, I was also looking up the missing knowledge in scientific publi
cations which had been referred to. They often were either inaccessible publi
cations of one and the same author, or a formal mathematical monograph, in 
which I rarely found a small and simple piece explaining what the subject was. 
I have acquired the impression that in the present day extensive bibliography 
on the theory and practice of pattern recognition a monograph, textbook, or 
other publication are missing which would be an introduction to pattern recog
nition. In such a book I would like to find the most needed concepts as well as 
the solution of fundamental tasks which would make possible my further ex
ploration through pattern recognition on my own. The book should introduce 
the subject matter with minimum assumptions about the reader's knowledge. 
In brief, I lack a book that would be written just for me. 

I am told by my supervisor that my search for such a book may be in vain. 
I have been advised that the book I am looking for can be, to some extent, 
compensated for by the lectures delivered by the professor from Kiev. Could I, 
perhaps, ask you to kindly sending me a copy of notes from the lecture. 

Sincerely, 
Jifi Pecha 

A letter from the authors to the doctoral student Jifl Pecha 
Dear colleague Pecha, Kiev, January 5, 1997 
We agree to a considerable extent with your evaluation of the situation in 
contemporary pattern recognition. Pattern recognition was born in the fifties, 
and in the nineties it has enjoyed a new enhancement in popularity. It is applied 
in so many diverse fields of human activities that there is hardly a domain where 
it is not used. The domain of applying pattern recognition methods extends 
from the micro-world to the universe. 

Such a popularity naturally stimulates everybody who is engaged in pattern 
recognition. The popularity is, at the same time, a source of justified fears 
that pattern recognition will never be able to fulfil the expectations set upon 
it. A reason for discomfort could be that pattern recognition has acquired 
the reputation of being a magic wand, which solves practical tasks without 
their detailed and painstaking research. Naturally, this reputation calls for 
vigilance with sensible users. But for the more credulous users, this reputation 
will become a source of disappointment when it will be found out that a mere 
application of the words pattern recognition, neural nets, artificial intelligence, 
and the like, dm~s not guarantee the solution of an application task. 
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Therefore it is the highest time for the users and authors of pattern recog
nition methods to be capable of separating from reality the beautiful dreams 
about the miraculous powers of pattern recognition. Present day pattern recog
nition offers enough knowledge so that its authority could be based on real, and 
not on imaginary values. 

The lectures you are hunting for contain just what you miss, to an extent. 
But the professor's notes, which he prepared before each lecture, will hardly be 
of any use for you. They contain formulations of major concepts and theorems. 
And this is only a small part of what was being explained at the lecture. 
Furthermore, the lectures contained a motivating part, a critical (and at times 
sharp) analysis of methods currently applied in pattern recognition and warning 
against different pitfalls, such as seemingly common sense solutions, but in 
reality erroneous ones. Today, we know no longer whether these parts were 
prepared beforehand or whether they originated immediately in the lecturing 
hall. And it were just these commentaries after which we began to comprehend 
how little we know about what we are assumed to know a great deal. The 
lectures had also an opposite, but still a positive aspect. We saw that a certain 
group of pattern recognition methods, which we had regarded as isolated islets 
dispersed in the ocean of our ignorance, formed at least an archipelago, which 
could be overlooked at a glance. We kept asking ourselves if we should consider 
publishing this interesting but not very academic considerations. Doing so 
seemed to us impossible. 

We increasingly regret it because others appear to be interested in the lec
tures as you are. That is why we decided to put them in order and publish 
them. It will not be the sort of book as you have imagined, but there will be 
a little more to it. If we understood you properly you would prefer to have a 
textbook like a reference book, where chapters on different mathematical dis
ciplines used in pattern recognition would be described. We have thought of 
publishing a reference book like this. But we have changed our opinion and 
it was mostly your letter that has suggested this to us. Even if you evaluate 
your skill in the mathematical apparatus of modern pattern recognition rather 
modestly, you have found that it is usually only a matter of applying some fun
damental and simple mathematical concepts. Your troubles do not lie in that 
these concepts are too complicated, but that they are too many and come from 
different mathematical disciplines. A novice in pattern recognition may also 
feel embarrassed by the fact that some mathematical concepts have acquired a 
rather different meaning within the pale of pattern recognition than the original 
one in mathematics. Present day pattern recognition has not only taken over 
concepts from different domains of mathematics but it has brought them into 
a mutual relation that resulted in coming into existence of new concepts, new 
task formulations and new issues that already belong to pattern recognition 
and not to the mother disciplines from which they originated. 

The lectures we are revising have been focused on pattern recognition tasks 
and not on the tasks of linear programming, mathematical statistics, or the 
graph theory. The required mathematical means has not been presented mutu
ally isolated, but in a context necessary for solving a particular pattern recogni-
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tion task. Mathematical results have taken their part in one mechanism, which 
could be referred to as the mathematical apparatus for pattern recognition. 
Our opinion is that it is an all round view which you do not possess. 

Unfortunately, we are only at the beginning of setting up the lectures into a 
form which is publishable. About two years of work lie before us. We under
stand that you are not willing to wait for such a long time. We have already 
started writing the lectures down. It will naturally take a while to supplement 
bare comments with all that is necessary for the text to be readable and un
derstandable. Not to leave you idle during all this, we would like to ask for 
your collaboration. We could send you the text of separate lectures, as we 
assume that you need not have all the lectures in once. It would be perfect if 
you, after having gone through a part of the subject matter, could write down 
your critical findings, your ideas on the subject matter and questions, if any. 
We would consider such a feedback a necessary condition of our collaboration. 
You will obtain the next lecture only when we get a thorough analysis of the 
previous lecture from you. 

We are now sending the first lecture to you and are looking forward to our 
collaboration. 

Michaill. Schlesinger, Vaclav Hlavac 

Basic concepts and notations 
Let us introduce the notation of sets. If a set has only a few members it will be 
presented as a list of elements in curly brackets, e.g., {A, B, C}. Sets with many 
elements will be presented in the form { x l4?(x)}, where x denotes a general 
element and y?(x) specifies properties of all elements of a set. For instance, 
{xI 0 ~ x ~ 100} is a set of numbers satisfying the statement 0 ~ x ~ 100. 

A conjunction (a logical multiplication) is denoted by 1\ and a disjunction 
(a logical addition) is expressed as V. 

The usual set operations will be used, union X U Y, intersection X n Y, 
Cartesian product X x Y = {(x,y) I (x EX) 1\ (y E Y)} and set difference 
X\ Y = {xI (x EX) 1\ (x ~ Y)}. 

Let X and Y be two sets. The denotation f: X -+ Y represents a function 
which assigns to each member x E X a member J(x) E Y. The set X is a 
(definition) domain of the function j, Y gives range of function values and 
f ( x) is a value which the function f assumes in the point x E X. 

Let the denotation I(n) means a subset of whole numbers (integers, denoted 
as Z) { i I 0 ~ x ~ n} corresponding to an integer n, X is a set and xis a function 
x: l(n)-+ X. Such a function x represents a sequence. We will denote the i-th 
element of a sequence by x(i) and sometimes as x;. The sequence will be given 
also as a list of its elements, e.g., x1 , X2, ... , Xn. 

Both the function and the sequence can be understood as an ensemble of 
values which will be denoted by (xy, y E Y). 

Furthermore the set, the concept of the multi-set (sometimes called bag) is 
useful. A set with a finite number of members can be expressed as a list of its 
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members iu which members do not repeat. A finite multi-set can be expressed 
by the list of its members in which the same member can occur more than once. 
Even though members in the list can permute they still represent the same set 
or multi-set. The list of multi-set members is given in rounded brackets. Let 
us give an example. Let X be the set { 1, 2, 3, 4, 5, 6} and 'P: X ---t X is a 
function defined is such a way that ~.p(1) = 1, ~.p(2) = 1, ~.p(3) = 2, ~.p(4) = 2, 
~.p(5) = 6, ~.p(6) = 1. Then {1, 6, 2} is the set { ~.p(x) I x EX} and (1, 2, 6, 1, 2, 1) 
is a multi-set (~.p(x) I x EX). 

Let X be a finite set and JR be a set of real numbers. The function p: X ---t JR 
will be called a probability distribution on the set X if L:xEX p(x) = 1 holds 
and if p( x) ~ 0 holds for any x E X. The value of the function p( x) is called 
the probability of the element x. 

We will deal with probability distributions p: X ---t JR for finite sets X al
most everywhere in this book. Although this assumption narrows the range 
where the results can be applied, the unnecessary complications that would 
occur if infinite sets were taken into account are avoided. In such a way the 
important results are highlighted. Because the set considered are finite we let 
the denotation lXI express the number of members of the set X. 

We will study various probabilities with the domain represented by diverse 
sets, but all probabilities will be denoted by p. If the need to distinguish prob
abilities occurs, the notation p will be enriched by a lower index representing 
the appropriate domain. For instance, Px is a function X ---t JR and py is a 
function Y ---t JR. 

Let X, Y be two sets and p,v;y a probability distribution X x Y ---t JR. The 
number pxy(x, y) is called a joint probability, of the event, that the correspond
ing random variables will assume the values x and y. 

The PXIY denotes the function X x Y ---t JR, whose value in the element in 
the point x E X and y E } • is given by the following expression 

( I ) pxy(x,y) 
PXIY X Y = "' ( ) . 

L.. PXY x,y 
yEY 

The function PXJY of two variables introduced in the preceding equation is 
called a conditional (also a posteriori) probability distribution. The value of the 
function Pxw(xly) is the conditional probability of the value x E X on the 
condition y E Y. 

It is more appropriate in some cases to express the function of two variables 
PXJY as the ensemble of functions (PXJy• y E Y) of a single varia hlP x. The 
function PXIy itself depends on the parameter y. The conditional probability of 
the random value x E X under condition y E Y will be denoted as PXJy(x) in 
this case. In other cases, the value x will be fixed instead of y and the function 
Px 1 y will be understood as the ensemble of functions (Px 1 y, x E X) of a single 
variable y. The function PxJY: }" -+ JR is parameterised by the value x. Even 
when PxiY(Y) is a conditional probability of the variable x under condition y 
then the function PxJY: Y -+ R does not determine the probability distribution 
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on the set Y because the sum 2:yEY PxiY(Y) is not necessarily equal to one. 
Therefore the number PxiY(Y) is called the likelihood of the value y. 

The function px : X --t ~ is called an a priori probability distribution on 
the set X for a given joint probability distribution PXF: X x Y --t ~ and it is 
defined as 

Px(x) = L::>xy(x,y). 
yEY 

Let X be a set, Px : X --t ~ be a probability distribution, and f: X --t ~ be 
any function. The number 

L f(x) Px(x) 
xEX 

is called the mathematical e:I:pectation of a random variable f(x) and it is de
noted E(f). 

Let X be a set and f: X --t ~be a function. The denotation argmaxxEX f(x) 
will be used for any x* E X, for which f(x*) = rnaxxEX f(x) holds. The 
denotation argmin:cEX f(x) has an analogous meaning. 

The scalar product (also called inner or dot product) of a, b will be denoted 
as (a, b). Sometimes the assignment statement will be needed and it will be 
denoted as ::=. To ease the reader's orientation in the text, the formulation of 
theorems, lemmata, examples, and remarks is finished by the symbol 6 at the 
right margin of the text. The corresponding symbol for finishing proofs is •. 

The book consists of ten lectures, which are numbered decimally. The lectures 
are divided into sections (numbered, e.g., 2.3). The section consists of subsec
tions (e.g., 2.3.1). The last section of each lecture is the discussion with the 
student Jiff Pecha. 
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Lecture 1 

Bayesian statistical decision making 

1.1 Introduction to the analysis of the Bayesian task 
The Bayesian theory belongs to the building blocks which constitute the basis of 
statistical pattern recognition. We shall introduce fundamental concepts of the 
theory, formulate the Bayesian task of statistical decision making, and prove the 
most important properties of the task. These properties are regarded as being 
generally known. We would be glad if this was really so, but proposals can quite 
often be seen which contradict the results of Bayesian theory, although they 
look natural at first glance. This testifies that the knowledge of Bayesian thf'ory 
is only illusory. Such partial knowledge can be worse than entire ignorance. 
Someone was certainly right when he said that he preferred to communicate 
with a person who did not read books at all to communicating with someone 
who had read one single book only. 

Incomprehension of Bayesian decision making tasks and partial knowledge of 
them is caused by diverse results in probability theory and statistical decision 
making being associated with the name ofT. Bayes. The formula according 
to which conditional probabilities are calculated is known as Bayes formula. 
A recommendation how to select, under certain conditions, the most probable 
value of a random variable is also called Bayesian. Also, statistieal decision 
making tasks based on risk minimisation and penalties are called Bayesian. 

We shall introduce the basic concepts and their notation which will he used 
in the later lectures too. 

1.2 Formulation of the Bayesian task 
Let an object be described by two parameters x and k. The first parameter is 
observable and the second is hidden, i.e., inaccessible to direct observation. The 
parameter x will be called a feature of an object or observation or observable 
parameter. The feature x assumes a value from a set X. The second parameter 
will be named a state of an object or a hidden pammeter. Let us denote by the 
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symbol /\ a set of values of a hidden parameter k. The symbol D will denote 
a set of possible decisions. 

Let us note that the state of the object k is sometimes understood as a 
class from a finite set of classes K. We will not constrain ourselves to such an 
understanding of the state k because the concept of the class of objects does 
not have a natural meaning in many applications. For instance, the hidden 
parameter k can be a position of an object in the robot working space, the 
observation x being an image captured by a camera. In this case it is somewhat 
unnatural to identify the hidden state k with any class of objects. 

In the set X x ]{ of all possible pairs of observations x E X and states 
k E K, the probability distribution ]JXK: X x ]{ -t lR is given so that for each 
state k E ]{ and observation x E X the number PxK ( x, k) represents a joint 
probability that the object is in the state k and the feature corresponding to it 
assumes the value x. 

Let H': ]{ x D -t lR be a penalty function, where TV(k, d), k E K, dE D, 
denotes a penalty which is paid when an object is in a state k and the decision 
d is taken. The function Hl is also called a loss function. Let q: X -t D denote 
a function which assigns to any x E X the decision q(x) E D. The function 
q is called a decision strategy and also a decision function. The mathematical 
expectation of the penalty which has to be paid if the strategy q is used is 
considered as a quality of the strategy and is called a risk. The risk of the 
strategy q is denoted by R(q). 

The Bayesian statistical decision making task consists in that for given sets 
X, K, D, given functions p XK : X x ]( -t JR, W : ]{ x D -t JR, a strategy 
q: X --+ D has to be found which minimises the Bayesian risk 

R(q) = L LPXK(x,k) \iF(k,q(x)). 
a·EX ~·EK 

The .solution of the Bayesian task is the strategy q that minimises the risk 
R(q) and it is called the Bayesian strategy. 

Let us stress the immense generality of the Bayesian task formulation outlined. 
Nothing has been said so far about hm"· the set. of observations X, states K, 
and decisions D ought to be understood. In other words, there has not been 
any constraint on what mathematical shape the elements of those sets are to 
have. The observation x E X, depending on the application, can be a number 
or a non-numerical mathematical object. The example can be a symbol in an 
abstract alphabet, it can be a vector or an ensemble of characters, it can be 
a function of a single variable (a process) or of two variables (an image). We 
can further think of a function with a more complicated domain than a set of 
values of one or two numerical values has, i.e., of a graph or another algebraic 
structure. The sets of states ]{ and decisions D can be similarly diverse. 

Various concretizations of Bayesian tasks which have proved to be useful 
in pattern recognition will he carefully analysed in this course. Before we get 
down to it, we shall list. several properties which are valid, in entire generality, 
for the whole class of Bayesian tasks. There are not. many such properties 
whose validity does not depend on a specific application. These properties can 
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be quite easily formulated and, moreover, they are important, as they allow us 
to avoid severe errors. 

1.3 Two properties of Bayesian strategies 
The Bayesian task was formulated as a search for the deterministic strategy 
q: X -t D. This means that it is required from the very beginning that the 
same decision d = q(x) must be made every time a given x is observed even 
though the unobservable state k might be different. This fact can stimulate 
the desire to extend somehow the set of strategies among which the best one 
is sought. The set of deterministic strategies could be extended in such a way 
to cover not only all possible functions of the form q: X -t D but also various 
probability distributions qr(d I x). These distributions could be understood as 
randomised strategies where for each observation x the appropriate decision d 
is selected randomly according to the probability distribution qr(d I x). 

The following theorem will show that it is hopeless to look forward to mirac
ulous possibilities of random strategies. 

Theorem 1.1 Deterministic character of Bayesian strategies. Let X, ](, D 
be finite sets, PXK: X x K --+ IR be a probability distribution, W: ]( x D -t 1R 
be a penalty function. Let q,. : D x X -t IR be a stochastic strategy. Its risk is 

(1.1) 
xEX kEK dED 

In such a case there exists the deterministic strategy q: X -t D with the risk 

Relet= L L PxK(x, k) W(k,q(x)) 
xEX kEK 

which is not greater than Rrand. 

Proof. Let us rewrite equation (1.1) in another form 

Rrand = L L q,.(d I x) L PXK(X, k) lll(k, d). 
:rEX dED kEK 

The equality LdED qr(d I x) = 1 holds for any x E X and qr(d I x) ~ 0 holds 
for any d E D and x E X. Thanks to it the inequality 

Rrand ~ L ~~iB L PXK(X, k) W(k, d) 
xEX kEK 

(1.2) 

holds for all x EX, dE D. 
Let us denote by q(x) any valued that satisfies the equality 

L P.\x(x,k) lV(k,q(x)) =min"'""" PXK(x,k) W(k,d). (1.3) 
dED ~ 

kEK kEK 

The function q: X --+ D defined in such a way is a deterministic strategy 
which is not worse than the stochastic strategy q,. In fact, when we substitute 
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Equation (1.3) into the inequality (1.2) then we obtain the inequality 

Rrand ~ L L PXK(X, k) W(k, q(x)). 
xEX kEK 

The risk of the deterministic strategy q can be found on the right-hand side of 
the preceding inequality. It can be seen that Rctet -:::; Rrand holds. • 

We have seen that the introduction of the stochastic strategy (it is also called 
a randomisation) cannot improve Bayesian strategy from the point of view of 
the mathematical expectation of a penalty. 

Let first us explain the second important property of Bayesian strategy in an 
example. Let the hidden parameter assume two values only, K = {1, 2}. Let us 
assume that from all data needed to create the Bayesian strategy q: X --+ D, 
only conditional probabilities Px1 1 (x) and Px1 2 (x) are known. The a priori 
probabilities PK(1) and PK(2) and penalties W(k, d), k E {1, 2}, dE D, are 
not known. In this situation the Bayesian strategy cannot be created. However, 
it can be shown that the strategy cannot be an arbitrary one any more. The 
strategy should belong to a certain class of strategies, i.e., it should have certain 
properties. 

If the a priori probabilities PK (k) and the penalty W(k, d) were known then 
the decision q(x) about the observation x ought to be 

q(x) = argmin (P.\x(x, 1) W(1, d)+ P:'<x(x, 2) W(2, d)) 
d 

= argmin ( PXIl (x) PK (1) vV(l, d) + Px12 (x) PK(2) W(2, d)) 
d 

= argmin ( PXIl t~ PK(1) W(1, d)+ PK(2) W(2, d)) 
d PXI2 X 

= argmin (/'(x) c1 (d)+ c2(d)) . 
d 

(1.4) 

The notation c1 (d) = PK(1) W(1, d), c2(d) = PK(2) W(2, d) was used in the 
last line of Equation (1.4) and the likelihood ratio f'(x) = PXIl (x)/Px1 2 (x) was 
introduced which is a well known and an important concept. It can be seen from 
equation (1.4) that the subset of observations X(d*), for which the decision d* 
should be made. is the solution of the system of inequalities 

Each inequality in the system is linear with respect to the likelihood ratio 
f'(x) and therefore the subset X(d*) corresponds to a convex subset of the 
values of the likelihood ratio f'(x). As f'(x) are real numbers, their convex 
subsets correspond to the numerical intervals. We have arrived at the important 
property of Bayesian strategy, valid in the particular case in which the hidden 
parameter can assume only two values. (However, there can be more than two 
decisions.) 
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Any Bayesian strategy divides the real axis from 0 to oo into IDI intervals 
I(d), dE D. The decision dis made for observation x EX when the likelihood 
ratio 'Y = PXil (x)/PXI2(x) belongs to the interval I(d). 

In a more particular case, when only two decisions D = {1, 2} are possible, 
the generally known result is obtained. In this case the Bayesian strategy is 
characterised by a single threshold value (). For an observation x the decision 
depends only on whether the likelihood ratio is larger or smaller than (). 

PXil(x) 

Figure 1.1 Convex cone (left) and non-convex one (right). 

Let us express this property of the Bayesian strategy in a more general case in 
which the hidden parameter k can assume more than two values. The likelihood 
ratio does not make any sense in such a case. Let us recall the previous case for 
this purpose and give an equivalent formulation of Bayesian strategies for the 
case in which IKI = 2 and IDI ~ 2. Each observation x EX will be represented 
by a point on a plane with coordinates Px11 (x) and Px12 (x). In this a way the 
set X is mapped into the upper right quadrant of the plane. Each set X(d), 
d E D, is mapped into a sector bound by two lines passing through the origin 
of the coordinate system. The sectors are convex, of course. 

Let us proceed now to a more general case in which IKI > 2. Let II be a 
IKI-dimensionallinear space. The subset II' of the space II is called a cone if 
a 1r E II' holds for an arbitrary 1r E II' and an arbitrary real number a > 0. 
If the subset is a cone and, in addition, it is convex then it is called a convex 
cone, see Fig. 1.1. 

Let us map the set of observations X into the positive hyperquadrant of the 
space II, i.e., into the set of points with non-negative coordinates. The point 
1r(x) with coordinates PXIk(x), k E K, corresponds to the observation x EX. 

Any Bayesian strategy can be formed by decomposition of the positive hyper
quadrant of the space II into IDI convex cones II( d), dE D, in such a way that 
the decision dis taken for observation x when 1r(x) E II( d). Some of the cones 
can be empty. 

Let us express this general property of Bayesian strategies in the following 
theorem. 
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Theorem 1.2 Convex shape of classes in the space of probabilities. Let X, 
K, D be three finite sets and let PXK: X x K --+ IR, W: K x D --+ IR be two 
functions. Let 1r: X --+ II be a mapping of the set X into a IKI-dimensional 
linear space II; 1r(x) E II is a point with coordinates Px1dx), k E K. 

Let any decomposition of the positive hyperquadrant of the space II into IDI 
convex cones II(d), d E D, define the strategy q for which q(x) = d if and 
only if 1r(x) E II(d). Then a decomposition II*(d), d E D, exists such that 
corresponding strategy q* minimises a Bayesian risk 

L L PxK(x, k) W(k, Q(x)) . 
xEX kEK 

Proof. Let us create cones which are referred to in the theorem being proved. 
Let us enumerate every decision from the set D in such a way that n(d) is the 
number of the particular decision d. Let us state one of the possible strategies 
that minimises the risk. It is going to be the strategy that makes a decision d* 
when such x is observed that 

L PXIK(x) PK(k) W(k, d*) ::; L PXIK(x) PK(k) W(k, d), n(d) < n(d*), 
kEK kEK 

L PXIK(x) PK(k) W(k, d*) < L PXIK(x) PK(k) W(k, d), n(d) > n(d*). 
kEK kEK 

The system of equations given above can be expressed by means of coordinates 
of the point 1r(x) E II, i.e., numbers 7rk = PXik(x). The point 1r with coordinates 
7rk. k E K, has to be mapped into the set II(d*), if 

L 7r" p K ( k) w ( k' d*) ::; L 7r ~' p K ( k) w ( k, d) , n(d) < n(d*), 
kEK kEK 

n(d) > n(d*). (1.5) 
kEK kEK 

From the given system of inequalities it is obvious that the set expressed in such 
a way is a cone, because if the point with coordinates 7rk, k E K, satisfies the 
inequalities then any point with coordinates a 7rk, a > 0, satisfies the system 
too. 

The system of inequalities (1.5) is linear with respect to variables 1r~,, k E K, 
and thus the set of its solutions II( d) is convex. • 

An important consequ~nce results from the proved property of Bayesian strate
gies. It is known that two disjoint convex sets can be separated by a hyperplane. 
This means that there is a vector a and number (} such that (a, 1r) < () holds 
for all elements 1r from the first set and (a, 1r) 2: () holds for all points from the 
second set. Theorem 1.2 about the convex shape in the space of probabilities 
does not only state that classes in the space of probabilities are convex but, in 
addition, they are cones, too. It follows from this that there is a linear function 
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(a, 1r) such that (a, 1r) < 0 for one cone and (a, 1r) ~ 0 for the second one. 
Such sets are called linearly separable, or that there exists a linear discriminant 
function separating these two sets. This property has been popular in pattern 
recognition so far. One of the later lectures will be devoted to it. The theorem 
provides a certain basis and explanation of this popularity as it states that the 
Bayesian strategy surely decomposes the space of probabilities into classes that 
are linearly separable. 

1.4 Two particular cases of the Bayesian task 

1.4.1 Probability of the wrong estimate of the state 
In most cases the pattern recognition task is to estimate the state of an object. 
This means that a set of decisions D and a set of states K are the same. 
The decision q(:r) = k means that an object is in the state k. Of course, the 
estimate q(x) not always is equal to the actual state k*. Thus the probability 
of the wrong decision q(x) -:f. k* is required to be as small as possible. We will 
demonstrate that such a requirement can be expressed as a special case of a 
Bayesian task. 

Indeed, let us imagine that the classifier has to pay a unit penalty when the 
situation q(x) -:f. k* occurs and it does not pay any penalty otherwise. This 
means that W(k*,q(x)) = 1 if q(x) -:f. k* and W(k*,q(x)) = 0 if q(x) = k*. 
The mathematical expectation 

R = 2: 2: PxK(.7:,k*) W(k*,q(x)) (1.6) 
.rEX k'*EK 

is thus the probability of the situation q(:c) -:f. k*. The Bayesian task con
sists, just as in the general case, in determining the strategy q: X -+ K which 
minimises the mathematical Pxpectation given by equation (1.6), i.e., 

q(x) = argm_in L Pxi<(x, k*) W(k*, k). (1.7) 
kEf\ k* EK 

Let us modify equation (1. 7) using following equivalent transformations 

q(x) = argmin L PxK(x, k*) W(k*, k) 
kEK k* EK 

= argmin Px(x) L PI<Ix(k* I x) W(k*, k) 
kEK k*EK 

= argm_in 2: PI<I.dk* I x) W(k*, k) 
k'EA k* EK 

= argm_in L PKix(k* I x) 
kEf\ k* EK\{k} 

= argmin ( L PI<Ix(k*l x)- PK1.dk I x)'\ 
kEK k*EK J 

= argmin (1- PI<Ix(k I x)) = argmax PI<1.dk I x). 
kEK kEK 
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The result is that the a posteriori probability of each state k is to be calculated 
for the observation x and it is to be decided in favour of the most probable 
state. 

Even if the abovementioned rule is entirely clear and natural, there are some
times suggestions to 'improve' it. For example, it is suggested that one selects 
the class k randomly in accordance with probability distribution PKix(k I x). 
Suggestions of this kind are not often based on logical reasoning but on misty 
poetic analogies, as in the tale in which Jill seeks a straying Jack and she has 
to look for him not only in the pub, where he would often sit, but also in 
places where he goes only from time to time. These kinds of suggestions are 
erroneous because they contradict Theorem 1.1 about the deterministic nature 
of Bayesian strategies. Let us examine more thoroughly why such pseudo
solutions are wrong. 

Let us assume that it was found, for a certain observation, that a probability 
of the first state, say k = 1, is equal to 0.9 and the probability of the second 
state is 0.1. If the most probable state is chosen, the error occurs in 10% of 
cases. If the decision is made randomly, it means that in 90% of cases it will be 
decided that the first state occurred and in the second state it will be indicated 
in 10% of cases. In this case the probability of error will be 0.1 in 90% of cases 
and it will be 0.9 in the rest 10% of cases. The total probability of error will 
be 0.18 which is almost twice as much as the minimal possible value 0.1. 

Let us mention one more pseudo-solution which, regrettably, occurs even more 
often than the previous case. Assume that a device or a computer program is 
created that implements a strategy q: X -+ D which for a given observation 
x decides about a state k, which can assume one of four values: 1, 2, 3 and 4. 
Assume that this strategy is optimal from the standpoint of the probability of 
the wrong decision. Let us now imagine that it appears that it is not needed 
to provide such a detailed information about the state. It is sufficient to decide 
whether the state is smaller than 3 (or not). It is obvious that the task is 
modified. In the first mentioned case, the set D consists of four decisions 
k = 1, k = 2, k = 3 and k = 4. In the second, new, task, the set D' contains 
two decision k E { 1, 2} and k E { 3, 4} only. It is thus needed to replace the 
previous strategy q: X -+ D by the new strategy q' : X -+ D'. It could appear 
that the new task is simpler than the previous one and that (watch out, the error 
follows!) the existing strategy q can be used when designing a new strategy q'. 
Then it has be to decided that the state is smaller than 3, if q(x) = 1 or q(x) = 2 
and the state is not smaller than 3, if q(x) = 3 or q(x) = 4. Theorem 1.2 about 
the convex shape of classes in the space of probabilities II provides good reasons 
to doubt about the proposed solution of the described task. 

When the first task is solved, the space of probabilities is separated into four 
classes II(1), II(2), II(3) and II(4). The strategy q' is constructed for the new 
task in such a way that the space II is divided into two classes II(1) U II(2) and 
II(3) U II(4). But Theorem 1.2 states that each of these six sets has to be a 
convex cone. When the strategy q' is created in such a. simple way it may easily 
happen that the classes corresponding to the strategy are not convex because a 
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union of convex sets can be a non-convex set, see Fig 1.2. When this happens it 
will mean that the new strategy q' does not only reach the minimal probability 
of a wrong decision but moreover it does not solve any Bayesian task. 

Let us show as an example how it can happen that the strategy q' created in 
the abovementioned way is not the best one. Assume that for some observation 
x the a posteriori probabilities of the states 
1, 2, 3 and 4 correspond to 0.3; 0.3; 0.4 and Px 12(x) 

0 
Pxp(x) 

0.0, respectively. The strategy q decides in 
this case that the state k = 3 has occurred. 
It is the best decision from the point of 
view of the minimal probability of a wrong 
state. The strategy q' explores the previous 
decision and determines that the state is 
not smaller than 3. Indeed, it is not the 
best decision. The probability of error in 
this case is equal to 0.6. If the opposite 
answer was given then the probability of 
error would be 0.4, i.e., the smaller one. 

Figure 1.2 The union of two convex 
cones does not necessarily have to be a 
convex cone. 

1.4.2 Bayesian strategy with possible rejection 
Let us denote the conditional mathematical expectation of penalty by R(x, d). 
It is obtained under the condition of an observation x and a decision d 

R(x,d) = LPKix(kix) W(k,d). (1.8) 
kEK 

The value R(x, d) will be called the partial risk. Naturally, a decision d has 
to be set for each observation x in such a way that the partial risk is mini
mal. However, it can happen for some observations that this minimum will be 
quite large. It would be appropriate if the set of all decisions contained also a 
particular decision corresponding to the answer not known. The decision not 
known is given in the case in which the observation x does not contain enough 
information to decide with a small risk. Let us formulate this task within the 
Bayesian approach. 

Let X and K be sets of observations and states, PXK: X x K -+ IR be a 
probability distribution and D = K U {not known} be a set of decisions. Let 
us determine penalties W(k,d) , k E K, dE D, according to the following rule: 

{ 
0, if d = k' 

W(k, d) = 1, ~f d ::fi k and d ::fi not known, 
£, 1f d =not known . 

(1.9) 

Let us find the Bayesian strategy q: X -+ D for this case. The decision q(x) 
corresponding to the observation x has to minimise the partial risk. This means 
that 

q(x) = argmin L PKix(k*ix) W(k*,d) . 
dED k'EK 

(1.10) 
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Definition (1.10) is equivalent to the definition 

{
argmin R(.1:, d), if min R(x, d) < R(x, not 

dEK q(x) = dEK 
not known, if min R(x, d) 2': R(x, not 

dEK 

There holds for mindEl< R(x, d) 

minR(x,d) =min"""' PKix(k* lx) W(k*,d) 
dEK dEK L 

~··EK 

= mm """' PKix(k* I x) 
kEK L 

k•EK\{k} 

known) , 

known) . 

= miJ! ( L PI<Ix(k* I x)- PK1.-dk I x)) 
~·E/\ 

k•EK 

=mil! (1- PKix(k I x)) = 1- ma~PKix(k I x). 
kEK kEK 

There holds for R(x, not known) 

R(x,not known)= L PKix(k* lx) W(k*,not known) 
~··EK 

The rule ( 1.11) bec:om(~S 

= L PKix(k* I :r) E =E. 

~··EK 

{ argrn~x PI,·Ix(k I x), 
q(x) = kEf\ 

not known, 

if 1- ~akPKix(k I x) < E, 

if 1 - maK~ p K 1 x ( k I x) 2': E . 
kE 

(1.11) 

(1.12) 

(1.13) 

The description of the strategy q(x) may be put in words as: The state 
k first has to be found which has the largest a posteriori probability. If this 
probability is larger than 1 - E then it is decided in favour of the state k. If its 
probability is not larger than 1 - E then the decision not known is provided. 
Such a strategy can also be understood informally. If E = 0 then the best 
strategy is not to decide. It is understandable since the penalty corresponding 
to the answer not known is zero. If it is decided in favour of any state then 
the error is not excluded and thus the non-zero penalty is not excluded either. 
Conversely, for E > 1 the partial risk of decision not known will be greater than 
the partial risk of any other decision. In this case the answer not known will 
be never used. 

This correct strategy is quite natural, but pseudo-solutions are suggested 
even in this case. For examplP, the following one: it. is suggested to use the an
swer not known for an observation that has a small probability for any state k, 
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i.e., if the probability PXIK(x I k) < 8 for any k E K . The number 8 in
dicates a threshold that says what is understood as a small probability ob
servation. It follows from Theorem 1.2 on 
the convex shape of classes in the space of 
probabilities that this strategy is not a so
lution of our task but, moreover, it is not 
a solution of any Bayesian task. The set of 
IKI-dimensional vectors, i.e., the set of IKI
tuplets (PxiK(x I k), k E K), which consti
tutes the class not known in the space of 
probabilities, is convex but it is not a cone. 
The case is illustrated in Fig. 1.3. The grey 
shaded square illustrates observations with 
small probabilities. Though the square is 
convex but it is not a cone due to its spatial 
limitations. 

1.5 Discussion 

Pxp (x) 
.... 

Figure 1.3 Decision not knot.m for ob
servations with small probability is not 
a cone and thus it does not correspond 
to any Bayesian strategy. 

I have come across Bayesian theory several times and each time it seemed to 
me that the theory was explained too generally. It appears to me that only 
the particular case is useful, i.e., the minimisation of the wrong decision . I 
do not see the applicability of another approach yet; perhaps my horizon is 
not wide enough. Is the general theory not a mere mental exercise? Does the 
lecture provide the lesson that only the last part of the lecture dealing with the 
particular case has a practical significance? 

We do agree with you that the probability of a wrong decision has to be min
imised in many practical tasks. On the other hand, let us not forget that the 
set of practical tasks has an inexhaustible variability. It is hopeless to attempt 
to squeeze the possible tasks into any theoretical construction based on the 
optimisation of a single criterion even if it were as respected as the probability 
of a wrong decision is. We shall see in Lecture 2 that many practical tasks can
not be compressed even into such a rich theoretical construct as the Bayesian 
approach is. 

If the Bayesian approach, though if it is so general, does not suffice for some 
practical tasks then one cannot think that it is too rich. Imagine that you 
come across an applied problem which cannot be squeezed into a part of the 
Bayesian approach that selects the most probable state. In the better case it 
will raise your doubts and you will try to find a better solution. In the worse 
case you will distort your task so that no one could recognise it any more, and 
will try to modify it to match that part of the theory you are familiar with. 
Finally, you will solve a totally different task than was needed. 

The recognition task is often understood in a constrained manner as a max
imisation of the a posteriori probability PKix(k). Indeed, the Bayesian recogni
tion was understood in your question in this way too. Such an approach follows 
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from a simplified assumption that all errors have the same significance even if 
it is natural to penalise them differently. 

The Bayesian approach covers a more realistic case which takes into account 
that errors are of different significance. This is expressed by the dependence 
of a penalty on the deviation from the correct answer. This is the reason why 
it is often needed that not only the a posteriori probability PKix(k) has to be 
a part of the maximised criterion but the penalty function as well which takes 
into account the significance of the error. 

As an exercise we would like you to solve an example which can serve as a 
model of many practical situations. Assume that a set X is a set of images of 
digits ranging from 0 to 9 which were written on a sheet of paper. The set of 
possible states is consequently K = {0, 1, 2, ... , 9}. Let us assume that the a 
priori probabilities on the set K are known. For example, PK(k) = 0.1 for all 
k E K. In addition, let us presume that conditional probabilities PxjK(x I k) 
are known as well, even when they are enormously complicated. Even so, let 
us imagine that we already have a program in hand that yields 10 probabilities 
PXIK(x I k) for each image x EX. This program maps the analysed image into 
a space of probabilities. Everything that is needed to solve any Bayesian task 
is at one's disposal at this moment. The popular task estimating the digit k, 
which secures the smallest probability of error, belongs to these tasks. A digit 
k with the largest a posteriori probability is searched for. The a posteriori 
probabilities are calculated according to Bayes' formula 

(k I ) PK(k) PXIK(x I k) 
PKIX X = 9 

L PK(k) PXIK(x I k) 
k=O 

Simply speaking, it is decided in favour of k, for which the probability PXIK(x I k) 
is the largest because a priori probabilities PK(k) are equal for all digits k. 

Assume now that not only a single image is submitted to the recognition 
procedure but 20 images independent of each other. Your task is to estimate 
the sum of digits k1, k2, ... , k2o, which are depicted on images x1, x2, ... , x2o. 

A person who thinks that only the formula k* = argmaxkPKjx(k I x) makes 
sense in the entire Bayesian theory starts solving the task resolutely and at 
once. For each i = 1, 2, ... , 20 she or he calculates 

k1 = argmax PKIX (k I Xi) 
k 

and estimates the sum S = L:i~ 1 ki. If the question is asked why is it done 
exactly in this way then there is an answer prepared for all cases: 'it follows from 
the Bayesian theory that such an algorithm yields the best results'. Nothing of 
this kind follows from the Bayesian theory, of course. We are looking forward 
to you proposing a correct solution of a specified task which actually follows 
from the Bayesian theory. 
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I have developed an opinion of my own of how this task has to be solved. At 
the same time I can imagine what you want me to say. First, let me write what 
follows from the lecture. 

It is obvious that the set of possible decisions D is { 0, 1, ... , 180}. Thf}_ sum 
of twenty digits can be one of the listed values. The set of observations X is 

XxXx ... xX 

20 times 

'l!hich is the set of sequences which consists of 20 images each. The set of states 
K is 

KxKx ... xK, 

20 times 

i.e., the set of sequences consisting of 20 digits. Each digit can be 0, 1, ... , 9. 
Let us denote by x the sequence x1 , x2 , ... , x20 that is submitted to recognition. 
In addition, let us denote by k the sequence k1, k2, ... , k2o of digjts t]!at are 
really shown on the recognised images. The probabilities P.\' K : X x K ---+ lR 
are clearly 

20 

PxR(x,k) = ITPK(ki)PxiK(xdki) 
i=l 

because the images in the analysed sequence are mutually independent. The 
- 20 penalty fun~tion W: K x D ~ lR has the value eit]Ier zero or one. If l:i=l ki = 

d then W(kl..d) = 0. If l:i=1 ki f:. d then W(k,d) = 1. The risk R of the 
strategy q: X ---+ D will be 

R(q) = L L P.\'R(x,k) W(k,d). 
xE.Y kEK 

From the above, the following Bayesian strategy results 

q(x) = argmin L PxR(x,k) W(k,d) 
dED - -

kEK 

= argmin P.x(i) L PR1.\'(k I x) W(k,d) 
dED - -

kEK 

= argmin L PR1.i((k I x) 
dED - -

k~K(d) 

= argmin (1 - L PRIX (k I x)) 
dED - -

kEK(d} 

= argmax L PRI.Y(k I x). 
dED - -

kEK(d} 

(1.14) 

In the last three steps of the derivation, K (d) denotes the set of such sequences 
')0 

k1, k2, ... , k2o, whose sum L:i=1 ki = d. Furthermore, the expression for a 
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derived Bayesian strategy can be made more specific because images in the 
observed sequence are independent. Thus 

20 

q(x) = argmax L L ... L L ITPK!x(k; I x;), 
dED k1EK k2EK k1gEK k2oEK i=l 

(1.15) 

where the expression 

means the summation along all sequences ( k1 , k2 , .•. , k20 ), whose sum 
z:::;~l k; =d. 

I believe that I honestly did all that was recommended in the lecture and 
obtained the Bayesian strategy suitable to our task. Nevertheless, I have doubts 
about the value of the result. The expression obtained is not likely to be used in 
practice. The maximisation is not a problem any more because it is necessary 
to find the largest number out of only 181 numbers (the value 181 is the number 
of possible values of the sum L; k;). What matters is the fantastically difficult 
calculation of those 181 numbers from which the maximal one is to be selected. 
Indeed, it is required to calculate a sum of so many summands; roughly speaking 
such that is equal to the number of all possible sequences k, i.e., 1020 summands. 

It can be clearly concluded from the example mentioned why the theoretical 
recommendation typically is not followed. It seems to me that the reason does 
not lie in not understanding the theory, but in the difficulties when implement
ing the theoretical recommendations in practice. I prefer to solve the task using 
the method you laughed at. 

The summation is not so dreadful if a certain computational trick is used. 
We shall explore similar tricks later as well. Let us have a more careful look 
at them. Let us denote that dreadful function the values of which are to be 
calculated as F (d). Then 

20 

F(d) = L L · · · L L ITPK!x(k; I x;). 
k1EK k2EK k1gEK k2oEK i=l 

Let us express 20 auxiliary functions of a similar form: 

Fl(d) = L 
k1EK -...
kl=d 

1 

IT PKiX (k; j x;) , 
i=l 

(1.16) 
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F2(d) = L L 
k1EKk2EK 
'-----v----" 

kJ+k2=d 

2 

ITPKix(ki I xi), 
i=l 

j 

ITPKix(ki I xi), 

j+l 

Fj+l(d) = L L · ·· L L ITPKix(ki I xi), 
k1EK k2EK k;EK k3+1EK i=l 

20 

F2o(d) = L L ... L L ITPKix(ki I Xi). 
k1EK k2EK k1gEK k2oEK i=l 

15 

It is obvious that the function F20 is the same as the function F. It is clear too 
that values F1 (d) are easy to calculate. Actually, they even need not be com
puted. Indeed, the product rr~=l PKIX (ki I Xi) consists of a single multiplicative 
term PKix(kl I x1). The sum 

FI(d) = L PKix(kl I xi) 
k1EK __, 
kl=d 

consists of one single summand and thus F1 (d) = PKix(d I xi). We will show 
how to calculate the values FJ+I(d) provided that Fi(d) are already available: 

j+l 

Fi+I(d) = L L ... L L ITPKix(kilxi) 
k1EK k2EK k;EK k;+1EK i=l 

j 

L PKi.dkJ+l I XJ+I) L L .. · L ITPKix(ki I xi) 

j 

= L PKix(ki+II XjH) L L · · · L ITPKix(ki I xi) 

kl +k2+ ... +k;=d-k;+l 

= L PKix(kJ+l I XjH) Fi(d- ki+l). (1.17) 
k;+1EK 
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If the derivation is drawn into a single expression we obtain 

FJ+dd) = L PKix(kiHI XJH) FJ(d- ki+l). 
k;+1EK 

(1.18) 

When calculating the value of the function Fi (d) for one d, we have to perform 
10 multiplications and 9 additions. There are not more than 181 such values. 
The transformation of the functions Fi to Fi+l should be done 19 times before 
we obtain the function F20 • Consequently, we do not need 1020 calculations 
but only 10 x 181 x 19 multiplications at most and nearly the same number of 
additions. It is not worth mentioning from the computational complexity point 
of view. 

Expression (1.17) surprised me. I believe that it is not a mere trick. There is 
probably some depth in it when you said that similar modifications would be 
needed several times. 

Let me come back to my persuasion that nothing but maximisation of a 
posteriori probability is needed. The previous example did not disprove my 
persuasion, perhaps just the converse is true. If I look at calculated functions 
carefully then it becomes clear that the function F(d) is nothing else but an a 
posteriori probability that the sum of random numbers k1 , k2 , .•. , k20 is equal 
to d. By the way, the recursive expression (1.18) is nothing but the known 
formula which we learned at college to calculate the probability distribution 
of the sum of two independent variables. One is ki+1 and the other has the 
probability distribution Fj. It seems that the best strategy again means the 
search for the most probable value which is calculated in a non-trivial way, I 
have to admit. Maximisation of some probabilities was avoided but we reached 
the probability maximisation via a detour through more general Bayesian con
siderations. What differed were the events. 

It is good you realised that you have been familiar with formula (1.18) for long 
time. If you had recalled it earlier, you would have overcome by yourself the 
troubles that blocked your way. We did not get to the bottom of maximisation 
of a posteriori probability together but you did it yourself when you formulated 
the penalty function W(k, d) in a way that seemed to you the only possible one. 
We do not object to this function, neither do we like to consider it as the only 
possible one or the most natural one. It is quite unnatural to pay the same 
penalty if instead of the actual value 90 the sum is estimated to be 89 or 25. It 
would be more natural if the penalty was larger in the second case than that 
in the first one. What about analysing various penalty functions that may suit 
the formulated task? 

Let d~(k*) denote the true result 2:7~ 1 ki. The first penalty function could 
be: W(k,d) is zero if ld*(k*) - dl is not greater than an acceptable error 
(tolerance) ~. The unit penalty is used when the difference ld*(k*) - dl is 
greater than the tolerance ~. Minimisation of the risk in this case means 
minimisation of a probability that the difference of estimated d from the correct 
value d*(k*) will be greater than~. 
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Let the second penalty function be the difference ld* (k*) - di and the third 
one be proportional to the squared difference ( d* ( k*) - d) . 

Although the second penalty function worried me before, I hope that I have 
mastered it now. The algorithms for the three formulations of Bayesian tasks 
are rather similar. All three comprise a calculation of a posteriori probabilities 
F(d) for each value of the sum. When the function F(d) is available then 
the decision is made for each formulation of the penalty function differently. 
The simplest situation occurs in the case of quadratic penalty for which the 
Bayesian strategy is approved in the following manner. The decision d has to 
minimise the partial risk 

2: P.K
1
x(k*i x) (d*(k*)- d) 2 • 

k*EK 

This means that the decision d is a solution of the equation that requires the 
derivative of function R(d) be equal to zero, i.e., 

o = -2 L P.K 1.x(k*i x) (d*(k*)- d) 

k*EK 

= 2 d- 2 L P.K
1
x(k*i x) d*(k*) 

k*EK 

= 2 d- 2 2: 2: P.K1.x (k*i x) d* 
d*ED k*EK(d*) 

= 2 d- 2 2: d* L P.K 1x(k*i x) 
d· ED k* EK(d*) 

= 2 d- 2 L d* F(d*). 
d*ED 

It follows that d = Ld•ED d* F(d*), as one could expect. The decision d will be 
in favour of the a posteriori mathematical expectation of the correct sum d*. 

Let us return to the first penalty function with a tolerance~. The penalty 
W ( k*, d) is now either one or zero. The first option occurs when the error 
id*(k*) - di is greater than ~. The second option applies otherwise. Let us 
denote by symbol g(d*, d) a function of two variables. Its value is equal to 0 if 
id* - di ~ ~' or it is equal to 1 if id* - di > ~. In such a case the decision has 
to be 

argmin L P.K 1.y(k*ix) W(k*,d) 
dED -

k*EK 

= argmin L P.K 1.x(k* ix) g(d*(k*),d) 
dED -

k*EK 

= argmin L L P.Ki.Y(k*ix) g(d*,d) 
dED 

d*ED k•EK(d•) 
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= argmin L g(d*, d) L Pi<IX(k*l i) = argmin L g(d*, d) F(d*) 
dED - dED d* D d•ED k•EK(d*) E 

= argmin L F(d*) = argmin ( L F(d*)- L F(d*)) 
dED id•-di>l> dED d•ED id•-di:Sll. 

= argmin (1- L F(d*)) = argmax ~ F(d*). 
dED ld*-di:Sll. dED d*=d-ll. 

So minimization of the risk has been reduced to the maximization of the sum 

d+ll. 

R'(d) = L F(d*)' (1.19) 
d*=d-ll. 

which depends on the decision d. This summation has to be calculated for 
each valued E D, i.e., 181 times in total. The largest sum has to be selected 
out of 181 sums. Certainly, none of the sums R'(d) should be calculated using 
formula (1.19) but using the recurrent formula 

R' (d) = R' ( d - 1) + F ( d + L\) - F ( d - L\ - 1) . 

It is more favourable if the acceptable error tolerance L\ is great enough. 
The most difficult task was to find the solution for the second penalty func

tion W(k,d) = ld*(k)- dl. The task resembles (at first, erroneous glance) 
the previous task. A wrong reasoning could look like this. For the given 181 
numbers F(d*), d* = 0, ... , 180, the Bayesian decision d has to be found that 
minimises the sum 

R(d) = L F(d*)ld*- dl. 
d•ED 

I will decompose the set D = {0, ... , 180} into three subsets: 

D+={d*l(d*ED) A (d*>d)}, 

D- = { d* I ( d* E D) A ( d* < d)} ' 

D= = { d* I ( d* E D) A ( d* = d)} . 

I can write the expression for R( d) 

(1.20) 

R(d) = L F(d*)(d* -d) - L F(d*)(d* -d)' (1.21) 
d*ED+ d•ED-

which (watch out, an error follows!) depends linearly on d. The derivative of 
the expression is 

- L F(d*) + L F(d*). 
d*ED+ d*ED-

If the derivative is assumed equal to zero then I get the constraint 

L F(d*) = L F(d*)' (1.22) 
d*ED+ d*ED-
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which says that the minimal risk is achieved when the total probability of 
the event that the random variable d* is smaller than d is equal to the total 
probability that a random variable d* is larger than d. The value d is the 
median of the random variable d*. 

Although this result is correct (which I will show later), the procedure that 
led me to it is incorrect. First, the function R(d) in expression (1.21) only 
seems to be linear. The value R(d) depends on d not only explicitly but also 
implicitly by means of the sets D+ and D- because the sets themselves depend 
on d. Second, it may happen that the condition (1.22) will not be satisfied for 
any d. That would mean that the function (1.21) does not have the minimum, 
which is not true. It is obvious that some more complicated considerations 
are needed for the minimisation of R( d). I have to confess that I have not yet 
solved the task. Nevertheless, I am convinced that the solution corresponds to 
the median of random variable d* and I back up it by the following mechanical 
model. 

Let us imagine that a thin wooden board is at hand, a straight line is drawn on 
it, and 181 holes regularly spaced, 1 ern apart, are drilled in it. The holes will 
match values d* = 0, 1, ... , 180. Let us raise the board to a horizontal position 
180 em above the ground. Let us get 181 strings, each 180 em long. The free 
ends of strings on one side will be tied together into a single knot. The other 
free ends of the strings remain free. Each string will be led through a hole so 
that the knot remains above the wooden board and the free ends hang below. 
A weight will be tight on to the free end of each string. From the string passing 
through the d* -th hole a weight of the mass F(d*) will be hanging. 

The strings will stretch out owing their weights and will reach a steady 
position. We are now interested in what position the knot remains at above 
the wooden board. The knot cannot get under the board. It could do so only 
by passing through a hole in the board. Thus one of the weights would have 
to lie on the ground, since the length of the string exactly corresponds to the 
distance between the board and the ground. The other weights would pull the 
knot on the top side of the board. Now we know that the knot must remain 
above the wooden board. The knot has to lie on the straight line connecting 
the holes on the board. If the knot got off the straight line then the resultant 
force of all the weights would pull it back. The knot is steady. Consequently 
the sum of weights pulling leftward cannot be greater than 0.5, i.e., greater 
than the sum of weights pulling rightwards. 

This means that the knot positions d, for which Ld· <d F( d*) > 0.5, cannot 
be stable positions. By the same reasons, the positions for which Ld· >d F( d*) > 
0.5 have to be also excluded. So only one position d remains, i.e., that for which 
Ld'<d F(d*) S 0.5 and Ld'>d F(d*) S 0.5 simultaneously hold. This corre
sponds to the median of a random variable with probability distribution F( d*). 

I have to make sure that the sum Ld'ED F(d*)ld*- dl achieves the minimal 
value at the steady position of the knot. The mechanical system of ours cannot 
be in any other state than in that where the potential energy Ld· ED F( d* )h(d*) 
is minimal. The value h( d*) corresponds to height of the d* -th weight from the 
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ground. The total length 180 em of each string can be divided into two parts: 
the length l1(d*) lying on the board, and the length l2(d*) below the board. 
The distance 180 em from the ground to the d* -th hole consists of two parts 
too: the length l2(d*) and the height h(d*) of d* -th weight above the ground. 
This means that 180 em = h (d*) + l2(d*) = l2(d*) + h(d*). From this it follows 
that h(d*) = h(d*). But the length l1(d*) is equal to the distance of d*-th hole 
from the knot which is h(d*) = ld*- dj. This means that the potential energy 
in our mechanical system is L:d*ED F(d*)ld*(k)- dj. And it is this value that 
is minimised. 

The idea with a mechanical interpretation of the task is neat. What pleased us 
most was when you analysed the quadratic penalty function and unwittingly 
uttered 'one can expect that the decision will be in favour of the a posteriori 
mathematical expectation of the correct sum'. You did not recall that it was not 
that long ago when you had not wanted to approve anything but the decision 
in favour of the most probable sum. You were not puzzled when even the 
mathematical expectation was not an integer. However, only integer sums 
have non-zero a posteriori probabilities. This means that as a rule the decision 
is made in favour of the states with zero a posteriori probability, not with 
maximal. 

I think that all three tasks became solvable only because the sum L:~~L~i 
assumed a finite and, in particular, a small number of values on the set K. 
Thus the probability distribution can be calculated for every value of the sum. 
Then it is easy to determine the best value from 181 probability values. 

Assume that we want to solve a little more complicated task. The aim of 
the previous simpler task was to determine a sum of twenty individual digits 
under uncertainty in recognising digits from images. Let us imagine a more 
complicated case in which twenty digits express a single decimal number. The 
rightmost digit corresponds to units, the digit one position to tl1e right matches 
tens, etc.. The digits are k1 k2 k3 ... k2o. We are supposed to determine the value 
of the decimal number, i.e., the sum 

20 20 

L: aiki = L: 1oi-l ki . 
i=l i=l 

The aim of the new more general task is to estimate the value of a decimal 
number with the smallest possible quadratic error. The complication of the 
task is caused by coefficients ai. Owing to them t]!e sum L:;~ 1 aiki can take 
not 181 but tremendously many values on the set K 

Let us analyse the newly formulated task from the very beginning, i.e., starting 
already from the expression for the risk (1.14). If the function F cannot be 
computed, let us try to avoid its computation. The decision d* about the sum 
L:~~1 a3 k3 has to minimise the expected quadratic error ( d - L:~~ 1 a3 k3 )2. 
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Thus 

d* = arJE~n ~ ITPKix(ki I xi) (d- I>j kj)
2 

kEK •=1 J=1 

20 20 20 20 

= 2:: IIPKix(ki I xi) I:aj kj = I:aj 2:: kj II PKix(ki I xi) 
kEK i=1 

20 

= I:aj L 2:: 
20 

j=1 j=1 kEK i=1 

20 

L · · · L k.i IIPKix(ki I xi) 

20 

21 

= Lai L PKix(kj lxJ) kj L ··· L L ... L II PKix(ki I xi) 
k1EK kj-1EK i=1,if-j 

kJ+J EK k2oEK 

20 20 

= L aj L kj PKix(kj I Xj) = L ajkj. 
j=1 

This proves the generally known result that the expected value of the sum of 
random variables is equal to the sum of expected values of individual sum
mands. We can see that algorithms estimating the linear function 2::;~ 1 ai ki, 
which are the best in a quadratic sense, do not depend to a great extent on the 
coefficients ai. The 20 a posteriori mathematical expectations ki, i = 1, ... , 20, 
have to be calculated at first. This is the most difficult part of the task because 
the function PKix(k I x) can be quite complicated. This most difficult calcu
lation does not depend on the coefficients ai. Only after that the coefficients 
ai are used to compute the best estimate according to the extremely simple 

' 20 A 

expresswn d = L:i=l ai ki. 
This result is so significant that it deserves to be looked at it from a different 

perspective. Assume that the aim of recognition is not to estimate the sum 
2::~~ 1 ai ki but to estimate the whole sequence ki, i = 1, 2, ... , 20. The penalty 
function is given by the expression 

( 20 20 )2 
W(k*,k) = ~ai k;- ~ai ki . (1.23) 

We have already learned that the optimal estimate for the sequence k = 
( k1, k2, ... , k2o) is the sequence of the mathematical expectations of values ki, 

L PKix(ki I xi) ki, 
k;EK 

which, as can be seen, does not depend on the coefficients ai, i = 1, 2, ... , 20, 
at all. In this case the risk can be even minimised under the condition that 
the penalty function is not known. It has to be certain only that the penalty 
function is quadratic, i.e., it has the form of (1.23). If this result is used 
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another step forward can be made. The strategy minimising the mathematical 
expectation of penalty of the form (1.23) independently of coefficients ai, i = 
1, 2, ... , 20, is suitable for any penalty function that is defined as a sum of 
quadratic penalty functions of the form (1.23), i.e., also for a penalty function 
of the form 

20 ( 20 )
2 

W(k*, k) = ~ ~ aiJ (ki - ki) . (1.24) 

Under the condition that the matrix containing coefficients aij is positive semi
definite, the same strategy is suitable for any function of the form 

20 20 

W(k*,k) = L LaiJ (ki- ki) (kj- kj). (1.25) 
j=l i=l 

It is because any positive semi-definite function of the form (1.25) can be ex
pressed as ( 1. 24). 

We want to emphasise an important result. You need not to care about 
specific coefficients a;j for a task with a positive semi-definite quadratic penalty 
function (1.25). Not knowing them you can create a strategy that minimises 
the mathematical expectation of such a penalty that is not fully known. 

Let us return to the task aiming to estimate the sum 2:::7~ 1 ki that we started 
with. We can see now that for the certain penalty function the task can be 
solved easier than you did it earlier. Namely, for the optimal estimate of the 
sum d = L::~ 1 ki it is not needed for all values of the sum to calculate the 
probability F(d) at all. 

Indeed, quadratic penalty functions are beautiful! 

You are not the only one of this opinion. But we would like to warn you against 
being taken by the beauty and using the quadratic penalty function where it 
is not appropriate. There are many such cases as well. 

We can finish the analysis of the Bayesian task and proceed to the next 
lecture which will be devoted to non-Bayesian statistical decision making. 

December 1996. 

1.6 Bibliographical notes 
Bayesian statistics is named in memory of a clergyman T. Bayes [Bayes, 1763], 
who suggested informally early in 18th century how to deal with conditional 
frequencies (probabilities). Statistics was and is the great inspiration for pat
tern recognition, taken it all round. The pattern recognition tasks are mostly 
not explicitly seen in the statistical literature. The reader who likes to learn 
about the bases of the Bayesian decision tasks in the original mathematical 
literature is mainly recommended [Wald, 1950], where the tasks are formulated 
in a very general form. The decision tasks are given in book [Anderson, 1958) 
for Gaussian random quantities. 
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As soon as statistical pattern recognition was formulated, many researchers 
connected it closely with learning. It has been like that till now and the ma
jority of publications about statistical pattern recognition are concerned with 
learning. We will almost not touch two areas of pattern recognition in this book, 
namely the feature selection and the nearest neighbourhood decision rule which 
is analysed in detail in [Devroye et al., 1996]. 

The study of pattern recognition methods without connection to learning 
is also very valuable, less attention has been devoted to it in the literature. 
Let us mention Kovalevsky [Kovalevski, 1965] among works which formulated 
the pattern recognition tasks in the Bayesian framework. Chow [Chow, 1965] 
studied the concrete decision making strategy under uncertainty which we also 
analysed. 

The outstanding book [Duda and Hart, 1973] includes the statistical pattern 
recognition in the whole wideness and it is recommended to the reader who 
meets pattern recognition with serious interest, and perhaps not only for the 
first time. The considerably revised second edition of the book was published 
recently [Duda et al., 2001]. 

Some general books about pattern recognition are for instance [Devijver and 
Kittler, 1982], [Fukunaga, 1990], [Chen et al., 1993], [Nadler and Smith, 1993], 
[Pavel, 1993], [Young, 1994], [Bishop, 1996], [Theodoridis and Koutroumbas, 
1999]. 



Lecture 2 

Non-Bayesian statistical decision making 

2.1 Severe restrictions of the Bayesian approach 
The enormous generality of the Bayesian approach has been emphasised in the 
first lecture several times. It follows from the fact that the problem formula
tion and some of its properties are valid for the diverse set structure of the 
observations X, states J(, and decisions D. It is surely desirable to master the 
whole richness of Bayesian tasks, and not to identify it with a special case. We 
already know that the class of Bayesian tasks is more than minimisation of the 
probability of a wrong decision. 

Despite the generality of the Bayesian approach there exist many tasks which 
cannot be expressed within its framework. The more general class of non
Bayesian decision methods is needed and this lecture is devoted to it. One 
needs to know non-Bayesian decision methods as it is necessary to choose the 
most suitable formalisation of the task for each specific application and not the 
other way round. The primary application task should not be twisted in an 
attempt to squeeze it into a certain formal framework even if the formalism 
itself is highly respected. 

Bayesian tasks have already been restricted by key concepts on which the 
approach is based. The first is the penalty function W: J( x D --+ JR. The 
second is the probability distributionpxK(x,k), x EX, k E K, which comprises 
additional independent concepts: an a priori probability PK(k) of the situation 
k E J( which should be recognised, and conditional probabilities PXIK(x i k) of 
observation x EX under the condition of situation k E K. Let us have a more 
careful look at how the an:eptance of the mentioned concepts narrows the set 
of application tasks that can be formalised by the Bayesian approach. The look 
will be informal in the coming Subsections 2.1.1-2.1.3 for the time being. 

2.1.1 Penalty function 
As soon as the 'minimisation of the mathematical expectation of the penalty' 
is stated it is implicitly acknowledged that the penalty assumes the value in the 
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totally ordered set in which, besides the relation < or ~, multiplication by a 
real number and addition are defined. It is essential for the Bayesian task that 
the penalty is defined as a real number. However, there are many applications 
in which the assignment of the penalty values to the real numbers deforms the 
original task. They do not belong to the Bayesian construction. 

Speaking not in a very serious tone, you may know of the hero from Russian 
fairy tales. When he turns to the left, he loses his horse, when he turns to the 
right, he loses his sword, and if he turns back, he loses his beloved girl. Even 
if the hero knew Bayesian methods it would be of no use for him because it 
is impossible to find out in any reasonable way if the sum of p1 horses and p2 

swords is less or more than P3 beloved girls. In addition, it is not easy to grasp 
what the total sum of p1 horses and p2 swords means, just as adding up 30 
metres and 80 seconds has no sense. 

The situation is not rare in which various losses cannot be measured by 
the same unit even in one application. Let us recall, more seriously now, an 
extended application field such as a diagnosis of a complex device. It is to 
be found out if the device is in a regular state or in a state that starts to be 
dangerous. Each wrong decision causes certain damage which can be assessed 
by a penalty. But a damage caused by the situation where the regular state 
is assessed as a dangerous one (false positive, also error of the first type) is 
of quite a different sort than any damage due to an overlooked danger (false 
negative, also error of the second type). The unnecessary preventive check of 
the device is performed in the first case, while, in the second case, something 
can be destroyed which cannot be restored by any number of preventive checks. 
Something which nature took millions years to create can be ruined in such a 
case. The incomparability of different penalties mentioned is even more distinct 
in tasks where human society or one particular person is evaluated whatever 
diagnostics, medical or legal, is used. 

2.1.2 A priori probability of situations 
If the task is to be formulated in the Bayesian framework it is necessary that the 
a priori probabilities PK(k) for each state k E K are assigned. It is noticeable 
at first glimpse that it can be difficult to find these probabilities. More detailed 
study reveals that the difficulties are of much deeper nature. Let us sort out 
the possible situations to three groups and order them from the easiest to the 
more difficult ones. 

1. The object state k is random and a priori probabilities PK(k), k E K, are 
known. These situations are well mastered by the Bayesian approach. 

2. The object state is random but a priori probabilities PK(k), k E K, are not 
known. It is the case in which an object has not been analysed sufficiently. 
The user has two possibilities: (a) She or he can try to formulate the task 
not in the Bayesian framework but in another one that does not require 
statistical properties of the object which are unknown. (b) She or he will 
start analysing the object thoroughly and gets a priori probabilities which 
are inevitable for the Bayesian solution. 
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3. The object state is not random and that is why the a priori probabilities 
PK(k), k E K, do not exist and thus it is impossible to discover them by an 
arbitrary detailed exploration of the object. Non-Bayesian methods must 
be used in this situation. They are treated in this lecture. Let us illustrate 
such a situation on an example. 

Example 2.1 Task not belonging to the Bayesian class. Let us assume that 
x is a signal originating from the observed airplane. On the basis of the signal 
x it is to be discovered if the airplane is an allied one ( k = 1) or an enemy one 
(k = 2). The conditional probability PxjK(xlk) can depend on the observation 
x in a complicated manner. Nevertheless, it is natural to assume at least that 
there exists a function p x IK ( x I k) which describes dependence of the observation 
x on the situation k correctly. What concerns a priori probabilities PK(k), these 
are not known and even cannot be known in principle because it is impossible 
to say about any number a, 0 ::; a ::; 1, that a is the probability of occurrence 
of an enemy plane. In such a case probabilities p K ( k) do not exist since the 
frequency of experiment result does not converge to any number which we are 
allowed to call probability. In other words, k is not a random event. & 

One cannot speak about the probability of an event which is not random just 
as one cannot speak either about the temperature of a sound or about the 
sourness or bitterness of light. A property such as probability is simply not 
defined on the set of non-random events. Application tasks in which it is 
needed to estimate the value of a non-random variable do not belong to the 
Bayesian tasks. Their formalisation needs a theoretical construction in which 
the concept of the a priori probability does not arise at all. 

Let us show a spread pseudo-solution of an applied task that is similar to that 
mentioned in Example 2.1. If a priori probabilities are unknown the situation 
is avoided by supposing that a priori probabilities are the same for all possible 
situations. In our case, it should mean that an occurrence of an enemy plane has 
the same probability as the occurrence of an allied one. It is clear that it does 
not correspond to the reality even if we assume that an occurrence of a plane 
is a random event. Logical reasons, which should prove such an assumption, 
are difficult to find. As a rule, logical arguments are quickly substituted by 
a pseudo-argument by making a reference to some renowned person. In the 
given case, this would be, e.g., to C. Shannon thanks to the generally known 
property that an equally distributed probability has the highest entropy. It 
happens even if this result does not concern the studied problem in any way. 

2.1.3 Conditional probabilities of observations 
Let us have a look at the following application task. Let X be a set of pictures. 
A letter is written in each picture. The letter name (label) will be marked by 
symbol k, the set of all letter names will be denoted by K. Let us assume 
that letters were written by three people. The set identifying all writers will be 
denoted by Z. The variable z E {1, 2, 3} determines which of the persons wrote 
the letter. It is not typically important in character recognition who wrote the 
letter and it is often impossible to find out. On the other hand, the writer 
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influences what the letter looks like, and it affects its recognition too. As can 
be seen, the third parameter z E {1, 2, 3}, a so called unobservable intervention, 
was added to observable parameters x E X and hidden parameters k E K. 

The goal of the task is to answer the following question for each picture x. 
Which letter is written in the picture? It is possible to speak about the penalty 
function W(k, d) and about the a priori probabilities PK(k) of the individual 
letters but it is not possible to talk about conditional probabilities PXIK(x I k) 
in this application. The reason is that the appearance of the specific letter x 
depends not only on the letter label but also on a non-random intervention, 
i.e., on the fact who wrote the letter. We can speak only about conditional 
probabilities PXIK.z(x I k, z), i.e., about how a specific character looks like if it 
was written by a certain person. If the intervention z would be random and the 
probability pz(z) would be known for each z then it would be possible to speak 
also about probabilities PXIK(x I k), because they could be calculated using the 
formula 

3 

PXIK(x I k) = LPz(z)pxiK,z(x I k, z). 
z=l 

But preconditions for applying an algorithm do not provide any evidence to 
assume how often it will be necessary to recognise pictures written by this or 
that person. Rather, it is not excluded during the whole period of the algorithm 
application that only pictures written by only one single writer are used but 
it will be unknown by whom. Under such uncertain statistical conditions an 
algorithm ought to be created that will secure the required recognition quality 
of pictures independently on the fact who wrote the letter. This means that the 
task should be formulated in the way that the concept of a priori probabilities 
p z ( z) of the variable z will not be used because this variable is not random and 
such a feature as probability is not defined for it. 

Let us introduce the most famous formulations of non-Bayesian tasks and 
their solutions here. In addition, we introduce new modifications of these known 
tasks. We shall see that the whole class of non-Bayesian tasks has common 
features in spite of the variety of non-Bayesian tasks. These allow us to analyse 
and solve them by the same procedure. Later on, we shall see that there is 
not any crucial gap between the class of Bayesian tasks and all non-Bayesian 
ones. We shall show that the strategy solving any non-Bayesian task can be 
realised similarly as, that for the Bayesian tasks in the space of probabilities. 
The strategy divides the space of probabilities into convex cones in the same 
manner as in the Bayesian tasks. This means that their solution, in spite of all 
basic difference between Bayesian and non-Bayesian tasks, is found within the 
same set of strategies. 

2.2 Formulation of the known and new non-Bayesian tasks 

2.2.1 Neyman-Pearson task 
Let some object be characterised by the feature x which assumes a value from 
the set X. The probability distribution of the feature x depends on the state 
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k, to which the object belongs. There are two possible states-the normal 
one k = 1 and the dangerous one k = 2. The set of states K is thus {1, 2}. 
The probability distributions are known and defined by a set of conditional 
probabilities PxfK(x I k), x EX, k: E K. 

The goal of recognition is to decide according to the observed feature x if 
the object is in the normal or dangerous state. The set X is to be divided into 
two such subsets X 1 and X2 that for an observation x E X 1 is being decided 
the normal state and for an observation X E X2 the dangerous state. 

In view of the fact that some values of the feature x can occur both in the 
normal and in the dangerous state of the object, there is no faultless strategy 
and it is characterised by two numbers. The first number is a probability of 
an event that the normal state will be recognised as a dangerous one. Such 
an event is called a false alarm or a false positive. The second number is the 
probability of the event that the dangerous state will be recognised as a normal 
one and it is called an overlooked danger or a false negative. These two faults 
are sometimes called the error of the first and second type, respectively. The 
conditional probability of the false alarm is given by the sum L:cEX2 Px IK (x 11) 
and the conditional probability of the overlooked danger is LxEX 1 PxfK(x 12). 

Such a strategy is sought in the Neyman~ Pearson task [Neyman and Pearson, 
1928; Neyman and Pearson, 1933] (we shall call it simply Neyman task here
after), i.e., a decomposition of the set X into two subsets X 1 c X and X 2 c X, 
X1 n X2 = 0, that, firstly, the conditional probability of the overlooked danger 
is not larger than a predefined value E, 

L PxfK(x 12) 'S E. (2.1) 
:rEX1 

Secondly, a strategy is to be chosen from all strategies satisfying the above 
condition for which the conditional probability of the false alarm is the smallest. 
This means that classes X 1 and X2 are to minimise the sum 

L PXIK(x 11) (2.2) 
.rEX2 

under the conditions 
L PXIK(x 12) 'S E, (2.3) 

.rEX1 

(2.4) 

The fundamental result of 1\'eyman~Pearson states that for sets X 1 and X 2 , 

which solve a given optimisation task, there exists such a threshold value () 
that each observation x E X, for which the likelihood ratio 

PxfK(X 11) 

PXIK(x 12) 

is smaller than 0, belongs to the set X2 . And also, vice versa, the assignment 
x E X 1 is made for each x E X with likelihood ratio larger than (). Let us 
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put the case of equality aside for pragmatic reasons. This case occurs so rarely 
in practical situations that we do not need to deal with it. The theoretical 
analysis might be interesting, but it is complicated and not necessary for our 
purpose. 

The known solution of Neyman task is not proved easily, it means that it is 
not easy to show that it follows from the formulation given by relations (2.2)
(2.4). Therefore, presumably, it is not the knowledge but more a belief based on 
Neyman's and Pearson's authority. This belief suffices when exactly Neyman 
task is to be solved. As soon as a task is met, which differs from the Neyman 
task in some trifle, a mere belief is not sufficient. 

For instance, let us have a look at the following tiny modification of Neyman 
task. Let the number of states of the recognised object be not two but three. For 
each state k E {1, 2, 3} and for each observation x the conditional probability 
PXJK(x I k) is determined. Only one state k = 1 is normal, whereas the other 
two states are dangerous. In the same way as in the original Neyman task, 
the aim is to find out a reasonable strategy which has to determine for each 
observation if the state is normal or one of these two dangerous ones. 

Several suggestions how to solve this task occur at a folklore level. For 
instance, two likelihood ratios are being computed 

JJXJK(x 11) 
/'1') = 

- JJXJK(X 12) 
JJXJK(X 11) 

and /'13 = ( 13) PXIK X 

and two threshold values B12 and (}13 are set. The situation is considered as 
normal, if 1'12 > B12 and /'13 > B13. Other suggestions are based on the effort 
to invent such a generalisation of the likelihood ratio concept which should 
suit even in the case in which it concerns the 'ratio' not of two but of three 
quantities, for instance 

PXJK(x 11) 
or 

max (PxJK(x I2),JJXJK(x 13)) 
PXJK(x 11) 

L JJXJK(x I k) 
kEK 

or other similar figments. Then it is decided for the normal or dangerous state 
by comparing the mythical 'ratio' with a certain threshold value. 

Suggestions of a similar sort demonstrate the effort to find out the algorithm 
of the solution at once without formulating the task which that algorithm is to 
solve. That is why such proposals are not convincing enough. Of course, such 
suggestions are not supported by Neyman's authority as he was not interested 
in this modification at all. 

In the effort to manage a task, even if it is merely a slight generalisation 
of Neyman task, it is not possible to start with a direct endeavour to alter 
Neyman's strategy to a slightly modified task. It is correct to begin from the 
formulation of a corresponding generalised task and then pass the whole way 
through from the task formulation to the algorithm similarly as Neyman did 
with his task. 
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2.2.2 Generalised Neyman task with two dangerous states 
The following formulation of generalised Neyman task can be helpful in our 
case. Observations will be classified into two sets, which correspond to two 
events: 

k = 1 corresponds to the set denoted X 1 ; 

k = 2 or k = 3 corresponds to the set denoted X23 . 

It is necessary to find such a strategy for which the conditional probability 
of the overlooked dangerous state both k = 2 and k = 3 is not larger than 
the beforehand given value. Simultaneously, the strategy minimising the false 
alarm is to be selected from all the strategies that satisfy such a condition. 
Formally, two searched sets X1 and X23 have to minimise the total sum 

under conditions 

L PXIK(x 11) 
.rEX23 

L PXIK(x 12):::; E:, 

xEX1 

L PXIK(x 13) :::; E:, 

xEX1 

X1 n X23 = 0, 
X1 ux23 = x. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

The formulated optimisation task will be thoroughly analysed later when the 
other non-Bayesian tasks will be formulated too. In addition, it will be seen 
that the whole series of non-Bayesian tasks can be solved in a single construc
tive framework. 

2.2.3 Minimax task 
Let X be a set of observations and let K be a set of object states as before. 
The probability distribution PXIK(x I k) on the set X corresponds to each state 
k. Let the strategy be determined by the decomposition X(k), k E K, that 
decides for each observation x E X that the object is in the state k when 
x E X(k). Each strategy is characterised by IKI numbers w(k), k E K, which 
stand for the conditional probability of a wrong decision under the condition 
that the actual state of the object was k, 

w(k) = L PXIK(x I k). 
x~X(k') 

The minimax task requires a decomposition of the set of observations X into 
subsets X(k), k E K, such that they minimise the number maxkEK w(k). 

The nature of this task can be imagined more practically when we consider 
the following situation. Let us assume that the creation of the recognition algo
rithm was ordered hy a customer who demanded in advance that the algorithm 
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would be evaluated by two tests: the preliminary test and the final one. The 
customer himself would perform the preliminary test and would check what the 
probability of a wrong decision w(k) was for all states k. The customer selects 
the worst state k* = argmax~·EK w(k). In the final test, only those objects are 
checked that are in the worst state. 

The result of the final test will be written in the protocol and the final 
evaluation depends on the protocol content. The algorithm designer aims to 
achieve the best result of the final test. 

It is known for the task with two states as well as for Neyman task that 
the strategy solving a minimax problem is based on the comparison of the 
likelihood ratio with some threshold value. Similarly as in Neyman task, it 
is more a belief than knowledge, because hardly anybody is able to derive a 
solution of this minimax problem. That is why the solution of the problem has 
not been widely known for the more general case, i.e., for the arbitrary number 
of object states. 

2.2.4 Wald task 
The task, which is going to be formulated now, presents only a tiny part of an 
extensive scientific area known as Wald sequential analysis [Wald, 1947; Wald 
and Wolfowitz, 1948]. 

When the formulation of Neyman task is recalled, its lack of symmetry with 
respect to states of the recognised object is apparent. First of all, the condi
tional probability of the overlooked danger must be small, which is the principal 
requirement. The conditional probability of the false alarm is a subsidiary, infe
rior criterion in this respect. It can be only demanded to be as small as possible 
even if this minimum can be even big. 

It would certainly be excellent if such a strategy were found for which both 
probabilities would not exceed a predefined value E:. These demands can be 
antagonistic and that is why the task could not be accomplished by using 
such a formulation. To exclude this discrepancy, the task is not formulated 
as a classification of the set X in two subsets X1 and X2 corresponding to a 
decision for the benefit of the first or the second state, but as a classification 
in three subsets Xo, X1 and X2 with the following meaning: 

if X E X1, then k = 1 is chosen; 
if X E X2, then k = 2 is chosen; and finaly 
if x E Xo it is decided that. the observation x does not provide enough infor

mation for a safe decision about the state k. 

A strategy of this kind will be characterised by four numbers: 
w(1) is a conditional probability of a wrong decision about the state k = 1, 

w(1) = L PXJK(x /1); 
xEX2 

w(2) is a conditional probability of a wrong decision about the state k = 2, 

w(2) = L PxJK(x /2); 
.rEXt 
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x(1) is a conditional probability of a indecisive situation under the condition 
that the object is in the state k = 1, 

x(1) = 2:: PXIK(x 11); 
xEXo 

x(2) is a conditional probability of the indecisive situation under the condition 
that the object is in the state k = 2, 

x(2) = 2:: PXIK(x 12) · 
xEXo 

For such strategies the requirements w(1) ~ c and w(2) ~care not contradic
tory for an arbitrary non-negative value c because the strategy X0 =X, X1 = 0, 
X2 = 0 belongs to the class of allowed strategies too. Each strategy meeting 
the requirements w(1) ~ c and w(2) ~ c is, moreover, characterised by how 
often the strategy is reluctant to decide, i.e., by the number max (x(1), x(2)). 

Wald task seeks among the strategies satisfying the requirements w(1) ~ E:, 

w(2) ~ c for a strategy which minimises the value max (x(1), x(2)). It is known 
that the solution of this task is based on the calculation of the likelihood ratio 

'Y(x) = PXIK(x 11) . 
PXIK(x 12) 

For certain threshold values (} 1 and (}2 , (}1 ~ (}2 , it is decided for the benefit of 
one or the other state, or the state is left undecided on the basis of comparing 
likelihood ratio f'(x) with the previous two threshold values. Later on, a solu
tion will be proved that will allow us to make a decision in a case of Wald task 
of a more general character where the number of states can be arbitrary, and 
not merely two. 

2.2.5 Statistical decision tasks with non-random 
interventions 

The previous non-Bayesian tasks took into account the property that in a cer
tain application the penalty function or a priori probabilities of the state did 
not make sense. Statistical decision tasks with non-random intervention make 
one step further and they are concerned with the situations in which, in addi
tion, the conditional probabilities Px IK (xI k) do not exist. 

The statistical decision task with non-random intervention was formulated 
by Linnik [Linnik, 1966]. The task relates to the situation in which the feature 
x is a random quantity that depends not only on the object state but also on 
some additional parameter z of the object. This additional parameter z is not 
directly observable either. Moreover, the end user is not interested in the value 
of the parameter z and thus need not be estimated. In spite of it, the parameter 
z must be taken into account because conditional probabilities PXIK(x I k) are 
not defined. There exist only conditional probabilities PXIK,z(xlk,z). The 
problem of statistical testing of objects, when the observations are influenced 
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by non-random and unknown interventions are known as statistical decisions 
with non-random interventions or evaluations of complex hypotheses or Linnik 
tasks. 

We speak in plural about statistical decision tasks in the presence of non
random interventions because the specific form of the task depends on whether 
or not the state k is or is not random, whether or not the penalty function 
is determined, etc.. Let us mention two examples from a large set of possible 
tasks. 

Testing of complex hypotheses with random state and with non-random 
intervention 

Let X, K, Z be finite sets of of possible values of the observation x, state 
k and intervention z, PK(k) be the a priori probability of the state k and 
PXIK.z(x I k, z) be the conditional probability of the observation x under the 
condition of the state k and intervention z. Let X(k), k E K, be the decom
position of the set X which determines the strategy how to estimate the states 
k. The probability of the incorrect decision w depends not only on the strategy 
itself but also on the intervention z, 

w(z) = L PK(k) L PXIK,z(x I k, z). 
kEK x¢X(k) 

The quality w* of a strategy (X(k), k E K) is defined as the probability of 
the incorrect decision obtained in the case of the worst intervention z for this 
strategy, that is 

w* =max w(z). 
:EZ 

The task consists in the decomposition of the observation set X into classes 
X(k), k E K, in such a way that w* is minimised, i.e., 

(X*(k), k E K) = argmin max L PK(k) L PXIK.z(x I k, z). 
(X(k),kEK) zEZ kEK x¢X(k) 

Testing of complex hypotheses with non-random state and with non-random 
interventions 

The second task conforms to the case in which neither the state k nor inter
vention z can be considered as a random variable and consequently a priori 
probabilities PK(k) are not defined. In this situation the probability of the 
wrong decision w obtained by a strategy, depends not only on the intervention 
z but also on the state k 

w(k, z) = L PXIK,z(x I k, z). 
x¢X(k) 

The quality w* of the strategy (X(k), k E K) will be defined as 

w* =max max w(k, z), 
kEK zEZ 
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and the task will be formulated as a search for the best strategy in this sense, 
i.e., as a search for decomposition 

(X*(k), k E K) = argrnin max max L PXIK,z(x I k, z). 
( \'(k) kEK) kEK :EZ 
• ' xrtX(k) 

2.3 The pair of dual linear programming tasks, 
properties and solution 

The non-Bayesian tasks mentioned can be analysed in a single formal framework 
because they are particular cases of the linear programming optimisation task. 
The reader has probably come across linear programming tasks in the canonical 
formulation. This formulation is suitable for solving a specific task, e.g., by a 
simplex method (which is a simple linear optimisation technique used commonly 
in economics and elsewhere). There is a good reason for starting the theoretical 
analysis with a more general formulation. The canonical formulation results 
from it. 

The basis of the analysis of a linear programming task is constituted by two 
theorems about dual tasks which are known in several equivalent formulations. 
A necessary piece of knowledge about dual tasks is mentioned here in the form 
which is the most suitable for our case. It is possible to comprehend this section 
as an information guide which can be omitted by the reader experienced in the 
transition from primal linear programming tasks to dual ones and vice versa. 
He or she can proceed to Section 2.4. 

Let JR."' be an m-dimensional linear space, each point x E JR."' of which 
has coordinates x1,X2, ... ,xm. Let I denote the set of indices {1,2, ... ,m}. 
Let the vector x satisfy the constraint that some of its coordinates cannot be 
negative and let us denote by I+ C I the set of indices of those coordinates 
that comply with this constraint. The index set I 0 = I \ J+ corresponds to 
all other coordinates which can be both positive or negative. Let us introduce 
the set X of points in JRm which comply with the introduced constraint, i.e., 
X= {x E rn:m lx; ~ O,i E J+}. 

Let rn:n be an n-dimensional linear space, J be the set of indices of its coor
dinates, J+ be the set of indices of those coordinates that cannot be negative 
and J 0 = J \ J+. Let us introduce a set Y as a set of points in JR." in which for 
all j E .J+ the coordinate Y.i is not negative, i.e., Y = {y E JR." I Y.i ~ 0, j E .J+}. 

Let the function f: X x 1" --+ JR. be defined on the set X x 1". The function 
f(x,y) itself need not be linear, but the function f(x*,y) is a linear function 
of one variable y for any fixed value :r* E X. The opposite holds too, i.e., the 
f(x,y*) is a linear function of one variable x for any value y* E 1'. Functions 
with these properties are called bilinear functions. Each bilinear function can 
be expressed in the following general form 

(2.10) 
iE/ •E/ .iEJ jEJ 

The point x' E X will be called an acceptable one in respect to the func
tion (2.10) if the function f (.T 1 , y) of one variable y is bound maximally on the 
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set Y. Let us denote by X: c X the set of all ac<zptable points x. It follows 
from this definition directly that the function cp: X -t IR with the values 

cp(x) = maxf(x,y) 
yEY 

can be defined on the set .~. 
The primal task of linear programming aims to detect if the set of all accept

able points .~ is non empty. If .~ :f; 0 then it should be verified if the function 
cp: X -t IR is bound minimally. If the prior conditions are satisfied then the 
x* E .~ should be found which minimises cp. The primal linear programming 
task is called solvable in this case. 

The dual linear programming task is defined symmetrically. The set Y is a 
set of such y' E Y for which the function f(x, y') is bound minimally on the 
set X. Let us denote for each point y E Y 

'¢(y) = minf(x,y). 
xEX 

The_ dual task checks if}· =j:. 0 is ~a.tisfied. If the function '¢ is bound maximally 
on Y then such the point y• E Y is looked for that maximises '¢. In this case 
the dual linear programming task is called solvable. 

The relation between the primal and dual linear programming tasks is given 
in the following theorem. 

Theorem 2.1 The first duality theorem, also the Kuhn-Tucker theorem. If 
the primal linear programming task is solvable then the dual linear programming 
task is solvable also. Moreover, the following equation holds 

mi!! cp(x) = ma_2e'¢(y). 
xEX yEY 

(2.11) 

• 
Proof. The proof is not short and can be found in books about mathematical 
programming in different formulations. The proof in the form matching our 
explanation is in [Zuchovickij and Avdejeva, 1967]. • 

The set .~ and the function cp: .~ -t IR can be expressed explicitly as it is shown 
in the lemma. 

Lemma 2.1 Canonical form of the linear programming task. The set X is 
fL set of solution of the system of equation and inequalities 

and for each x E .~ holds 

L b;j Xj ~ Cj, j E J+, 
iE/ 

""'b . E JO L...J ij Xi = Cj, J , 
iEI 

Xi~ 0, i E [+, 

<p(x) = Lai X;. 

iE/ 

(2.12) 

(2.13) 

(2.14) 

• 
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Proof. Let us rewrite the function f in the following form 

Let us prove first that if some x' does not satisfy the system of inequalities (2.12) 
and equations (2.13) then x' ~X. In other words, the function f(x',y) of one 
variable y is not bound maximally. 

Let us assume that for such an x' one of the inequalities from the sys
tem (2.12), say the j'-th one, does not hold. The function f can thus have an 
arbitrarily large value. If this is to happen it suffices that the coordinate Yi' is 
large enough. There is nothing that can prevent the growth of the coordinate 
YJ' since the matching coordinate is limited only by the property that it cannot 
be negative. 

Let us permit now that x' ~ }[, because for some j" E J 0 the equation 
from the system (2.13) is not satisfied. In such a case the function f can 
achieve an arbitrary large value again. It suffices if the absolute value of YJ" 
is large enough. The coordinate YJ" itself can be either positive or negative 
depending on the difference Cj" - Z:::iEI bij':_ Xi being positive or negative. From 
the contradiction we can see that any x E X complies with the conditions (2.12) 
and (2.13). 

Let us demonstrate furthermore that for each x' satisfying the relations 
(2.12) and (2.13), the function f(x',y) is bound maximally on the set Y, i.e., 
x' E "X'. 

The function value f(x',y) comprises three additive terms, cf. (2.15). The 
first term is independent of y. The second term is independent of y too, since 
the difference Cj - Z:::iEI bij x: is zero for all j E J 0 as it follows from the 
condition (2.13). The third term is not positive as none of the additive terms 
constituting it is positive. Indeed, there holds YJ 2: 0 and Cj - Z:::iEI bij x~ :S 0 
for any j E J+, which implies from the condition (2.12). It follows that the 
third term in equation (2.15) is bound maximally and this upper limit is zero. 
It implies too, that the whole expression (2.15) has an upper limit as well and 
it is Z:::iEI ai x~. In such a way it is proved that the set X is identical with the 
set of solutions of the system of inequalities (2.12) and equalities (2.13). 

As the proof of the equation (2.14) is concerned, it is obvious that the upper 
limit LiEiaix~ of the function f(x',y) is achievable on the set Y, because 
f(x',O) =LiEf ai x; and 0 E Y. Then maxuEY f(:c',y) =LiEf ai x~ and the 
equation (2.14) is satisfied too. • 

Having the proved lemma in mind, the primal linear programming task can be 
expressed in the following canonical form. The 

min"" a· x· ~l1-
xEX iEJ 

(2.16) 
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is to be found under the conditions 

I:>ij X; 2: Cj ' j E J+ ' 
iE/ 

L b;j x; = Cj , j E J 0 , 

iEl 

X; 2: 0, i E J+ . 

(2.17) 

(2.18) 

(2.19) 

Properties of the dual task can be proved in a similar manner. Let us repeat 
the thoughts which were used when proving Lemma 2.1. It can be shown that 
in the dual linear programming task, 

is sought under the conditions 

r.nax"" c y EY L) J 
y jEJ 

L b;J y J :S a; , i E J+ , 
jEJ 

L biJ YJ =a;, i E / 0 , 

jEJ 

YJ 2: 0, j E J+ . 

The function f should be expressed in the form 

f(x,y) = L x; (a;- L bij YJ) +LX; (a;- L b;j YJ) 
iE/0 jEJ iE/+ jEJ 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
If one from the inequalities from the system (2.21) does not hold for some y' and 
for some i' E J+ then the second additive term in relation (2.24) can become 
arbitrarily small by selecting the big enough value of x;' and the same is valid 
for the value f(x, y'). If one of the equations from the system (2.22) does not 
hold for some i" E / 0 then the first sum in the right-hand side of (2.24) can 
reach arbitrarily small value if the coordinate x;" is selected appropriately. It 
is obvious that for any y, which satisfies conditions (2.21) and (2.22), the value 
f(x, y) on the set X has lower bound given by the number 'LjEJ Cj YJ· This 
lower bound is achieved in point x = 0 which belongs to the set X. 

Although expressions (2.16)-(2.23) unambiguosly define the pair of dual 
tasks it might be worthwhile to remember the following formulation in terms of 
words. It is not so concise and uniquely declared as expressions (2.16)-(2.23), 
but it is more comprehensible. 
1. The primal linear programming task requires the minimisation of the linear 

function dependent on a certain group of variables under linear constraints. 
The dual linear programming task demands maximisation of the linear func
tion dependent on other linearly constrained variables. 
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2. Each constraint in the primal task corresponds to the variable in the dual 
task and each variable in the primal task matches the constraint in the dual 
task. 

3. Constraints in the primal task are either linear equations or linear inequal
ities of the form 2: . Constraints in the dual task are either linear equations 
or linear inequalities of the form ~ . 

4. Values of some variables in both the primal and the dual task can be positive 
and negative. These variables are called free variables. There are other 
variables in the primal and dual tasks which are not allowed to be negative. 
Such variables are called non-negative variables. 

5. To each equality among the primal task constraints the free variable in the 
dual task corresponds. To each inequality among the primal task constraints 
the non-negative variable in the dual task matches. To each free variable 
in the primal task the constraint in the dual task in the equality form 
corresponds. 

6. Coefficients ai, which express the minimised function in the primal task, are 
present as threshold values on the right-hand side of equalities or inequalities 
in the dual task. Thresholds Cj appearing on the right-hand side of equalities 
or inequalities of the primal task appear as coefficients of the linear function 
being minimised in the dual task. 

7. The coefficient matrix in the system of equalities or inequalities of the primal 
task corresponds to the transposed matrix of coefficients of the system of 
equalities and inequalities in the dual task. 

In our exposition we can proceed to the next theorem which is particularly 
important when analysing the pair of dual linear programming tasks. Namely, 
this theorem will help us when analysing non-Bayesian decision tasks that are 
formulated in the form of linear programming tasks. 
Theorem 2.2 Second duality theorem, also called theorem on mutual non
movability. Let the solution of primal linear programming task be x* = (xi, 
i E I), let the solution of the dual task be y* = (yj, j E J). 

Unless some coordinate x; of the point :r* is equal to zero, the correspond
ing constraint of the dual task for i E I+ is then satisfied by the equation 
LjEJ b;J yj = ai (although it was an inequality in the task formulation). 

If the j -th constraint in the primal task is satisfied in the point x* as a strict 
inequality, i.e., if LiEf b;J x'; > CJ holds then the corresponding value Yj in the 
dual task is equal to zero. • 

Proof. The theorem actually says that for all i E I there holds 

xi (a; - L b;J yj) = 0 , 
jEJ 

(2.25) 

and for all j E J holds 

yj (Cj - L b;j xr) = 0. 
'IE/ 

(2.26) 
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The equation 

L ai xi+ LYj (ci - L bii x:) = L xi (ai-L bij yj) + L Cj yj (2.27) 
iE/ jEJ iE/ tEl JEJ JEJ 

is apparently valid. 
The first duality theorem states that LiE/ ai xi = LjEJ Cj Yj which implies 

(2.28) 

As x*, respectively y*, are solutions of the primal, respectively dual task, the 
constraints (2.17)-(2.19) and (2.21)-(2.23) are satisfied for them and it implies 
that for any j E J there holds 

yj (cJ- Lbij xj) ~ 0, 
iE/ 

(2.29) 

and for any i E I there holds 

xi (ai - L. bii Yi) ~ 0 . 
jEJ 

(2.30) 

Equation (2.28) states that the sum of non-positive additive terms is the same 
as the sum of non-negative additive terms. This is possible only in that case in 
which all additive terms equal zero. The validity of equations (2.25) and (2.26) 
follows from that. • 

2.4 The solution of non-Bayesian tasks using duality 
theorems 

We will show how the formalism of dual linear programming tasks can be used 
to solve non-Bayesian tasks (and Bayesian ones too) in pattern recognition. 

So far, the recognition strategies have corresponded to the decomposition of 
the set of observations X into X(k), k E K. For each pair of sets X(k') and 
X(k"), the relation X(k') n X(k") = 0 was satisfied. In addition, for all sets it 
held that ukEK X(k) =X. This means that each observation X EX belonged 
just to one set X(k). The strategy was based on such a decomposition, which 
decided for the observation x E X(k) whether the observed objects are in the 
state k. 

The same strategy can be expressed equivalently by a function o:: X x K -t 
IR, that o:(x, k) is a non-negative number and, moreover, LkEK o:(x, k) = 1 for 
all x E X. Every decomposition of the set X, i.e., any deterministic strategy, 
can be implemented as an integer function from the mentioned class so that if 
x E X(k) then o:(x, k) = 1. 



2.4 The solution of non-Bayesian tasks using duality theorems 41 

When non-integer functions are allowed then the set of all possible functions 
o: will be more extensive. Any function o: can then be understood as a ran
domised strategy. The value o:(x, k) is a probability of the event that having 
observed x, it is decided in favour of the state k. After this generalisation all 
non-Bayesian tasks formulated earlier can be expressed as a particular case of 
linear programming and can be analysed in a single formal framework. 

We will analyse common properties of non-Bayesian tasks keeping in mind 
the properties of the linear optimisation tasks. The most important prop
erty claims that the solution of any non-Bayesian task differs only fractionally 
from the Bayesian strategy. Saying it more precisely, the strategy solving the 
arbitrary non-Bayesian and Bayesian tasks is implementable in the space of 
probabilities. Each decision corresponds to a convex cone in the space of prob
abilities. Deterministic decisions match the inner points of the cone. The 
random decisions need not appear always, and if they occur then they occur in 
points which lie at the boundary of the convex cone. 

2.4.1 Solution of the Neyman-Pearson task 
The Neyman-Pearson task was formulated as an optimisation task, see relations 
(2.2)-(2.4). The task, which for brevity we call Neyman task, can be formulated 
in another form now. The decision strategy will be expressed by means of a 
function 0:: X X K --+ R instead of the sets xl and x2 used earlier. The 
task is not changed at all, because it is necessary to minimise the conditional 
probability of the false alarm as before provided that the conditional probability 
of overlooked danger is not greater than c. The probability of the false alarm 
is 

L o:(x, 2) PXIK(x 11) 
xEX 

and the probability of the overlooked danger is 

L o:(x, 1) PXIK(x 12). 
xEX 

(2.31) 

(2.32) 

Variables o: have to satisfy conditions o:(x, 1) + o:(x, 2) = 1, o:(x, 1) ~ 0, 
o:(x, 2) ~ 0 for all x E X. These demands can be expressed in the form of 
a linear programming task 

We will need linear programming tasks many times in this lecture and there
fore let us introduce the concise notation. The task will be expressed as several 
linear expressions. The expression in the first line is the criterion which will be 
maximised or minimised. The optimised variables will not be presented explic
itly in the criterion, as it is obvious that it is optimised with respect to all the 
variables in the given task. Next equalities and non-equalities below the crite
rion express constraints. For every constraint the corresponding dual variable 
will be defined. Dual variables are written on the left side of the corresponding 
primal constraint and are separated from constraints by a vertical line. In a 
similar way, if the dual task is expressed then the variables of the primal task 
will be given on the left-hand side of the dual task ronstraints. 
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Quantities a(x, k), x E X, k E K, which determine the strategy, will be 
treated as variables in further tasks. Namely, these quantities are to be deter
mined when solving the problem, i.e., through this choice the expression written 
in the first line is optimised. Additional auxiliary variables will be introduced 
in the minimax task in particular. Their meaning will be explained when its 
turns come. Here we consider necessary to forewarn, that in the coming expres
sions the quantities x and k are not any more variables according to which the 
optimisation is performed. They are variables, according to which we sum up 
in linear expressions, which are to be optimised, or which express constraints 
of the task. In this sense the quantities x and k have the same meaning as 
indices i and j in the previous Section 2.3, where linear programming tasks 
were analyzed in a general form. Various probabilities PxjK(x, k), PK(k) etc .. 
are considered as known constant numbers. These probabilities will play the 
role of multiplicative coefficients in linear expressions which are to be optimised 
or which express constraints in the appropriate linear programming task. 

Minimisation of (2.3I) under the condition (2.32) and additional self-ex
plaining conditions will be expressed in the following form of linear program
ming task 

mm I: a(x, 2) PXiK(x II), (a) 
xEX 

I: a(x, I) PxjK(x 12) S E, (b) 
xEX 

a(x, I)+ a(x, 2) =I, X EX, (c) (2.33) 

a(x, I) ~ 0, xE X, (d) 

a(x, 2) 2 0, x EX. (e) 

In the optimisation task (2.33) the variables are the values a(x, I), a(x,2) for 
all x EX. The constants are values E and PXjK(x I k) for all x EX, k = I, 2. 
Let us rewrite the task to convert the inequality (2.33b) into a standard form 
with the relation ~ as is required in the primal linear programming task. 

Let us take into account that the line (2.33c) represents not just one but lXI 
constraints. There is a dual variable t(x) corresponding to each of these lXI 
constraints. We obtain the primal task 

min I: a(x, 2) PxjK(x II), (a) 
:rEX 

T L a(x, I) PxjK(x 12) ~ -E, 
.rEX 

(b) 

t(x) a(x, I)+ a(x, 2) = I, x EX, (c) (2.34) 

a(x, I) ~ 0, x EX, (d) 

a(x, 2) ~ 0, x E X . (e) 
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The following dual task corresponds to the previous primal task 

max ( L t(x) - E T) , (a) 
xEX 

a(x, 1) t(x)- T PXIK(x 12) ~ 0, x EX, (b) 
(2.35) 

a(x, 2) t(x) ~ PxiK(x II), x EX, (c) 

T ~ 0. (d) 

We will explain the mechanism of deriving the dual task more thoroughly 
in the first non-Bayesian task analysed. The following tasks will be described 
lr~ss cautiously. The line (2.35a) exhibits a linear function depending on dual 
variahks T and t(:r). Each variable t(x), x EX, is multiplied by a unit coeffi
ci(~nt as the nurnlH~r 1 appears on the right-hand side of the inequality (2.34c) 
of tlw primal task to which the dual variable t(x) corresponds. The variable T 

is multiplied hy -E hecaus(~ tlw threshold -E occurs on the right-hand side of 
the inequality (2.34h). 

The line (2.35h) specifies lXI constraints. Each of them corresponds to the 
variable a(x, 1) in the primal set. The constraints are expressed as an inequality 
due to the property that o:(x, 1) is non-negative, cf., constraint (2.34d). The 
vahw 0 is on the right-hand side of the constraint as the variable a(x, 1) is not 
present in the function (2.34a) which is to be minimised in the primal task. 
It is the same as if tlw variable was present and multiplied by the coefficient 
0. Tlw kft-hand side of tlw constraints is composed of two additive terms 
since the variable a(:r, 1) occurs in two constraints of the primal task only, 
i.e., in one constraint from tlw group (2.34c) and in the constraint (2.34b). 
The variable t(:r) in the constraint (2.35b) is multiplied by 1, because also 
o:(:r, 1) in the constraint (2.34c) is multiplied by 1. The variable Tin (2.35b) is 
multiplied by -PxiK(x 12). The variable a(x, 1) is multiplied by -PxiK(x 12) 
in the constraint (2.34b). 

The line (2.35c) specifics lXI constraints corresponding to group of variables 
o(:r, 2). There is the probability PXIK(x II) on the right-hand side of the con
straints since this coefficient multiplies the variable a(x, 2) in the linear function 
(2.34a) which is minimised in the primal task. There is a single variable t(x) on 
tlw ldt-hand side of the constraint (2.35c) since the variable a(x, 2) occurs only 
in a single constraint (2.34c) of the primal task. The variable t(x) in (2.35c) 
is multiplied by 1 since the variable a(x, 2) is multiplied by 1 in the constraint 
(2.34c) too. The constraint (2.35c) is the inequality as the variable a(x, 2) 
in the primal task is defined as an non-negative variable, cf. the constraint 
(2.34e). 

The constraint (2.35d) requires the variable T to be non-negative as it cor
responds in the primal task to the constraint (2.34b) which is expressed by 
an inequality. Dual variables t(x), x E X, can be both positive and nega
tive, because the matching constraints to it in the primal task are expressed as 
equalities. 
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Only the reader not confident in transforming primal tasks of linear program
ming to the dual ones is likely to need this explanation. These transformations 
are more or less automatic. Here, the primal task (2.34) was transformed into 
the dual task (2.35). These explanations are superfluous with respect to the 
proof of Neyman task. In fact, the pair of tasks (2.34) and (2.35) is a pair of 
dual tasks of linear programming. 

Thanks to that, it is possible to find out Neyman strategy based on the Sec
ond Duality Theorem (Theorem 2.2) after the following simple consideration. 
The task (2.35) cannot be solved for such values ofT and t(x), x E X, for 
which the both constraints (2.35b) and (2.35c) were strictly satisfied. Having 
in mind the Second Duality Theorem a(x, I) = a(x, 2) = 0 should have held, 
this would be in contradiction with the constraint (2.34c). Thus the equality 
should hold for each x E X in one of inequalities (2.35b) and (2.35c) at least. 
This means that 

t ( x) = min (p x IK ( x II) , T p x 1 K ( x I 2)) 

It implies that if 
(2.36) 

then t(x) < T PXIK(x 12) and the strict inequality (2.35b) is satisfied, and 
therefore a(x, I) = 0. Due to the constraint (2.34c) a(x, 2) =I and the state k 
has to be labelled as dangerous. If 

PXIK(x II)> T PxiK(x 12) (2.37) 

then t(x) < PXIK(x II). As the inequality (2.35c) is satisfied strictly, a(x, 2) = 
0, a(x, 1) = I and the state k is assessed as a normal one. The conditions 
(2.36) and (2.37) can be expressed in the known form in which the likelihood 
ratio 

'Y(x) = PXIK(x II) (2.38) 
PXIK(x 12) 

is calculated and this ratio is compared to the non-negative threshold value T. 

We showed that Neyman tasks in the form of the dual task pair (2.34) 
and (2.35) can be quite briefly expressed and solved in a transparent way. This 
briefness is based on the theory of dual linear programming tasks. In the given 
case it is based on the Second Duality Theorem which helps to solve not only 
Neyman task in an easier way, but also other non-Bayesian tasks. 

2.4.2 Solution of generalised Neyman-Pearson task with two 
dangerous states 

Let us show more briefly now how to deduce strategies for solving modified 
Neymans task which we formulated in Subsection 2.2.2 by the conditions (2.5)~ 
(2.9). 

Let the object be in one of three possible states, k = 1, 2 or 3. The state 
k = I is considered as normal and other two states as dangerous ones. The aim 
is to find two functions a 1 (x) and a 23 (x) with the following meaning. If it is 
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to be decided according to observatiorr x for the state k = 1 then a 1 (x) = 1. If 
it is to be decided for the state k = 2or k = 3 then a23 (x) = 1. The functions 
a 1 (x) and a23 (x) sought have to minimise the sum 

under the conditions 

L a23(x) PXIK(x 11) 
:cEX 

L a1 (x) PXII<(x 12) :S E, 

xEX 

L a1 (x) PXII<(x 13) :S £, 

xEX 

ai(:r) + a23(x) = 1, x EX, 

a1(x)~O, xEX, 

<l23 (X) ~ 0 , X E X . 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

The expression (2.39) represents probability of the false alarm. The condition 
(2.40) means that the probability of the overlooked dangerous state k = 2 has 
to be small and the condition (2.41) requires the same for the state k = 3. 
Constraints (2.42)-(2.43) are the standard conditions the strategy has to meet. 
We rewrite the conditions for the pair of dual tasks now. 

Primal task: 

Dual task: 

min L a23(x) PXII<(x 11), 
xEX 

72 - L al(x) PXIK(x 12) ~ -E, 
xEX 

73 - L a1 (x) PXIK(x 13) ~ -£, 
xEX 

t(x) al(x) + a 23 (x) = 1, x EX, 

a1 (x) ~ 0, x EX, 

a23 ( x) ~ 0 , x E X . 

max ( E. t(x)- c(72 + 73)) , 
xE.X 

a1(x) t(x)-72PXII<(xi2)-73PXII<(xi3):S0, xEX, (a) 

(2.44) 

o:23(x) t(x) :S PXIK(x 11), x EX, (b) (2.45) 

72 ~ 0, 

73 ~ 0. 
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From conditions (2.45a), (2.45b) and the fact that n: 1 (x) and n:23 (x) cannot be 
equal to zero simultaneously, it implies that for x E X and the variable t(x) 
there must hold 

t(x) =min (PXIK(x 11), 72 PXIK(x 12) + 73 PXIK(x 13)) (2.46) 

This means that if 

PXJK(x 11) < 72 PXJK(x 12) + 73 PXIK(x 13) (2.47) 

then n: 1 (x) must equal 0, n:23 (x) must equal1, and x signifies a dangerous state. 
If 

(2.48) 

then x is a sign of the normal state. The strategy solving this task has the 
following form: for certain non-negative numbers 72 and 73 the likelihood ratio 
is computed 

'Y(x) = PXJK(x 11) ' 
72 PXIK(x 12) + 73 PXIK(X 13) 

(2.49) 

and then it has to be decided for either a normal or a dangerous state, if the 
likelihood ratio is higher or smaller than 1, respectively. 

2.4.3 Solution of the minimax task 
We will show a standard procedure which allows the reformulation of the min
imax task as a minimisation task with no maximisation. Let fi(x), j E J, 
be a set of functions of one variable x. The value x* that minimises 4?(x) = 
maxjEJ /j(x) has to be found. This minimisation problem can be written as a 
mathematical programming task not only of one variable x, but of two variables, 
i.e., the original x and a new auxiliary variable c. In this new formulation, the 
pair (x, c) is sought which minimises c under the constraint c 2:: fi(x), j E J. 
The task 

min~ax IJ(x) 
X )EJ 

(2.50) 

is thus equivalent to the task 

mine, 

j EJ.} (2.51) 
c-IJ(x)2:0, 

c 
This procedure is demonstrated in 

Fig. 2.1forthecaseJ = {1,2,3}. The 
shaded area in the figure shows the 
set of pairs (x, c) which satisfy con
ditions c·- fi(x) 2:: 0, c- f2(x) 2:: 0, 
c-h(x) 2:: 0. The task (2.51) requires 
that a point with the minimal coor
dinate c must be found in the area. Figure 2.1 Minimax task for three functions f. 
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Apparently, it is the point denoted by a filled circle in Fig. 2.1. The function 
max (JI(x),h(x),h(x)) is shown as a bolded curve. The task (2.50) requires 
that the point with the smallest coordinate c has to be found on the bold curve. 
It is the same point denoted by the filled circle. 

Because of the equivalence of the tasks (2.50) and (2.51), the minimax task 
formulated in Subsection 2.2.3 can be expressed as the following linear pro
gramming task. The variables are o:(x, k) and the auxiliary variable c, 

mine, 

c- x~\" ( k~k o:(x, k*) PXIK(x I k)) ~ 0, k E K, (a) 
(2.52) 

I: o:(x, k) = 1, x EX, (b) 
kEK 

o:(x,k)~O, xEX, kEK. 

Thanks to (2.52b), the sum Lk•# a(x, k*) is equal to 1-a(x, k), and therefore 
the inequality (2.52a) will be transcribed as c + LxEX o:(x, k) PXIK(x I k) ~ 1. 
Our task will be expressed as a pair of dual tasks. 

Primal task: 

Dual task: 

min c, 

r(k) c + L o:(x, k) PXIK(x I k) ~ 1, k E K, 
xEX 

t(x) I: o:(x,k) = 1, x EX, 
kEK 

o:(x,k)~O, xEX, kEK. 

max ( L t(x) + L r(k)\ , 
xEX kEK J 

o:(x, k) t(x) + r(k) PXIK(x I k) ::; 0, x EX, k E K, (a) 

c L r(k) = 1, 
kEK 

r(k) ~ 0, k E K. 

(2.53) 

(2.54) 

It follows from the condition (2.54a) and the requirement to obtain the largest 
t(x) that for any x the variable t(x) is equal to 

mil! (-r(k) PXIK(x I k)) . 
kEJI. · 

For certain x E X and k* E K satisfying the condition 

k* f:- argmax (r(k) PXIK(x I k)) , 
kEK 
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a(x, k*) must equal to zero. Furthermore it follows that a(x, k*) can be non
zero-only when 

k* = argmax (7(k) PxjK(x I k)) . 
kEK 

2.4.4 Solution of Wald task for the two states case 
The Wald task was formulated in Subsection 2.2.4. We will express the strategy 
solving Wald task with the help of three functions ao(x), a1 (x) and a2(x) which 
are defined on the set X. If a 1(x) or a2(x) have value one then it is decided for 
the first or second state. The value a0 (x) = 1 indicates that it is not decided 
for any of two states. The Wald task can be expressed as a pair of dual task 
and solved using the unified approach we already know. 

Primal task: 

mine 

Q1 c- L ao(x) PxjK(x J1) ;::: 0, 
xEX 

Q2 c- L ao(x) PXjK(x J2) ;::: 0, 
xEX 

72 - L a1(x)PxjK(xJ2);::: -c, 
xEX 

71 - L a2(x) PxjK(x J1) ;::: -€, 
xEX 

t(x) ao(x) + a1(x) + a2(x) = 1, X EX, 

ao(x) ~ 0, a1(x);:::o, a2(x);:::1, 

Dual task: 

max ( L t(x) - c(71 + 72)'\ , 
xEX J 

a1(x) t(x)- 72PXjK(xJ2) ~ 0, x EX, 

a2(x) t(x)-71PXjK(xJ1)~0, xEX, 

XE X. 

(a) 

(b) 

ao(x) t(x)- Q1 PXjK(x J1)- Q2 PXjK(x J2) ~ 0, X EX, (c) 

c Q1 + Q2 = 1' 

Q1 ;::: 0 . Q2 ;::: 0 ' 71 ;::: 0 ' 72 ;::: 0 . 

(2.55) 

(2.56) 

From conditions (2.56a), (2.56b), (2.56c) and a form of the function, which is 
minimised in the dual task, it is implied that t(x) has to be the smallest from 
three values 71 PxjK(x J1), 72PXIK(x J2) and Q1 PxjK(x J1) + Q2PXjK(x J2). Let 
us study the three corresponding cases according to which of these three values 
is the smallest one. 
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Case 1. If 

7 1 PXIK(x [1) < 72 PXjK(x [2), } (2.57) 
71 PxjK(x [1) < q1 PXjK(x [1) + qz PXjK(x [2) 

then the strict inequalities (2.56a) and (2.56c) hold. It implies that 
a 1 (x) = 0, a0(x) = 0 and consequently az(x) = 1. 

Case 2. If 

7z PxjK(x [2) < 71 PxjK(x [1), } 

7z PXjK(x [2) < q1 PxjK(X [1) + qz PxjK(X [2) 
(2.58) 

then a 1 (x) = 1, because the strict inequalities (2.56b) and (2.56c) have 
to hold, and therefore a 2 ( x) = 0 and ao ( x) = 0 has to hold. 

Case 3. Finally if 

q 1 PxjK(X [1) + qz PxjK(X [2) < 71 PXjK(x [1), } (2.59) 
q1 PxjK(x [1) + q2 PxjK(x [2) < 7z PxjK(x [2) 

then a0 (x) = 1 holds, as the strict inequalities (2.56a) and (2.56b) are 
satisfied, and thus a1 (x) = 0 and a2 (x) = 0 must hold. 

Conditions (2.57)-(2.59) express the strategy solving Wald task explicitly. 
We will show that the strategy found is in accordance with the known and 

commonly used for of the strategy by Wald [Wald, 1947]. It can be seen that 
the decision depends on the fact which one of the three quantities 

71 PXjK(x [1), 72 PxjK(x [2), q1 PXjK(x [1) + qz PxjK(X [2) 
is the smallest. It is the same as to ask, which of the three variables 

71 !'(x) , 1, q 1 !'(x) + qz (2.60) 
72 7z 7z 

is the smallest, where ')'(x) is the likelihood ratio PxjK(x [1)/PxjK(x [2). Let 
us draw in Fig. 2.2 how these three functions (2.60) depend on the likelihood 
ratio !'(X). Two thresholds fh, ()2 are represented on the horizonal axis. It 
can be seen that the condition !'(x) < 01 is equivalent to the condition (2.57). 
The condition l'(x) > ()2 is the same as the condition (2.58), and finally, the 
condition ()1 < /'(x) < ()2 corresponds to the condition (2.59). This means that 
it is decided for the second state in the first case, for the first state in the second 
case, and no decision is made in the third case. This is, namely, the solution 
of Wald task. Fig. 2.2 demonstrates an additional interesting property. It can 
be seen that the subset X0 can be empty in some tasks. This means that at 
some tasks the optimal strategy never says not known though such response is 
allowed. 

The solution of Wald generalised task in the case, in which the number of 
states is greater than two, is not so illustrative. That might be the reason 
why so many pseudo-solutions occur here, similar to thoses which spin around 
Neyman strategy. We will show a reasonable formulation and a solution of this 
generalised task in the following paragraph. We will see that even when it is 
not possible to use the likelihood ratio, it is possible to master the task easily. 
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Figure 2.2 On the solution of Wald task. 

2.4.5 Solution of Wald task in the case of more states 
If K = { 1, 2, ... , n} then the decision strategy can be expressed using the 
function a(x, k) , where k E K or k = 0 holds. A certain strategy can be 
characterised by 2IKI probabilities w(k) and x(k), k E K . The variable w(k) 
is the probability of a wrong decision under the condition that the actual state 
is k. The variable x(k) is the probability of the answer not known under the 
condition that the actual state is k. 

The strategy sought should satisfy the conditions w(k) :::; c, k E K, with 
an inaccuracy E: set in advance. The strategy that minimises maxkEK x(k) 
has to be selected out of the strategies that comply with the abovementioned 
conditions. 

There holds for the probability w(k), k E K, 

w(k) = L ( L a(x , k*)) PX IK( .7: I k) 
xEX k'EK \{k,O} 

= L ( 1- a(x, k) -a(:~;, 0)) Pxpd:~: I k) 
xEX 

= 1- L (a(x,k) +a(x , o)) Jixp.;(:~:Jk) . 
:rE X 

There holds for the probability x(k), k E K, 

x(k) = L a(x, 0) PX IJ\(x I k) . 
xEX 

Generalised Wald task can be expressed as the pair of dual tasks 
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Primal task: 

q(k) 

T(k:) 

t(x) 

mine, 

c- I,: o:(x,O)PXIK(xlk) ?:0. k:EK, 
xEX 

I,: (o:(x, k) + a(x, 0)) PxiK(x I k) ?: 1- c:, k E I<, 
xEX 

a(x,O) + I,: o:(x,k) = 1, x EX, 
kEK 

a(x, 0) ?: 0, a(x, k:) ?: 0, k E K, x E X. 

Dual task.· 

a(x, 0) 

a(x,k) 

c 

max ( I: t(x) + (1- c:) I: T(k:)) , 
xEX kEK 

t(x) +I: T(k:) PxiK(:r I k)- I: q(k:) PxiK(x I k:) S 0, x E X, 
kEK kEK 

t(x) + T(k)PXIK(xl k:) S 0, x EX, k: E I<, 

2.:: q(k) = 1, 
kEK 

q(k) 2 0, T(k) 2 0, k: E K. 

(2.61) 

(2.62) 

It is obvious from the dual task that the quantity t(x) has to be equal to the 
smallest value from the following IKI + 1 values: the first IKI values repre
sent values -T(k) PxiK(x I k) and the (IKI + 1)-th value is I,:kEK (q(k:)- T(k)) 
PxiK(x I k). The smallest value determines which decision is chosen: a(x, k) = 1 
for some k E K or a(x, 0) = 1. More precisely, this rule is as follows. The fol
lowing quantity has to be calculated, 

max(T(k)PXIK(xlk)) · kEK 

If 

~~ (T(k) PxiK(x I k)) < L (T(k)- q(k)) PXIK(x I k) 
kEK 

then the decision is k* = 0. In the opposite case it is decided for 

k* = argmax (T(k) PxiK(x I k)) . 
kEK 

The strategy solving the generalised Wald tas.k is not as simple as we have seen 
in the previous tasks. It would hardly be possible to guess the strategy only 
on the basis of mere intuition without thorough formulation of the task, and 
without its expression in the form of the pair of dual linear programming tasks 
(2.61), (2.62), followed by a formal deduction. 
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2.4.6 Testing of complex random hypotheses 
The task of testing of complex random hypotheses was formulated in Subsec
tion 2.2.5. The aim of the task is to find a strategy that minimises a probability 
of the wrong decision w(z) under the worst possible intervention z E Z. This 
means that the quantity maxzEZ w(z) has to be minimised. There holds for the 
probability w(z) that is achieved by the strategy a(x,k), k E K, x EX, 

w(z) = L PK(k) L ( L a(x, k*)) PXJK,z(x I k, z) 
kEK xEX k*#k 

= L PK(k) L ( 1- a(x, k)) PXJK,z(x I k, z) 
kEK xEX 

= L PK(k) (1- L a(x, k) PXJK,z(x I k, z)) 
kEK xEX 

= 1- L PK(k) L a(x, k) PXIK,z(x I k, z). (2.63) 
kEK xEX 

The requirement to minimise maxzEZ w(z) can be expressed as a pair of dual 
linear programming tasks. 

Primal task: 

T(z) 

t(x) 

Dual task: 

mine, 

c + 2: PK(k) 2: a(x, k) PXIK,z(x I k, z) ~ 1, 
kEK xEX 

L a(x, k) = 1, x E X, 
kEK 

a(x, k) ~ 0, k E K, x EX. 

max ( E t(x) + E r(z)) , 
xEX zEZ 

z E Z, 

a(x,k) t(x) + E PK(k) r(z) PXJK,z(x I k, z) ~ 0, x EX, k E K, 
zEZ 

c L r(z) = 1, 
zEZ 

r(z) ~ 0, z E Z. 

{2.64) 

(2.65) 

It results from the form of the maximised function in the dual task and from 
the upper limit of the quantity t(x) that the optimum occurs when t(x) is the 
minimal value out of the following IKI possible numbers, 

- L PK(k) r(z) PXIK,z(x I k, z), k E K. 
zEZ 
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The decision k E K, for which a(x, k) = 1, depends on which of these IKI 
numbers is the minimal one, or which of the quantities 

:~:::>K(k) r(z) PXIK,z(x I k, z), k E K, 
zEZ 

is the maximal one. The decision k* has to be equal to 

argmax L PK(k) r(z) PXIK,z(x I k, z). 
kEK zEZ 

2.4. 7 Testing of complex non-random hypotheses 
The task evaluating complex non-random hypotheses was formulated in Sub
section 2.2.5. It is possible to solve the task with the help of the pair of dual 
linear programming tasks. These tasks are composed as follows. 

Primal task: 

r(z,k) 

t(x) 

Dual task: 

a(x,k) 

c 

mine, 

c + I: a(x, k) PXIK,z(x I k, z) ~ 1, z E Z, k E K, 
xEX 

I: a(x, k) = 1, x EX, 
kEK 

a(x, k) ~ 0, k E K, x EX. 

max ( I: t(x) + I: I: r(z, k)) , 
xEX zEZ kEK 

t(x) + L r(z,k)PxjK,z(xlk,z)::::; 0, x EX, k E K, 
zEZ 

L L r(z, k) = 1 , 
zEZ kEK 

r(z, k) ~ 0, z E Z, k E K. 

(2.66) 

(2.67) 

It follows from the abovementioned pair of tasks that, if for some x E X and 
some k* E K and all k E K \ { k*} the following inequality is satisfied, 

L r(z, k*) PXIK,z(x I k*, z) > L r(z, k) PXIK,z(x I k, z) 
zEZ zEZ 

then a(x,k*) = 1. 

2.5 Comments on non-Bayesian tasks 
We have seen a variety of non-Bayesian tasks. We have introduced several 
examples of these tasks and it would be possible to continue. It can be seen, 
in spite of all this variety, that all tasks do not appear any more as isolated 
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islands in the ocean of the unknown. They constitute an archipelago at least, 
to which the Bayesian class of tasks also belongs. 

We could have noticed earlier that these tasks are related. In case of two 
states only, the strategy always has the same single form for any Bayesian task, 
as well as for Wald, minimax, or Neyman-Pearson tasks. It is necessary to 
calculate the likelihood ratio and then the decision corresponds to a certain 
contiguous interval of the likelihood ratio. 

The analysis presented generalises the likelihood ratio to the case in which 
there are more than two states k. In such a case the characteristic, such as the 
likelihood ratio, is not defined and consequently it cannot be applied. The core 
of generalisation is the knowledge that the solution of any Bayesian, as well as 
non-Bayesian, tasks, as we already know, corresponds to the decomposition of 
the space of probabilities into convex cones. Namely, the space of probabilities 
constitutes this dividing line. On one side of this dividing line all tasks have 
their own application specificity. On the other side, provided we express the 
tasks in the space of probabilities, all the tasks become similar. The solution 
of each task is given by the decomposition of the space of probabilities into 
classes using linear discriminant functions. Lecture 5 is devoted to this topic. 

2.6 Discussion 
Even when I studied all the non-Bayesian tasks formulated and their formal 
solution thoroughly, I cannot say that I mastered the explained material well 
and understood the presented results in the same way as if I had discovered 
them myself I doubt that I would be able to solve a new practical task by 
myself. 

Could you elucidate your difficulties a little to allow us to help you? 

Nearly all tasks formulated in the lecture are new to me. I have known only 
about the Neyman-Pearson task so far. I did not think about the proof of the 
strategy and its solution too much. A.n extensive and unfamiliar landscape of 
non-Bayesian tasks unfolded in front of me. It was presented in the lecture that 
all these tasks could be analysed and solved by using the linear programming 
gadget. But I regret, I do not know this gadget. 

It is unbelievable. Did you not learn linear programming at university? 

Yes, of course I did. But it was in a quite different spirit from your lecture. 
The main emphasis was placed to computational procedures optimising linear 
functions with linear constraints. The focus was mainly on the simplex method 
which I understood quite well. The linear programming gadget now plays a 
quite different role. It is not just a tool for writing the program for optimisation 
tasks, but it is a tool for theoretical analysis of the task with pencil and paper. 
Such a use of linear programming is new to me. 
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If I understood non-Bayesian tasks well and informally, without using the 
dual tasks gadget, then the theoretical matter from the lecture could support 
my current comprehension now and simultaneously understand the dual task 
tool, too. On the other hand, if I understood quite clearly the dual tasks then 
I could also understand better non-Bayesian tasks. Now I see two areas, I 
am not well orientated in either of them, and I know, in addition, that they 
are closely connected. It is of little help to me if I wanted to penetrate into 
each of them. There is no other way out but to orientate myself independently 
in non-Bayesian tasks or to dig deeply into the scientific literature concerning 
mathematical programming. When all this is done I can return to non-Bayesian 
tasks. What would you recommend me? 

Both options, but the second one a little more. You should be familiar with 
the theoretical basis of mathematical programming (namely the theory, and not 
merely a calculational procedure) whether you are engaged in pattern recog
nition or not. These pieces of knowledge are useful in any area of applied 
informatics. We do not want to leave you standing in front of problems alone. 
We will continue in the direction of your remark. You have said that you would 
understand the dual tasks principle much better if there was something that 
follmved from formal theorems, something you also knew without duality theo
rems. We can go through one example of that kind with you but it will require 
a bit of patience on your side. O.K.? 

Do not doubt my patience. I consider it important to be familiar with dual 
tasks. Please do not use examples from Economics. In nearly every linear 
programming textbook, the tasks are demonstrated with the help of concepts 
from Economics which is of less help for my understanding. I can understand 
if it concerns the maximisation of profit. The explanation of the dual task sub
stance by using the examples of mutual relation between supply and demand, 
production effectiveness, pricing, etc. says little to me, because I understand 
economic concepts even less than non-Bayesian tasks. 

Do not be afraid. Our example demonstrates the substance of dual tasks in 
electrical circuits. We hope that almost everyone is familiar with it. All three of 
us have graduated from electrical engineering, some of us earlier and some not 
so long ago, and so we remember something from electrical circuit theory. These 
circuits are likely to be understandable to everyone, as high school knowledge 
should suffice. If we were speaking about something you do not understand, 
do interrupt us without any hesitation. 

In our example numerical quantities will be represented by alternating cur
rents in a circuits branches or alternating voltages between the points of the 
same circuit. Thus, for instance in Fig. 2.3a, the quantity x labelling the branch 
of the circuit represents the current :r; ·sin t. The arrow on the branch shows the 
direction of the current which is considered positive. There are two possible 
cases: (a) The quantity x = 3, for example, corresponds to the alternating 
current 3 sin t, i.e., the current flowing from the point 1 to the point 2 in the 
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(a) (b) 

Figure 2.3 Electrical analogy. (a) Current x, (b) voltage y. 

case of sin t ~ 0 as well as the current flowing from the point 2 to the point 1 
for sin t :::; 0. (b) The quantity x = -3 will correspond to the current -3 sin t 
which means the current from the point 2 to the point 1 for sin t ~ 0, and 
conversely from the point 1 to the point 2 for sin t :::; 0. 

Similarly, we will show some quantities with the help of voltage which is 
the difference of electrical potential between two points. E.g., the quantity y 
between the points 1 and 2 of the circuit (cf., Fig. 2.3b) representing potentials 
tp1 - tp2 between points 1 and 2 is y sin t. The arrow between points 1 and 2 
shows the voltage direction which is given as positive, i.e., y sin tis the difference 
tp1 - tp2 and not the other way round. 

c 

(a) (b) 

Figure 2.4 (a) Voltage sources. (b) Current sources. 

Currents and voltages arise in the circuit thanks to sources of electrical 
energy. There are two types of sources: ideal voltage sources and ideal current 
sources. The ideal voltage source a (see Fig. 2.4a) provides the voltage tp1 -tp2 = 
a sin t independently of load which is connected to the source terminals. Only 
the current x, which is taken from the source, depends on the load. The ideal 
current source c (see Fig. 2.4b) provides the current, which is always csint 
regardless of the load connected to its terminals. Only the voltage y between 
the source terminals depends on the load. 

Another component which will be needed is a special device called a phase 
rectifier. When it is connected to the circuit branch ( cf. Fig. 2.5a) then it 
prevents the current x sin t in the branch with negative x and the voltage 
tp1 - tp2 = y sin t between points 1 and 2 with positive y. The phase recti
fier has one more important property, i.e., that the product xy can be equal 
to zero only. This means that if there is a negative voltage across the phase 
rectifier then the corresponding current must be equal to zero. The converse is 
valid too, if a positive current flows through the phase rectifier then there must 
be zero a voltage across it. The situation when both current and voltage equal 
to zero is not excluded, of course. 
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Figure 2.5 (a) Phase rectifier. (b) Possible implementation of a phase rectifier. 

I must interrupt you here. Do I properly understand that the quantities x and 
y are not represented with the help of alternating voltages and currents, but in 
some other way? When I connect the rectifier (I assume it is an ordinary diode) 
to the circuit in Fig. 2.5a then the current in this branch cannot alternate. This 
must be so for the voltage at the diode too. 

You perhaps did not understand the explanation properly. It is good that you 
interrupted us. You cannot realise the phase rectifier in Fig. 2.5a as an ordinary 
diode. That is why we called it the phase rectifier. It is an idealised device such 
that the current passing through it can be only x sin t, where x ~ 0. The phase 
rectifier can be implemented, e.g., by the circuit in Fig. 2.5b. The controlled 
switch is connected to the point 1 which alternatively connects the point 1 to 
the point 3 when sin t ~ 0 holds, and to the point 4 when sin t < 0 holds. 

Is the phase rectifier in Fig. 2.5b implemented by means of ordinary diodes and 
some switch? 

Yes, it is. 

I understand it now. Only the current x sin t, x ~ 0 or the voltage y sin t, y :S 0, 
xy = 0 can occur in the circuit branch in Fig. 2.5b. 

The unexplained last component, which is needed in our circuit, is a common 
transformer, i.e., several windings on a shared core of ferromagnetic material. 
Each winding is characterised by the number of turns and the winding direction. 
E.g., the transformer in Fig. 2.6 consists of five windings with the number of 
turns given from the left 3, 3, 0, -4 and 1. The zero number of turns of the 
third winding means that there is no winding on the core. The turn number 

circuit 

3 3 0 -4 1 
Figure 2.6 A transformer rliagrarn for varying number of turns in the coil and directions of 
winding. 
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-4 of the fourth winding says that the winding direction is the opposite of the 
first, second and fifth winding, whose direction is considered as positive. 

Thanks to the interaction of transformer winding with the shared magnetic 
field in the ferromagnetic core, the currents x1, x2, . .. , Xm in m coils must 
satisfy the equation 

m 

L:xibi = 0, 
i==l 

where bi is the number of turns of the i-th winding and the used signs + or -
agree to the rule given above. The currents XI, x2, ... , x5 in the transformer 
windings in Fig. 2.6 can thus reach only the values satisfying the constraint 

The second property of the transformer is that voltages of the windings are 
proportional to the number of turns. Do not forget that the number of turns 
is considered both positive and negative according to the winding direction. In 
Fig. 2.6, the voltages YI, y2, y3, Y4 are uniquely constrained by the voltage y5, 
i.e., Y1 = 3y5, Y2 = 3y5, Y3 = 0, Y4 = -4Y5· 

We will need to know what is represented by the current source, voltage 
source, phase rectifier and transformer when considering electrical analogy of 
the dual linear programming tasks. 

I think that t understand the components of the electrical circuit quite well 
now. 

Create a circuit from the given components with the currents XI sin t, x2 sin t, 
X3 sin t, X4 sin t, X5 sin t, in its branches which comply with the following system 
of equalities arid inequalities, 

(2.68) 

x1 + 2x2 + X3 + X5 ;:::: C2, 

-Xl + 3x3 ;:::: C3, 

X!+ X2 + X3 + X4 + X5 = C4, 
(2.69) 

-x1 + 2x2 + 3x3 + X4- X5 = c5, 

3xl + 2x2 - 4x3 - 2x4 + 3x5 = c6 . 

The previous system can be understood as constraints of the primal linear 
programming task. The linear function that is to be minimised in the task will 
not be considered for the moment. 
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Figure 2.7 The equivalent electrical circuit for the linear programming task. 

It was not easy for me to draw the required electrical circuit even when I am 
familiar with electrical concepts. The most difficult was to satisfy the three con
ditions in the system (2.69) which have the form of inequalities. I succeeded 
eventually and the resulting circuit is drawn in Fig. 2. 7. It is ensured in the cir
cuit that the currents x1 , ... , x5 satisfy the conditions (2.68) and (2.69). I hope 
that you expected a similar result, because the circuit is quite straightforward. 
The circuit shape resembles the shape of a matrix with the constraints (2.69). 
My circuit consists of six transformers which matches six constraints from the 
system (2.69), and five branches whose currents correspond to the variables 
x1, ... , X5. Each i-th branch, i = 1, ... , 5, turns around the core of the j-th 
transformer, j = 1, 2, ... ,6, and the number of turns can be positive, negative 
or zero. The number of turns corresponds to the coefficient bij by which the 
variable Xi is multiplied in the j-th constraint of the system (2.69). 

I ensured the conditions (2.68) easily by connecting the phase rectifiers to 
the first, second and third branch. Thanks to it, negative currents cannot occur 
in these branches. I satisfied the three last conditions in the form of equations 
from the system (2.69) by inserting the coil on each j-th, j = 4, 5,6, transformer 
which makes -1 turn around the particular core and to which the current c1 
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Bows from an ideal current source. The following equation is satisfied thanks 
to it and thanks to the transformer properties for j = 4, 5, 6 

5 

LbijXi- Cj = 0 
i=l 

which corresponds to the three last constraints in the system (2.69). 
The first three constraints in the form of inequalities from the system (2.69) 

were satisfied as follows. I put an additional coil with an arbitrary but negative 
number of turns on the j-th, j = 1, 2, 3, transformer and connected the phase 
rectifier to it. Thanks to that, the current Xoj cannot be negative in these 
additional coils. Having the properties of the transformer, I can write for 
j = 1,2,3 

5 

L:x;b;j- Xoj- Cj = 0, Xoj 2': 0 
i=l 

which corresponds to the first three constraints in the system (2.69). That is, 
perhaps, all. 

You did everything right and you even got ahead of it a little bit. In Fig. 2.7 we 
can see the voltage sources a1 , .•. , a5 , which are in fact not needed to satisfy 
constraints (2.68) and (2.69). Why did you introduce them? 

It was a mere intuition which I cannot proYe, but I can support it with some 
general thoughts. It seems to me, that when I introduced the voltage sources 
my diagram became not only a tool to satisfy constraints (2.68) and (2.69), but 
also a tool to minimise the sum {;~=! a;x; on the set given by systems (2.68) 
and (2.69). Indeed, the sum Li=l a;x; corresponds to the power that the 
voltage sources a1 , ... , a5 obtain from surroundings. But the voltage sources 
a1 , ..• , a5 are sources of energy, not consumers of it. That is the reason why 
these sources interact with the surroundings in such a way that they get rid of 
energy as soon as possible, i.e., they pass it to the surroundings with the highest 
possible power. This means, till now only intuitively, that such currents get 
stabilised in the diagram in Fig. 2. 7 that maximise the total power- :Z::::i=l a;x; 
in which the voltage sources are deprived of energy. It is clear enough that 
the suggested diagram constitutes a physical model of the linear programming 
task. Actually, an arbitrary linear programming task can be modelled using 
the analogy. I do not claim that I can prove these thoughts. 

We will find that out later. 

I would like to proceed to the main issue now for which I needed the electrical 
interpretation of linear programming tasks. First of all, I wanted to clarify 
the relation between the pair of dual tasks. I have not obsen'ed anything like 
this in the proposed diagram yet, it even seems to me that I umlerstand the 
diagram quite well. 
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You will see this in a while. You analysed the properties of currents x1, ... , X5 

which the diagram can generate, and have proved (and it was not difficult) that 
the currents satisfy the constraints (2.68) and (2.69). But beside the current, 
the voltages are generated by the diagram too, and these are not only voltages 
a 1, ... , a5 at voltage sources but also voltages at the current sources c1, ... , c6. 

I have got it! I am surprised that I did not notice it earlier. Indeed, these 
voltages correspond to the variables in the task which is dual with respect to 
the task minimising sum 2::;=1 a;x; under constraints (2.68) and (2.69). They 
are, namely, dual variables! 

Are you able to prove it? 

Yes, of course, I am! By transformer properties the voltage biJYJ is induced on 
tlw coil which is in the i-th branch, i = 1, ... , 5 and is put on the core of the 
j-th transformer, j = 1, 2, ... , 6. Here b;i is the number of winding turns and Yi 
is the voltage on tl1e current source Cj. Moreover, it is well known that the sum 
of voltages in any closed circuit is equal to zero. It follows immediately that 
the voltage on the coils has a certain relationship with the voltages a1 , ... , a5 

on the sources of voltages. These relations are extremely simple for the fourth 
and fifth branch to wl1ich the phase rectifier is not connected. The relation for 
the fifth branch is written as 

Similarly, for the fourth branch 

Because the phase rectifiers are connected to the first, second and the third 
branch, the sum l::~=l b;iYJ of voltages on coils in the i-tll branch, i = 1, 2, 3, 
is smaller than voltage a;. For till:' first branch there holds 

2yl + Y2 - Y3 + Y4 - Ys + 3y6 :::; a1 . 

For the second branch there holds 

and for the third one I write 

Earlier, I applied additional coils to the first, second and third cores and con
nected tlw phase rectifier to it. I did it to satisfy the first three conditions 
(inequalities) in the system (2.69). I did not think of it ;.1t that time, but now I 
see that additional coils on the first, second and tbinl transformer secure that 
voltages Y1, Y2, Y3 on the corresponding voltage sources cannot be negative. 



62 Lecture 2: Non-Bayesian statistical decision making 

In fact, the following happened. When designing the diagram, my original 
intention was to generate currents x1, x2, x3, J:4, x5 in agreement with conditions 

X1 ~ 0, X2 ~ 0, X3 ~ 0 , 

2x1 - 3x2 + 4x3 + 5x4 - 2x5 ~ c1 , 

X1 + X2 + X3 + X4 + X5 ~ C4 , 

-Xl + 2X2 + 3X3 + X4 - X5 ~ C5 , 

3xl + 2x2 - 4x3 - 2x4 + 3x5 ~ c6 , 

(2. 70) 

which I understood as constraints in a certain linear programming task. I can 
see now, and did not anticipate it before, that the same diagram also generates 
the voltages Y1, Y2, Y3, Y4, y.'\, YB in agreement with constraints of the dual task 

Y1 ~ 0, Y2 ~ 0, Y3 ~ 0, 

2yl + Y2- Y3 + Y4- Y5 + 3y6 :S a1 , 

-3yl + 2y2 + Y4 + 2y5 + 2y6 :S a2 , 

4yl + Y2 + 3y3 + Y4 + 3y5 - 4y6 :S a3 , 
(2.71) 

5yl + Y4 + Y5 - 2y6 = a4 , 

-2yl + Y2 + Y4- Y5 + 3y6 = a5. 

In this ~my I came to the idea that any physical system which is a model of 
a linear progTamming task is also inevitably a model of a dual task. It seems 
that I am starting to understand dual tasks slowly, but in spite of that there 
are still more unclear than clear facts. I expressed my hypothesis earlier that 
in the diagram in Fig. 2. 7. I cannot implement arbitrary solutions of the sys
tem (2. 70), but only those that maximise the total power- L~=l aiXi, by which 
the voltage sources a1, ... , a5 dissipate energy. I presume also that the volt
ages Y1, ... , YB cannot correspond to arbitrary solutions of the system (2. 71), 
but only to those that maximise the total power L~=l CjYj of current sources 
c1 , ... , c6. I cannot prove my hypothesis properly. Probably you can help me 
with it? 

Yes, with pleasure, of course. First of all we will prove an auxiliary statement. 
'Ve will do it in an abstract manner not referring to electrical analogies and 
after that \Ve will have a look at what this statement means for our electrical 
diagram. 

Let x = (x1 , x2 , ... , xm) be a vector confirming conditions 

Ill 

L biJxi ~ CJ , j = 1, ... , n* , 
i=l 

(2. 72) 
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rn 

L b;jXi = cJ , j = n* + 1, n* + 2, ... , n, (2.73) 
i==l 

x;;:::O, i=l, ... ,m*, (2.74) 

where m,n,m*,n* are integers, m* :0:::: m, n* :0:::: n. Let y = (y1 ,y2 , ... ,yn) be a 
vector that satisfies 

n 

LbiJYJ :0:::: a;, i = 1,2, ... ,m*, 
j==l 

n 

LbiJYJ=aJ, i=m*+l,m*+2, ... ,m, 
j==l 

YJ2':0, j=l, ... ,n*. 

In such a case there holds 

1n n 

L a;x; ;:::: L CJYJ . 
i==l j==l 

(2.75) 

(2. 76) 

(2. 77) 

(2. 78) 

The proof of the previous statement is rather simple. It follows from inequali
ties (2.72) and (2.77) 

n* ( m ) 
L LbijXi- C; YJ;:::: 0 ° 

j==l i==l 

The equation (2.73) implies 

n ( m ) 
L LbijX;-C; YJ=O. 

j==n*+l i==l 

If the twq latter expressions are added we get 

n ( m ) """" ""b x-c y·>O. ~ ~I) l I J _ 

j==l i==l 

(2. 79) 

It follows from inequalities (2.75) and (2.74) 

It follows from equation (2.76) that 

m ( n ) 
L a; - L b;JYJ x; = 0. 

i==m*+l j==l 
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Summing two latter expressions we obtain 

m ( n ) ~ Cli - ~ bijyj Xi 2: 0. (2.80) 

Summing inequalities (2.79) and (2.80) we can write 

1n n 

L Clj:I:; - L CjYJ 2: 0 
i=1 J=1 

which is only another form of inequality (2. 78) that was being proved. The 
proof is finished. 

As all the constraints (2.72)-(2.77), which you created in Fig. 2.7, are satis
fied, the inequality (2. 78) is satisfied, too. 

Inequality (2. 78) can be easily understood without proof when one has in mind 
our electrical diagram. The total energy '£/=1 CJYJ, which current sources CJ, 
j = 1, ... , n, dissipate at any instant, cannot be larger than the total energy 
'£::1 aix;, which is received from the surrounding by the voltage sources a;, 
i = 1, ... , m. Otherwise, the energy conservation law would be violated. 

I can see now that an even stricter relation than (2. 78) can be proved on the 
basis of purely physical considerations, which is the equation 

1n n 

La;x; = LCJYJ, (2.81) 
i=1 j=1 

which is equal to the first duality theorem (cf Theorem 2.1). Its analytical 
proof is rather difficult. Equation (2.81) holds simply because that the total 
energy '£::1 a;:c;, •Nhich occurs on voltage sources, cannot be larger than the 
total energy '£~'= 1 CJYJ produced by current sources. Otherwise, it would not 
be clear from where energy could originate. Equation (2.81} confirms my earlier 
hypothesis that only such currents :1:, appear in the diagram as are solutions of 
the primal linear programming task. Similarly, only voltages Yi are generated 
that are solutions of the dual taslc 

Only a slight effort is needed to give the electrical interpretation to the second 
duality tlworem too. When that is clone we will understand it entirely and 
informally. Are you able to do that on your own? 

Yes, indeed. The electrical interpretation of the second duality theorem is so 
obvious that the formal proof can make it only unclear. The interpretation can 
be formulated as folJows. 

If the current passing through a phase rectifier in our diagram is not zero 
then the voltage on the same rectifier is zero .. 4nd conversely, too, if the voltage 
on a phase rectifier is not zero the current througl1 this rectifier is equal to zero. 
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That might be all we can help you with today to clarify the dual tasks of linear 
programming and allow you to manipulate it freely when analysing practical 
tasks. 

The electrical analogy of the abstract duality theorems is quite obvious. There 
are some questions left which concern non-Bayesian tasks. 

Go ahead, ask! 

I have understood from the lecture that in many practical tasks a penalty 
function, as occurs in Bayesian tasks, does not make any sense in reality. I 
noticed that the concept of a penalty function has not been used at all in the 
listed non-Bayesian tasks. 

Assume that the statistical model of an object is entirely known in an appli
cation, but the penalty function is not defined. This means that both a priori 
probabilities Px(k), k E K, and conditional probabilities PX/K(x I k) make 
sense and are known. I understand that the penalty function, which does not 
make sense in a given application, is missing for the formulation of the Bayesian 
task. But why should I have to formulate the task as a non-Bayesian one in 
this case? Is it not better to remain within the Bayesian framework? Would 
the task not be formulated as a risk minimisation, but as the minimisation of 
the probability of the wrong decision? Such a criterion is fully understandable 
to the user and even more than is the risk. It seems to me that the criterion 
minimising the probability of the wrong decision has the right to exist fully and 
not only when it is derived from a specific penalty function. 

It is not possible to answer your question unambiguously. Of course, you can 
use strategies which give a small probability of the error. But you must be sure 
that something comprehensible actually corresponds to the criterion in your 
application. We only warn you not to think that the criterion of the smallest 
probability of the error is always usable. 

Let us assume that your application is the diagnosis of an oncological illness 
in its early stage. You are aware that this is an important task, because if the 
illness is discovered as it emerges then the patient can be still saved. Unfor
tunately the task is also a quite difficult one. Imagine that we would come 
to you and insist that we had an algorithm which will surely not indicate a 
wrong diagnosis more often than in 1% of cases. You will be pleased and buy 
our algorithm immediately. You are content because you assume (watch out, 
the error follows!) that you will save 99% of people, who otherwise should die 
without your help. But your enthusiasm evaporates quickly as you learn that 
our algorithm evaluates all patients as healthy, and yields 1% wrong decisions 
only because sick people constitute not more than 1% of population. 

You feel that we as merchants made you pay through the nose. We suc
ceeded in cheating you even though you know quite well which requirements 
the algorithm has to satisfy, but you formulated thesr requirements using an 
inappropriate criterion. In the given case it is necessary to characterise the 
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decision algorithm by two probabilities of the wrong decision and not merely 
by a single one. These two probabilities are formally expressed by means of 
numbers which can be added, averaged, etc .. However, these probabilities de
scribe entirely different events and nothing corresponds to their sum that could 
be interpreted within the framework of your application. You have to formu
late the task in the way that this non-interpretable operation should not be 
used. In this way only, you can achieve the formally proved strategy that will 
correspond to real demands of the application. 

Instead of formulating these demands, you formulated another task in a hope 
that the optimal solution of this supplementary task will not be too bad for 
the actual task. Such an approach should be comprehensible if you had known 
only one statistical decision task. But you know more tasks of this kind and 
you need not keep the only one so convulsively. The most appropriate would 
be to arrange the task as Wald or Neyman-Pearson task in your case. 

I was convinced in the lecture that the solution of the properly formulated task 
can significantly differ from the solutions which someone could guess only on 
the basis of mere intuition. In this respect Wald task seems to me to be the 
most distinctive one for IKI > 2, where the outcome is quite unexpected. And 
I resent it, since I understand the task only purely formally. If I am to use it 
I have to believe in formal methods too much as to my taste. I expected that 
the solution of Wald tasks will be much easier. Let me explain the algorithm 
whir.h I considered to be the solution of the task. And then I would ask you to 
help me analyse it and tell me why it is wrong. 

The formally proved algorithm can be expressed in the following form. The 
strategy depends on 2IKI numbers T(k), q(k), k E K, and on basis of them the 
following values should be calculated 

( T(k)PX[K(xlk) 
"/ k X) = -=,.---:-:-:--'--..:........,--:-:-E T(k) PX[K(x I k) 

kEK 

which resemble very much the a posteriori probabilities of the state k under 
the condition :r:. Next, the largest number of these numbers is sought and is 
compared with the threshold B(x). The threshold value is 

E q(k) PxtK(x I k) 
B(x) = 1 - --=kE=II.-· ----

E T(k) PX[J<(X I k) ' 
kEK 

and this value is different for each observation. It is very difficult to under
stand this step informally, because the threslwld value was the same for all 
observations in the Bayesian •.:ariant of this task, i.e., independent of x. These 
considerations are not the proof, but I assumed that here in lVald task it should 
be the same case. This means that the strategy would have a form 

argmax Atdx), if max 'Ydx) > (1- <5), 
kEK kEK 

0, if max 'Ydx) < (1 - <5) . 
kEK 
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This strategy seems to me far more natural compared to the strategy used in 
the lecture. That is why I assumed that when the strategy was not the solution 
of the formulated task then it could be a useful strategy for some other task. 

Let us try to make a retrospective analysis of your strategy and let us find 
tasks for which this strategy is optimal. The strategy suggested by you would 
be obtained if the variables T(k ), q(k), k E K, were constrained by the property 
that the ratio 

is the same for all observations :r E X. The constraint can be expressed in a 
linear form 

- L q(k) PXIK(x I k) + 6 L T(k) PXIK(:z: I k) = 0 . 
kEK 

These linear constraints will be embodied into the formulation of the dual 
task (2.62). This constitutes a new dual task. 

Dual task: 

max ( ... tl( t(x) + (1- t:) ~cE· T(k)) 

t(x) + L T(k) PXIK(x I k)- L q(k) PxiK(x I k) ~ 0, x EX, (c) 
kEK kEK 

t(x)+T(k)Px!K(xlk)~O, xEX, kEK, 
(2.82) 

6 L T(k) PX!K(x I k)- L q(k) PXIK(x I k) = 0, x EX, (a) 
kEK I1EK 

I: q(k) = 1, 
kEK 

(b) 

q(x)~O, T(k)~O. 

This task differs from the previous task (2.62) which was composed in the 
lecture having in mind lXI additional constraints (2.82a). The original task 
was somewhat deformed. We will build up the primal task, to which the task 
(2.82) is dual, rather formally in order to find out what happened after defor
mation. Before that we will perform several equivalent transformations of the 
task (2.82). First, on the basis of (2.82a) the constraint (2.82c:) can have the 
form 

t(x) + (1- 15) L T(k) PxiK(x! k) :S 0, x EX. (2.83) 
kEK 
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Furthermore, the pair (2.82a) and (2.82b) is equivalent to the pair 

6 L T(k) PXIK(x I k)- L q(k) PxjK(x I k) = 0, 
kEK kEK 

(2.84) 

Indeed, from the constraint (2.82a) there follows 

6 L L T(k) PxjK(x I k) = L L q(k) PxjK(x I k). 
xEX kEK xEX kEK 

Based on (2.82b) and that LxEX PXIK(x I k) = 1 we obtain 

8 L T(k) = L q(k) = 1 . 
kEK kEK 

This expression is substituted into the maximised function and we can write 

'\"' 1-c 
L.. t(x) + - 8-. 
xEX 

Maximisation of this function is equivalent to maximisation of the function 

L t(x). 
xEX 

From what was said above the new shape of the task (2.82) follows: 

max ( L t(x)) 
xEX 

t(x) + (1- 8) L T(k) PXIK(x I k) 50, x EX, 
kEK 

t(x)+T(k)PxjK(xlk)50, xEX, kEK, 

8 L T(k) PXIK(x I k) - L q(k) p(x I k) = 0, x EX, (a) 
kEK kEK 

L T(k) = ~, 
kEK 
T(k)~O, q(k)~O, kEK. 

(2.85) 

From such a form of the task it can be seen that the constraints (2.85a) are 
redundant. Indeed, if the variables t(x), x EX, q(k), k E K, and T(k), k E K, 
conform to all constraints except the constraint (2.85a) then only the variables 
q(k), k E K, can be changed so that the constraint (2.85a) will be satisfied. 
For example, the variable q(k) can be selected to be equal to 6 T(k). Thus the 
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task (2.85) can be expressed as 

a:(x, 0) 

a:(x,k) 

c 

max ( 2:: t(x)) 
xEX 

t(x) + (1- 8) 2:: r(k) PXIK(x I k) ~ 0, 
kEK 

t(x) + r(k) Px!K(x I k) ~ 0, 

L r(k) = t, 
kEK 

r(k) ~0. 

X EX, 

69 

X EX, 

kE K, (2.86) 

It should not surprise you that variables q(k), k E K, disappeared from the task. 
Well, you yourself wanted that the threshold with which 'a posteriori' quantities 
'Y(k), k E K, should be compared would not depend on the observation x. 
This dependence was realised in the former task through coefficients q(k), k E 
K. You will probably be surprised that as a result of a task deformation the 
parameter c. disappeared, which had determined an acceptable probability error 
limit. So we can affirm now that the algorithm, which seems natural to you, 
does not secure any more that the error will not be larger than c. This is 
because the algorithm simply ignores the value c. We will proceed further to 
find out in which sense is the algorithm proposed by you optimal. 

The task (2.86) is dual to the following task 

min ( J) 

c + L a:(x, k) Px!K(x I k) + (1- 8) 2:: a:(x, 0) PXIK(x I k) ~ 0, k E K, 
xEX xEX 

r(k) 

t(x) a:(x,O) + 2:: a:(x,k) = 1, x EX, 
kEK 

a:(x,O)~O, a:(x,k)~O, xEX, kEK, 

(2.87) 
which can be interpreted, e.g., as: The algorithm proposed by you minimises 
the value maxkEK (w(k) + 8 x(k)), where 

w(k) ~ ~ C2~'#0 a(x, k')) PXIK(x I k) 

is the probability of the wrong decision provided that the object is in the state 
k and 

x(k) = L a:(x, 0) PXIK(x I k) 
xEX 

is the probability of the answer not known under condition that the object is 
in the state k. The parameter 8 in your algorithm can be interpreted as the 
penalty given to the answer not known where the wrong decision is penalised 
by one. Your task formulation is admissible as well. You can now answer 
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yourself whether the formulation is just what you intuitively wanted it to be 
when you tried to guess the algorithm. 

After the task had been transformed into a unified dual tasks formalism, we 
obtained a finally intelligible task formulation. But we do not think that such a 
way of algorithm creation should be used often. The designer of the algorithm 
should behave like a person, who sees a locked door in front of him and who 
tries to make a key that will open the door. He should not proceed just the 
other way round, i.e., to seek an inspiration in the person, who tries to make 
the key himself first and then tries to find a door that the key opens. 

I cannot definitely agree with your last remark although I acknowledge that it 
is distinctive and expressed in rich colours. 

You may be right too. 

I have one more question which is not very short. It was said in Lectures 1 
and 2 that the strategy solving both Bayesian and non-Bayesian tasks could 
be expressed in the space of probabilities using convex cones. For all that, a 
significant difference remains between Bayesian and non-Bayesian strategies. 
The Bayesian strategy divides the whole space of probabilities into convex 
cones in such a way that each point from the space belongs just to a single 
cone including the points lying on the cone borders. This was in fact stated by 
the basic theorem about the deterministic property of Bayesian strategies, cf., 
Theorem 1.1. 

It is somewhat different in non-Bayesian strategies. It was proved in the 
lecture that all points inside the cones have to be classified into a certain class 
in a deterministic way. Nothing was said, on purpose or maybe accidentally, 
about what is to be done with the points which lie exactly on the cone's borders. 
Non-Bayesian strategies are deterministic in almost all points of the probability 
space but not entirely everywhere. It is clear to me that decisions corresponding 
to observations fitting exactly to the borders of convex cones not only can but 
even must be random. This random decision can be better than any determin
istic one. Naturally, I do not believe that miraculous results can be achieved 
with the help of this randomisation. Random strategies cannot be much better 
than deterministic strategies because the randomisation is useful only in a very 
small subset of points. I am more concerned that the deterministic character 
of strategies is no longer a peremptory imperative for non-Bayesian tasks as it 
was for Bayesian tasks. On this basis I am starting to believe that there might 
exist another broader area of statistical tasks in which randomised strategies 
will have decisive predominance over deterministic ones perhaps similarly as 
what happens in antagonistic games in the game theory. 

It seems to me that such a situation could arise if the basic concepts were 
enriched by the penalty function that would not be fixed but would be depen
dent on a value of a certain non-random parameter, i.e., the intervention. In 
contradiction to interventions, which we met in testing of complex hypotheses 
(random or non-random), these inteHentions do not influence the observed ob
ject but merely, how the appropriate decision will be penalised. The task could 



2.7 Bibliographical notes 71 

be defined as seeking such a strategy which is good enough for any interven
tion. In other words, I would like to study also such strategies for which the 
penalty function is not defined uniquely but on the other hand it is not entirely 
unknown. Such a partial knowledge and partial ignorance is expressed by the 
help of the class of penalty functions and a strategy has to be found, which 
would be admissible for each penalty function from this class. 

The given questions are not easy to answer. These issues will be treated neither 
at this moment nor during our entire course since we do not know the answer. 
It might be an open problem which is worth being examined. You can see that 
the answer to your question is far shorter than the question itself. 

January 1997. 

2. 7 Bibliographical notes 
The tool in this lecture was the pair of dual tasks of linear programming which 
was carefully studied in mathematics [Kuhn and Tucker, 1950; Zuchovickij and 
Avdejeva, 1967]. 

We have not found such a general view on non-Bayesian tasks anywhere. 
Actually, this was the main motivation for us to write the lecture. A mathe
matician can observe tasks from the height of great generality, e.g., Wald [Wald, 
1950] stated that the finite nature of the observation space is such a severe con
straint that it is seldom satisfied in statistical decision tasks. Nevertheless, 
in the statistical decision making theory, situations are sharply distinguished
when the estimated parameter is either random or non-random [Neyman, 1962]. 

A practitioner solves non-Bayesian tasks often subconsciously when she or 
he starts tuning parameters of the decision rule that was derived in a Bayesian 
manner with the aim of recognising all classes roughly in the same way. By 
doing this she or he actually solves the non-Bayesian task, in the given case a 
minimax one. Two articles [Schlesinger, 1979b; Schlesinger, 1979a] are devoted 
to formalisation of the practitioner's approach and they served as a starting 
material for writing the lecture. 

The references to original sources will be mentioned for individual non
Bayesian tasks. References relevant to Neyman-Pearson task [Neyman and 
Pearson, 1928; Neyman and Pearson, 1933] and for deeper understanding the 
t.c~xt.book of statistics [Lehmann, 1959] can be recommended. A minimax task 
is d<~scribed in [Wald, 1950]. Wald task, as it was understood in the lecture, 
is a SJH~cial case of Wald sequential analysis '[Wald, 1947; Wald and Wolfowitz, 
1 ~)48]. Statistical decision tasks with non-random interventions, also called 
t.asks t.c~sting complex hypotheses, were formulated by Linnik [Linnik, 1966]. 



Lecture 3 

Two statistical models 
of the recognised object 

A distribution Px IK: X x K ---+ IR of conditional probabilities of observations 
x E X, under the condition that the object is in a state k E K, is the cen
tral concept on which various task in pattern recognition are based. Now is 
an appropriate time to introduce examples of conditional probabilities of ob
servations with the help of which we can elucidate the previous as well as the 
following theoretical construction. In this lecture we will stop progressing in the 
main direction of our course for a while to introduce the two simplest functions 
PXIK which are the most often used models of the recognised object. 

3.1 Conditional independence of features 
Let an observation x consist of n certain measured object features x1, x2, ... , x 11 • 

Each feature x;, i E I, assumes values from a finite set X; which in the gen
eral case is different for each feature. The set of observations X is a Cartesian 
product xl X x2 X ... X Xn. It is assumed that the probabilities PXIK(x I k) 
have the form 

n 

PxiK(xik) = ITPx,IK(x;ik). (3.1) 
i=l 

This means that at the fixed state the features become mutually independent. 
But this does not mean that the features are also a priori mutually independent. 
In general, 

n 

Px(x) f- IJPx;(xi). (3.2) 
i=l 

The object's features are dependent on each other but all the dependence is 
realised via the dependence on the state of the object. If the state is fixed 
then the mutual dependence among the features disappears. Such a relation is 
called conditional independence of featur·e.s. The case mentioned describes the 
simplest model of the conditional independence. 

It is easy to prove that in the case in which each of the features assumes 
only two values { 0,1} and the number of states is 2, then the strategy solving 
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any Bayesian and non-Bayesian task can be implemented as a decomposition 
of the set of vertices on an n-dimensional hypercube by means of a hyperplane. 
We do already know that the strategy solving any such task has the following 
form: to each decision d an interval of values of likelihood ratio corresponds, 
i.e., the decision dis taken when 

d PXIK(x I k = 1) < d 
(lmin < ( I k _ 2) - (lmax ' PXIK X -

(3.3) 

where B~lin and B~lax are threshold values. The expression (3.3) is evidently 
equivalent to the relation 

PXIK(x I k = 1) d 
e~lill < log ( I k _ 2) ~ emax , 

PXIK X . -
(3.4) 

where the threshold values are different from those in the relation (3.3). If each 
feature x;, i E /, assumes only two values 0 or 1 then the following derivation 
in the form of several equations will bring us to the interesting property of the 
logarithm of the likelihood ratio 

PXIK(x I k = 1) ~ PX;IK(xi I k = 1) log = ~ log ::_:_:_:c.:.:...:__.:__ __ 

PxiK(x I k = 2) i=L PX;IK(x; I k = 2) 

~. _PX;!K(1Ik=1)Px;!K(Oik=2) ~ P.'(;IK(Oik=1) 
~x,log +~log . 
i=l PX;IK(11 k = 2) PX;IK(O I k = 1) i=l PX;!K(O I k = 2) 

The transition from the next to last line to the last line in the previous deriva
tion can be verified when two possible cases Xi = 0 and x; = 1 are considered 
separately. It can be seen that the logarithm of the likelihood ratio is a linear 
function of variables Xi· Because of this we can rewrite the expression (3.4) in 
the following way 

n 

e~in < L ai X; ~ e~ax· (3.5) 
i=l 

If the tasks are expressed by a firmly chosen function PXIK then various strate
gies (3.5) differ each from the other only by a threshold value. If, in addition, 
the function PXIK varies then also the coefficients a; start varying. At all these 
changes, it remains valid that all decision regions are regions, where values of 
a linear function belong to a contiguous interval. 

In special cases in which a set of decisions consists of two decisions only, i.e., 
when the observation set X is to be divided into two subsets X 1 and X 2 then 
the decision function assumes the form 

xE{ 
n 

Xt, if La; :z:; ~ (}' 
i=L 

(3.6) 
n 

X2, if 2::: a;:r; >e. 
1=1 
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This means that for objects characterised by binary and conditionally inde
pendent features, the search for the needed strategy is equal to searching for 
coefficients ai and the threshold value B. The entire Lecture 5 on linear de
cision rules will be devoted to the manner how to tune these coefficients and 
thresholds properly. 

3.2 Gaussian probability distribution 
Let a set of observations X be an n-dimensionallinear space. Let us note that 
this assumption is in a discrepancy with the content of the previous lectures. 
There we have emphasised many times that X is a finite set. Nevertheless, the 
results derived earlier can be used in most situations even in this case. It is 
sufficient to mention that the number PXIK(x I k) does not mean a probability 
but a probability density. 

We will assume that the function PXIK: X x K-+ lR has the form 

where k is a superscript index and not a power. Multi-dimensional random 
variable with the given probability density (3. 7) is called the multi-dimensional 
Gaussian (normal) random variable. In the expression (3. 7), the Xi is a value of 
the i-th feature of the object, J.L~ is the conditional mathematical expectation of 
the i-th feature under the condition that the object is in the state k. The symbol 
Ak introduces the inverse covariance matrix, i.e., the matrix equal to (Bk)- 1 . 

The element b~i in the matrix Bk corresponds to the covariance between the 
i-th and the j-th features, i.e., the conditional mathematical expectation of the 
product (xi- J.L~)(xi - J.Lj) under the condition that the object is in the state 
k. At last, C(Ak) is a coefficient which ensures that the integral over the whole 
domain of the function (3.7) is equal to 1. 

It is well known (and it can be simply shown too) that, in the case of two 
states and two decisions, the optimal strategy is implemented using a quadratic 
discriminant function. This means that 

{ 
X1, if 

xE 
Xz, if 

I: I: llij Xi Xj + I: /3i Xi ~ "(, 
i j i 

(3.8) 
I: I: llij Xi Xj +I: /3i Xi > "(. 

i j i 

Coefficients aij, /3i, i, j = 1, 2, ... , m, and the threshold value 'Y depend on a 
statistical model of the object, i.e., on matrices AI, A2 , vectors J.L1 , J.L2 and also 
on the fact which Bayesian or non-Bayesian decision task is to be solved. Even 
in the two-dimensional case, the variability of geometrical forms, which the sets 
X1 and Xz assume, is quite large. We will show some of them. 

1. The border between the sets X1 and X2 can be a straight line which is 
situated in the way that the set X1 lies on one side of the line and the set 
Xz on its other side. 
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2. The border between the sets X 1 and X 2 can be determined by a pair of 
parallel lines located in the way that X 1 is positioned between the lines and 
X2 is constituted by the remaining part of the space lying outside the two 
lines. 

3. The border between sets can be constituted by a pair of intersecting straight 
lines which decompose the plane X into four sectors. Two sectors represent 
the set X 1 and two are constituted by the set X 2 . 

4. The border can be given by an ellipse (or a circle in a particular case) in 
the way that, for instance, XI lies inside the ellipse and x2 corresponds to 
the part of the plane outside the ellipse. 

5. The border can be created by a hyperbola, i.e., it is two curves in the 
way that one of the classes lies between the curves and the other class 
is expressed as two convex sets. Either set is marked off by one of the 
continuous hyperbolae. 

In three-dimensional and multi-dimensional cases, geometrical forms of sets 
X1 and X2 can be even much more varied. That is why it is quite useful to 
understand that, in a certain sense, all variety of forms can be summarised 
into a single form, namely into that form, when the border between classes is 
constituted only by a hyperplane, and not an ellipse, hyperbolae, etc.. Then 
the set of strategies of the form (3.8) is equivalent to the set of strategies of the 
form 

{ 
X 1, if 

xE 
Xz, if I: a; x; > 'Y. 

(3.9) 

The equivalence of different decision strategies with the hyperplane is achieved 
hy the method that in pattern rec:ognition is called the stmightening of the 
feature space, sometimes called a <!>-processor. The transformation deforms the 
original feature space in such a way that a set of curves is transformed into a 
set of planes. In our case we are interested in a set of nonlinear surfaces of the 
class (3.8). The original n-dirnensional feature space is nonlinearly straightened 
(transformed) into the (n + &n(n + 1))-dirnensional feature space. The vector 
x = ( x1, Xz, ... , xi, ... , xn) is transformed into the ( n + in( n + 1)) -dimensional 
vector 

y = ( X] ) Xz, 0 0 0 

' Xi , 

X1X1 
' 

X1X2, 0 0 0 1 X]Xi' 

XzX2 ' 0 0 0 

' 
XzXi, 

xi:r;, 

0 0 0 1 

0 0 0 1 

0 0 0 1 

0 0 0 

' 

Xn-1 1 Xn, 

X]Xn-1 ' X]Xn 1 

XzXn-1 1 X2Xn 1 

XiXn-l ' XiXn, 

Xn-lXn-1, Xn-1Xn, 

XnXn) . 

(3.10) 

If we denote the coordinates of a newly created vector y by y;, where i 
1,2, ... , n + tn(n + 1), and by Y1, l2 sets, into which the sets X 1 , X 2 are 
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transformed by means of (3.10), then the strategy (3.8) can be written in the 
form 

(3.11) 

Let us show the straightening of the feature space on an example. 

Example 3.1 Straightening of the feature space. Assume x is a one-dimen
sional random variable with Gaussian distribution. Let us assume that the 
stmtegy for two classes xl' x2 is of the following form, 

{ 
Xt, 

xE 
x:l, 

if 

if 

(x - xo) 2 < <5, 

(X - Xo) 2 2: <)" , 

Then the strategy can be expressed in the equivalent linear form 

if 

if 

•) 2 () ")fi where y1 = x-, Y2 = x, a1 = -1, a2 = xo, = x0 - u. 

It is evident from the strategy (3.11) obtained that it can be performed as a 
linear decomposition of certain linear space. A mapping of initial feature space 
into new space (the space straightening) is of the standard form. It is the 
same for all situations in which an observation x of an object in k-th state is 
a multi-dimensional Gaussian random variable. The more specific knowledge 
about statistical parameters of an appropriate Gaussian distribution and the 
solved task itself are needed only to determine coefficients ai and the threshold 
"!which already determine the strategy (3.11) uniquely. How this tuning of the 
decision algorithm has to be performed in a specific situation will be shown in 
Lecture 5 concerning linear discriminant functions. 

3.3 Discussion 
Every time the model with independent featmes is used in publications it seems 
incredible to me that it is possible to describe a real object in such a simple 
way. Why is the model used so often? 1\{v answer is that there is a lack of 
knowledge in practical tasks about being able to use a more complex model. 
Available experimental data are sufficient to evaluate how particular features 
depend on the object state and are not sufficient to evaluate the dependence of 
feature group on the state. However, tl1e lack of knowledge about the mutual 
dependence of features does not entitle anybody to make the conclusion that 
the features are independent. A more thorough approach should be used here 
which explicitly considers the insufficient knowledge of the statistical model of 
the object. In common practice the insufficient piece of knowledge is wilfully 
replaced by a specific model which has the only advantage that its analysis is 
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simple. An analogy comes to mind, of a person looking for a lost item not at 
the spot he lost it but under the lantern. I have tried to settle accounts with 
the indicated difficulties. I have reached partial results but it is difficult for me 
to continue. I will explain to you my results first and I will ask you to help me 
to make a step ahead. 

Let X be the set of observations X= (xl, X2, ... , Xn) which is X= xl X x2 X 

... x Xn, where Xi is the set of values of the feature Xi. Let the set of states 
K consist of two states 1 and 2, i.e., K = {1, 2}. Let PXJk(x) be a conditional 
probability of observation x under the condition of the state k. The functions 
PXik, k E K, are unknown but the marginal probabilities Px,Jk(xi) are known 
and are expressed by the relation 

PX1 Jk(xl) = L: PXJk(x), 
xEX(l,x!) 

PX;Jk(xi) = L: PXJk(x), k = 1,2. (3.12) 
xEX(i,xi) 

PXnlk(xn) = L: PXJk(x), 
xEX(n,xn) 

In the previous formula the notation X(i, Xi) stands for the set xl X x2 X ... X 

Xi-1 X {xi} X xi+l X ••• X Xn, i.e., the set of those sequences X= (xl, X2, ... , Xn) 
in which the i-th position is occupied by the fixed value Xi. 

If it is known that the features under the condition of a fixed state k consti
tute an ensemble of independent random variables, it means, in fact, that also 
the function PXik is known, because 

n 

PXJk(x) = ITPx,Jk(xi), k = 1, 2 (3.13) 
i=l 

holds in this case. 
Let us sincerely admit that such a model is quite simple. If it actually occurs 

then difficult questions can hardly arise. But I am interested in how I should 
create a recognition strategy, when I am not sure that the assumption (3.13) 
about the conditional independence of features is satisfied, and I know only the 
marginal probabilities PX,Jk' i = 1, ... , n, k = 1, 2. In other words, how should 
I recognise the state k, when I only know that the functions PXlkl k = 1, 2, 
satisfy the relations (3.12) with known left sides, and nothing else. 

I am not amazed that the question is difficult for me because many other 
questions seem difficult to me too. On the other hand, I am surprised that 
no one has been attracted by this question so far. As soon as I ask someone 
how I should recognise an object, about which only marginal probabilities Px, lk 
are known, I usually get a witty answer based on the implicit assumption that 
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the features are mutually independent. If I ask why the recognition strategy 
should be oriented just to the case of independent features, I obtain a less 
understandable explanation. This strategy is said to be suitable also for the 
case in which the features are mutually dependent. 

When I pursue the additional explanation, I am told that the entropy of 
observation was the greatest for independent features. It should mean that 
such observations can also appear at the input of the classifier, which would 
not occur, if there existed a dependence between the features. That is why the 
strategy, which is successful with a certain set of observations, cannot be less 
successful with the subset of these observations. 

On the one hand, all these considerations seem to me admissible because 
they are in harmony with the informal behaviour of a human in a statistically 
uncertain situation. I consider as acceptable the behaviour in which a human 
in uncertain conditions makes preparations for the worst situation and behaves 
in such a way that losses might not be too high even in that case. When it 
proves that reality is better than the worst case, it is then even better. On the 
other hand, these considerations are based on implicit assumptions which seem 
self-evident, but in fact need not be always satisfied. 

The main question is if for some set of statistical models (in our case these 
are the models which satisfy the relation (3.12)) there exists the exceptional 
worst model to which the recognition strategy should be tuned. At the same 
time, the strategy tuned to this exceptional model should also suit any other 
model. The recognition results should not be worse for any other model than 
those for the worst one. I know that such an exceptional model need not exist 
in every set. I can illustrate it by the following simple situation. 

Let X be a two-dimensional set (a plane), K = {1, 2}, and PX/l (x) be two
dimensional Gaussian probability distribution with independent components, 
with variance 1 and mathematical expectation tt1 = tt2 = 0. Let Px 12 (x) be 

X /I X' 
1 I 2 

+--!--+ 

unknown, but let it be known that it is 
only one of the two possible distribu
tions: either P'x 12 (x) or p~ 12 (x) which 
differs from p x /l ( x) only in the math- p~ 12 ( x) 
ematical expectation. It is the point 
It~ = 2, IJ~ = 0 in the first case, and 
the point p,~ = 0, p,~ = 4 in the second 
case, see Fig. 3.1. Thus we have the 
set consisting of two statistical mod
els. The first model is determined by 
the pair offunctions (PXJl(x), P'x 12 (x)) 
and the second by the pair (PxJ 1 (x), 
P~/2(x)). 

The first model seems to me to be 
worse at the first glance. However, when 
the strategy tuned to this model will be 
used, i.e., the strategy that decomposes 

X" ----- ---r-----t:. 
I 1 
I 
I 
I 

P X /1 (X m. ·. ~t . . r---1-!
1 
-+Q'-· ..... ...,. __ ·rt·. _P.:.:'x.J.:/2:...(_x-+) > 

\:JJ!) \Zi) X! 

Figure 3.1 Difficulties in seeking for the 
•worst statistical model' when attempting 
to decompose the plane into subsets. 
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the plane X into the subsets Xf and X~ in such a manner as is illustrated in 
Fig. 3.1, it is easy to find out that for this strategy the worst model will no 
longer be the first possibility (Px1 1(x), p~\' 12 (x)), but the second possibility 
(Px[ 1(x), p~~ 12 (x)). It can be seen at the same time that when the plane X is 
decomposed into subsets X~' and X~', i.e., when the strategy is tuned for the 
second model (PXII (x), p~~ 12 (x 12)), the first model (Px[ 1 (x), p~ 12 (x)) becomes 
the worst model. We see that the strategy q*, which should cope simultane
ously with both models, is not equal to any of two strategies that are tuned for 
each model separately. Thus the model, which I want to call the worst, does 
not exist in this group of models. I see that I should define the term 'the worst 
model' more precisely. Then I could ask more specifically if some specific set 
of the models contains the worst model. 

Let m be the statistical model that is determined by the pair of numbers 
PK(k), k = 1, 2, whicl1 are the a priori probabilities of the state k, and the 
ensemble PXIk(x), x E X, k = 1, 2. Thus, m = (PK(k),PXIk(x), k = 1, 2; x E 
X). Let M be the set of models. Let q denote the strategy of the form 
X -+ {1, 2}. Let Q denote the set of all possible strategies. Let R(q, m) denote 
the risk obtained when the strategy q is used for the model m. For certainty, 
let us assume that R(q, m) is the probability of the wrong estimate of the state 
k of the object. I would like to call a model m* E M the worst model in the 
set M, if such a strategy q* exists that: 

1. Any other strategy q E Q satisfies the inequality 

R(q,m*) 2:: R(q*,m*), q E Q. (3.14) 

This means that strategy q* is the Bayesian strategy for the model m *; 

2. When the strategy q* is used with any other model m E M the risk is then 
reached which is not worse than that corresponding to the strategy q* for 
the model m*, i.e., 

R(q*,m*) ~ R(q*,m), mE M. (3.15) 

This means that the model m* is the worst one for the strategy q•. 

Having introduced the concepts I can formulate questions that arise with re
spect to the set of models satisfying the equation (3.12). It concerns the set of 
models of the form m = (PK(1), PK(2), Px1 1(x), Px12(x)), where the function 
PXII satisfies the equation (3.12) fork= 1, and the function Px12 satisfies tl1e 
equation (3.12) for k = 2. 

Question 1: Does a model m* and a strategy q* exist that satisfy conditions 
(3.14) and (3.15)? 

Question 2: Assume a positive answer to Question 1. Does the model m* 
include just those probability distributions Px1 1 (x) and Px12(x) for which 
the equation (3.13) holds? 

I assume that the answer to Question 1 is related to the non-Bayesian statisti
cal decision tasks with non-random interventions (see Subsection 2.2.5) which 
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require that the searched strategy q* satisfies the inequality 

max R(q, m) 2: max R(q*, m) 
mEM mEM 

(3.16) 

for any strategy q. This hypothesis comes from the property that if the pair 
(q*, m*) exists, which satisfies conditions (3.14) and (3.15), then q* is the so
lution of the task (3.16). Indeed, the following equations and inequalities hold 
for the arbitrary strategy q E Q 

max R(q,m) 2: R(q,m*) 2: R(q*,m*) =max R(q*,m) 
mEM mEM 

from which the inequality (3.16) follows. The first deduction step is self-evident. 
The second element of the deduction is the inequality (3.14) and the third one 
is just the inequality (3.15) in a different form. 

I tried to solve the task (3.16) for a group of models of the form (3.12). I have 
found, as it seems to me, that there exists a model in this model group that 
satisfies the relations (3.14) and (3.15). I got to a positive answer to Question 
1 on the basis of the following considerations. 

Let P(1) be the set offunctions Px1 1 which satisfy equation (3.12) fork= 1, 
and let P(2) be a similar set fork = 2. The solution of Linnik task, as I know 
from Lecture 2, is given by two functions a 1 : X -+ ~ and a 2 : X -+ ~ which 
solve this task by means of linear programming. 

mine 

c- L al(x) PXI2(x) 2: 0, Px12 E P(2); 
.rEX 

c- L a2(x) PXIl (x) 2: 0, PXIl E P(1); (3.17) 
.rEX 

al(x) + az(x) = 1, x EX; 

a1 (x) 2: 0, az(x) 2: 0, x E X. 

This task has infinitely many constraints which are just IP(1)1 + IP(2)1 + lXI. I 
got rid of the unpleasant infinities like this: the set P(1) is the set of solutions 
of the system of linear equations (3.12). Having in mind that the solution PXIl 
of the system (3.12) has to satisfy the natural constraint 0 :::; PXIl (x) :::; 1 in 
any point x E X, I come to conclusion that P(1) is a constrained convex set. 
As the solution of the finite system of linear equations is concerned, the set is a 
multi-dimensional polyhedron. A number of polyhedron vertices is quite large, 
but finite. I will denote the vertices by p{, j E J(1), where J(1) is a finite set 
of indices. It is obvious that when the inequality r- LxEX az(x) PXIl (x) 2: 0 
holds for an arbitrary function PXIl from the set P(1) then the same inequality 
holds also for any function Jli, j E J(1), i.e., 

c- I: a2(x) Pi (x) 2: 0, j E J(1), (3.18) 
:rEX 

because every vertex p{, j E J(1), belongs to the set P(1). The opposite 
statement is correct too. This mean that from inequalities (3.18) also the 
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system of inequalities follows 

c- L o:2(x) PXIl (x) ~ 0, Px11 E P(1). (3.19) 
xEX 

It is so because it is possible to express any fun_ction PXil from the set P(1) as 

PXIl = L 'Yi Pi ' 
jEJ(l) 

where "{j, j E J(1), are non-negative coefficients for which LjEJ(l) 'Yi = 1 
holds. Thus, the conditions (3.18) and (3.19) are equivalent. The same is true 
for conditions 

c- L 0:1 (x) Px12(x) ~ 0, Px12 E P(2) , 
xEX 

c-I:o:l(x)J4(x)~O, jEJ(2), 
xEX 

where {J41 j E J(2)} is the set of all vertices of the polyhedron P(2). The 
task (3.17) assumes the form 

mine 

c- I: o:1(x)J4(x) ~ 0, j E J(2); 
xEX1 

Tlj c- L o:2(x)p{(x) ~ 0, j E J(1); (3.20) 
xEX1 

t(x) o:l(x) + o:2 (x) = 1, x EX; 

o:1(x) ~ 0, o:2(x) 2:0, x EX. 

I remember from Lecture 2 that the task is solved by the strategy 

if L Tii p{ (x) > I: T;3 J4(x) } 
jEJ(l) jEJ(2) 

if I: Ti3 p{ (x) < I: T;3 J4(x), 
jEJ(l) jEJ(2) 

o:r(x) = 1, o:2(x) = o, 

or o:r(x) = o, o:2(x) = 1, 
(3.21) 

where Ti3,j E J(1), and T;J,j E J(2), are Lagrange coefficients that solve the 
dual task 

c 

max L t(x), 
xEX 

t(x)- L T2j J4(x) ~ 0, x EX; 
jEJ(2) 

t(x)- I: T1j p{ (x) ~ 0, x EX; 
jEJ(l) 

L Tlj + L T2j = 1 , 
jEJ(l) jEJ(2) 

Tlj ~ 0, j E J(1); 72j ~ 0, j E J(2) . 

(3.22) 
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According to the form of the strategy (3.21), which is denoted by q*, it is 
obvious that the strategy minimises the probability of the wrong decision for 
the statistical model, where the a priori probabilities of the states k = 1, 2 are 

(3.23) 
jEJ(l) jEJ(2) 

and for which the conditional probabilities of observed state x under the con
dition of states k = 1, 2 are 

(3.24) 

p;- 12 (x) = L I: 7;j ~· ~(x), x EX. (3.25) 
jEJ(2) iEJ(2) 2i 

The statistical model (3.23), (3.24), (3.25) will be denoted by m*. It is obvious 
that this model satisfies the condition (3.12) because ~oth functions p;- 11 and 
p;- 2 represent the convex combination of functions p{, j E J(l), and~. j E 
J(h satisfying the condition (3.12). The strategy q* is the solution of Linnik 
task that is formulated as the minimisation of the function maxmE M R( q, m). 
The task is expressed by (3.17). I can write 

mine= max R(q* ,m). 
mEM 

The coefficients T{i, j E J(1), and T2J, j E J(2), are the solution of the dual 
task (3.22) and thus 

max L t(x) = L min ( L T{j p{ (x), L T;j p~(x)) , (3.26) 
xEX xEX jEJ(l) jEJ(2) 

where the expression on the right-hand side of (3.26) denotes the risk R(q*, m*). 
By the first duality Theorem 2.1, I have mine= maxi:xEX t(x), and conse
quently 

R(q*, m*) = max R(q*, m). 
mEM 

(3.27) 

I have proved that the set of models satisfying conditions (3.12) also comprises 
the worst model m*, for which the following holds 

R(q, m*) ~ R(q*, m*) ~ R(q*, m), q E Q, mE M. (3.28) 

The first inequality in the expression (3.28) is correct because q* is the Bayesian 
strategy for the model m*. The second inequality is only the equation (3.27) 
rewritten in a different manner. 

The answer to my Question 1 is therefore positive. Now an additional ques
tion can be formulated correctly, too. This question asks: What is the worst 
model from the ensemble of models that satisfy (3.12)? How must the strategy 
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be chosen for the worst model? What should the recognition look like in a case 
in which only marginal probabilities on the left-hand side of (3.12) are known 
and nothing else? 

I am helpless in an attempt to answer the abovementioned questions. When 
once I became convinced in such a complicated way that the questions were 
correct, I cannot help but get an impression that there are answers to these 
questions. 

We are pleasantly surprised by the enormous work you have done. It seems 
that we should hardly distinguish who teaches whom here. It took a while until 
we found the correct answer to your question. It was worth the effort because 
the answer is entirely unexpected. We were quite pleased by your solution of 
the problems as well as that you have found a virgin field which seems to have 
been investigated in a criss-cross manner. 

The worst model m* the existence of which you proved in such an excellent 
way, cannot be described so transparently. The most interesting issue in your 
question is that the Bayesian strategy q* can be found for the worst model 
m* without the need to find the worst model. It is possible because it can be 
proved that the strategy q* makes the decision about the state k only on the 
basis of a single feature and it must ignore all others. 

It was not easy to prove this property well, and our explanation may not 
have been easily comprehensible for you. So we will discuss first, using simple 
examples, what this property means. Assume you have two features x1 and x2 . 

You are to find out which of these two features lead to smaller probability of 
the wrong decision. You will make decision about the state k only on the basis 
of the better feature and you will not use the value of the other feature. Let us 
have a more detailed look at this situation and let us try to understand why 
we have to deal with it in just this way. 

Say that the feature x1 assumes two values 0, 1 only and its dependence on 
the state k E { 0, 1} is determined by four conditional probabilities: 

p(x1 = 11 k = 1) = 0.75, p(x1 = 0 I k = 1) = 0.25, 

p(x1 = 11 k = 0) = 0.25, p(x1 = 0 I k = 0) = 0.75. 

It is evident that you can create the strategy q*, based on this feature, which 
will estimate the state k with the probability of the wrong decision 0.25. It 
is the strategy which chooses either the state k = 1 when x1 = 1 or the state 
k = 0, when x1 = 0. The probability of the wrong decision does not apparently 
rely on a priori probabilities of states. Be they of any kind, the wrong decision 
probability will be the same, that is 0.25. 

Let us assume that this probability seems to you too large and that is why 
you would like to lower it by using one more feature. Let us assume that 
you have such a feature at your disposal. In our simplified example let it be 
the feature x2 which also assumes two values only. Conditional probabilities 
corresponding to these values under the constraint of the fixed state k are 

p(x2=1lk =1)=0.7, 

p(x2 = 11 k = 0) = 0.3, 

p(x2 = 0 I k = 1) = 0.3, 

p(x2 = 0 I k = 0) = 0.7. 
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~------p-(k-~-=-1~-=-?------~i ~j -------p(_k_k=-~-~-=-?------~ 
X! 0 1 X! 0 1 

p(xiik=1) p(x1 I k = 0) 

X2 p(x21k=1) 0.25 0.75 X2 p(x2l k = 0) 0.75 0.25 

0 0.3 ? ? 0 0.7 ? ? 

1 0.7 ? ? 1 0.3 ? ? 

Table 3.1 The data of the example determining the probability of the wrong decision. The 
values in six table entries denoted by the question mark correspond to the unknown param
eters of the statistical model. 

All data having a relation to our example are given in a comprehensive way 
in Table 3.1. Furthermore the known values presented in the table, a space 
is reserved for unknown data. These are the a priori probabilities p(k = 1) 
and p(k = 0) and joint conditional probabilities p(x1, x2 1 k). There are ques
tion marks in the entries corresponding to unknown values in Table 3.1. The 
question marks can be replaced by arbitrary numbers that must only satisfy 
an obvious condition 

p(k = 1) + p(k = 0) = 1 

and also the condition (3.12) on marginal probabilities. This means that the 
sum of probabilities p(x1 = 1, x2 = 11 k = 1) and p(x1 = 1, x2 = 0 I k = 1) has 
to be 0.75, etc .. The alternative, by which question marks are substituted by 
the numbers in Table 3.1, influences in the general case the probability of the 
wrong decision reached by means of a strategy. It will not be difficult for you 
to become convinced that the formerly introduced strategy q*, which decides 
about the state only considering the feature x1 , secures the probability 0.25 
of the wrong decision for an arbitrary substitution of the question marks by 
actual numbers. 

Let us now have a look at whether the probability of the wrong decision can 
be lowered when both features x 1 and x 2 are used instead of a single feature x 1 . 

It could be natural to use one of the two following strategies for this purpose. 
The first strategy decides for the state k = 1 if and only if x1 = 1 and x2 = 1. 
The second strategy selects k = 0 if and only if x 1 = 0 and x2 = 0. 

Let us analyse the first strategy first. Here the probability of the wrong 
decision, unlike that in the case of the strategy q*, is dependent on which 
numbers substitute the question marks in Table 3.1. The numbers can be such 
that the probability of the wrong decision will be 0.55. Thus it will be worse 
than it would be if only the worse feature x2 was used. In this case it would 
be 0.3. These numbers are displayed in Table 3.2(a) which shows a value only 
for k = 1. It is obvious that with p(k = 0) = 0 there is no longer influence 
whatever the probabilities p(x1, x2l k = 0) are. 

When applying the second strategy, such numbers can substitute the ques
tion marks in Table 3.1 that the probability of the wrong decision will again 
be 0.55. These values are shown in Table 3.2(b). 
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~-----p-(k-:-=-1-:=--1----~1 ~1 ------p-(k_k_==-0-~=--1----~ 
X! 0 1 X! 0 1 

p(x1 I k = 1) p(x1lk=O) 
X2 p(x21k=1) 0.25 0.75 X2 p(x2l k = 0) 0.75 0.25 

0 0.3 0 0.3 0 0.7 0.45 0.25 

1 0.7 0.25 0.45 1 0.3 0.3 0 

(a) (b) 

Table 3.2 The decision with two features. Two most unfavourable cases with the probability 
of the wrong decision 0.55 are depicted which correspond to two different strategies. 

If you liked, you could make sure that even any other strategy will not be 
better than the earlier presented strategy q*. It is the strategy q* which decides 
about the state k wrongly in 25% of cases for an arbitrary substitution of the 
question marks by actual numbers. For any other strategy there exists such a 
substitution of the question marks by numbers for which the probability of the 
wrong decision will be greater than 25%. We do not think that it would be 
difficult for you to try the remaining possibilities. There are only 16 possible 
strategies in our case and 3 of them have been already analysed. In spite of that, 
we think that you will not like trying it because this is only a simple example. 
We would like to study together with you the properties of the strategy found 
in the general case. We mean the case in which marginal probabilities are 
arbitrary, and the number of features and the number of values of each feature 
need not be just two but it can be arbitrary. 

But before we start analyzing your task let us try to get used to a paradoxical 
fact, on which we will now concentrate. The fact is that the usage of a greater 
number offeatures cannot prove better, and it is usually worse compared to the 
use of only one single feature. When we manage to prove it (and we shall do 
so) then we will obtain a quite important constraint for procedures, of how to 
distinguish the object state on the basis of information available from various 
sources. Let us leave these quite serious problems aside in the meanwhile and 
let us deal with a less important but more instructive example, which will lead 
us to a clear idea, how to solve your task formulated by Question 2. 

Imagine that you are a company director or a department head or someone 
else who has to make the decision 'yes' or 'no'. You will establish a board of 
adYisors consisting of ten people for such a case. You will submit the question 
to be decided to the advisors and you will get ten answers x1 , x2 , ••• , x10 'yes' 
or 'no'. After a certain time of your cooperation with the board of advisors, 
you will learn the quality of each expert which will be expressed with the help 
of probabilities Pi(xilk), where k is the correct answer. You are faced with the 
question in the 'yes' or 'no' manner on the basis of ten answers of the advisors 
x1, x2, ... , xw. This question would be easy if you were convinced that the 
experts from your advisory board are mutually independent. But you do know 
that such independence is not possible due to the complicated personal interre
lations among the experts. But you do not know what the dependence is like. 
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The recommendation that follows from the analysis we performed according 
to your wish, says that you have to take into account only an opinion of a single 
expert in this case, namely that one who is the best in your consulting board. 
You can listen to the opinions of all other experts politely but you must ignore 
them or dissolve the advisory board. This recommendation is valid also in the 
case in which among the experts there are such that are not worse than the 
best one. 

These conclusions seem to be too paradoxical. Therefore let us examine 
what consideration these results are owed to. For simplicity let us study the 
first situation in which the number features is 2 and then let us generalise the 
results obtained also for the case of the arbitrary number of features. 

Let x and y be two features that assume values from the finite sets X and 
Y. Let the number of states be 2 that is k is either 1 or 2. The probability 
distribution PXYik(x, y) is not known but the following probability distributions 
are known, 

Px1dx) = LP.n'lk(x,y), xEX, k = 1,2' (3.29) 
yE}' 

PYik(Y) = LPXYik(x,y), y E y' k = 1,2. (3.30) 
xEX 

Let M denote the set of statistical models of the form m = (PK(1), PK(2), 
PXYil. PXl''l2), where PxY 11 and PXYI2 satisfy the conditions (3.29) and (3.30). 
You have already proved that there is such a strategy q*: X x Y -t {1, 2} and 
such a model m * E M for which there holds 

R(q, m*) 2:: R(q*, m*) 2:: R(q*, m) , q E Q, m E M. (3.31) 

Let us analyse the properties of the strategy q* that satisfies (3.31). 
Let us denote as XY*(l) and XY*(2) the sets into which the strategy q* 

divides the set X x Y. Let the symbols XY+(l) and XY+(2) denote two such 
subsets of the sets XY*(l) and XY*(2) that XY+(I) contains just all points 
(x, y) for which there holds 

Xl'+(l) = { (x,y) EX x Y I q*(:r.,y) = 1, P;.yl 1(x,y) > 0} , 

and similarly 

xY+(2) = { (x, y) EX X y I q*(x, y) = 2' P;.YI2(x, y) > 0} 

The subset Z C X x Y will be called a rectangle in the set X x Y, when there 
are subsets X' C X and Y' C Y such that Z = X' x Y'. The smallest rectangle 
containing the subset Z C X x Y will be called a Cartesian hull of the subset 
Z and will be denoted zc. 

The sets XY+(1) and Xl'+(2) are fully determined by the pair (q*, m*). Let 
us prove an important property or-these sets. If (q*, m*) satisfies the condition 
(3.31) then the Cartesian hulls of the set xy+ (1) and xy+ (2) do not intersect. 
This means that 
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(3.32) 

Assume that the equation (3.32) does not hold. Then a point (x*, y*) 
must exist which belongs both to (XY+(1)r and to (XY+(2)( The value 
q*(x*,y*) in that point is either 1 or 2. Let us choose q*(x*,y*) = 1 forcer
tainty. If (x*, y*) E (XY+ (2) r then there are two points (x*, y) and (x, y*) 
for which there holds 

q(x*,y)=2, Pxy 12 (x*,y)>O, q(x,y*)=2, Pxy12 (x,y*)>O. 

We will choose a positive quantity ~ which is not larger than Pxy12 (x*, y) and 
is not larger than Pxy 12 (x,y*). It can be, for instance, the value 

~=min (PxYf2(x*, y), PxYf2(x, y*)) · 

We create a new model m = (Pi<(1), Pi<(2), PxYfl' Pxy 12 ) in which only the 
function PXYI2 changed when compared with the function Pxy 12 in the model 
m*. Furthermore the function PXYI2 differs from the function Pxy 12 only in four 
points (x*, y*), (x, y*), (x*, y) and (x, y) according to the following equations: 

P.H'f2(x, y*) = PxYf2(x, y*)- ~' 

PXYf2(x*' y) = PXYf2(x*' y)- ~' 

PxYfz(x*, y*) = PxYfz(x*, y*) + ~, 
P.n·12(x, y) = P~o·12 (x, y) + ~ · 

(3.33) 

During such a transfer from m • to the model m, the probability of the wrong 
decision when the actual state is 2 increases minimally by ~- Indeed, the 
strategy q* assigns the point (x*, y*) into the first class and the points (x, y*) 
and (x*, y) into the second class. The probability of just the point (x*, y*) in 
the second state increases by ~ and probabilities of both points (x, y*) by ~
Consequently and independently of the assignment of the point (x, y) the total 
probability of the points which actually belong to the second state and are 
assigned by the strategy q* into the second state decreases minimally by ~-

It is also obvious that when the function Pxy12 satisfied the conditions 
(3.29) and (3.30) then also the new function PXYI2 obtained by modifying 
the condition(3.33) satisfies these conditions too. It is proved by this that if 
(3.32) is not satisfied then there is the model m E M for which there holds 
R(q*, m) > R(q*, m*). This contradicts the assumption (3.31). That is why 
(3.32) follows from the assumption (3.31). 

Based on the fact that the rectangles (xY+(1)r and (xY+(2)r do not 
intersect, the following assertion holds. 

Assertion 3.1 One of the following two possibilities holds at least: 

1. Such a decomposition of the set X into two subsets X(1) and X(2) exists 
that 
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(3.34) 

2. Such a decomposition of the set Y into two subsets Y(1) and Y(2) exists 
that 

(3.35) 
A 

The proof of that at least one of the two assertions mentioned is valid is clear 
on the basis of purely geometrical considerations. For two non-intersecting 
rectangles with vertical and horizontal edges lying in a single plane, a vertical 
or horizontal line exists that separates the plane into two parts containing just 
one rectangle each. Let us remark that we are working here with generalised 
rectangles. Nevertheless, the generalisation of the given principle is easy and 
leads to the formulation of the previous assertion. 

Assume for certainty that, for instance, the first part of Assertion 3.1 holds. 
Let us denote by q' the strategy which decomposes the set X x Y into classes 
X(1) x Y and X(2) x Y. We can see that the strategy q' does not depend 
on the feature y. That is why the risk R( q', m) does depend on the model m 
either, i.e., 

R(q',m*)=R(q',m), mEM. (3.36) 

Let us prove now that when the strategy q* for the model m* is a Bayesian 
strategy then also q' is the Bayesian strategy for m*. Let it hold for some 
point ( :1:, y) that q' ( x, y) -::J q* ( x, y). If such a point does not exist then the 
strategies q' and q* are equal, and therefore also the strategy q' is Bayesian. If 
q' ( x, y) -::J q* ( x, y) then there holds 

either q'(x,y)=1, q*(x,y)=2, 

If q'(x, y) = 1 and q*(x,y) = 2 hold then 

or q'(x,y) = 2, q*(x,y) = 1. 

(q'(x,y) = 1) => ((x,y) E X(1) x Y) => ((x,y) ~ xy+(2)r 
=> ((x, y) f/. xY+(2)) => (ixy 12 (x, y) = o). 

It follows from the result of the derivation chain mentioned that the probability 
P;.y 11 (x, y) must equal to zero too. If the converse were true then the strategy 
q*, which assigns (x,y) into the second class, would not be Bayesian. It can 
be proved in a similar way that for all points (x,y), for which q'(x,y) = 2, 
q*(x, y) = 1 hold, it also holds that p;.Yil (x, y) = P;.y 12 (x, y) = 0. The created 
strategy q', which depends on the feature x, differs from the strategy q* only 
on the set whose probability in the model m* is equal to zero. From the fact 
that q* is the Bayesian strategy for m * it therefore follows that q' is also the 
Bayesian strategy form*. In addition to the relation (3.36) obtained earlier we 
derived that for the strategy q' there holds 

R(q,m*) ~ R(q',m*) ~ R(q',m), q E Q, mE M. 

We proved that in the case of two features the strategy sought depends on one of 
them only. We will explore a more general case now when the number of the fea
tures is arbitrary. The previous considerations are also valid for the general case 
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except for the relation (3.32) which states that Cartesian hulls of certain sets 
do not intersect. We have to prove this property for a multi-dimensional case. 

Let xi,x2 , .•• ,Xn ben features that assume values from the sets XI, X2, 
... , Xn. Let X be an ensemble (xi,X2,···,Xn), X= XI X x2 X ... X Xn, 
m* be the statistical model (P'K(1),p'K(2),p:X1l'p:X 12 ), where the function Pxii 
satisfies the system of equations 

PX;II(xi) = L P:XII(x), x; EX;, i = 1, ... ,n 
xEX(i,x;) 

and the function P:X 12 satisfies the system of equations 

PX;I2(x;) = L Px12(x), x; EX;, i = 1, ... , n. 
xEX(i,x;) 

Marginal probabilities are fixed in the left-hand sides of the abovementioned 
systems of equations. Let q*: X -+ {1, 2} be the Bayesian strategy for the 
model m* for which there holds 

R(q*,m*) ~ R(q*,m), mE M. 

We will define the sets x+(l) and x+(2) as 

x+(1) = {X EX I q*(x) = 1' PXII(x 11) > 0} ' 
x+(2) = {X EX I q*(x) = 2, PXI2(xl2) > 0}' 

(3.37) 

and the sets (x+(1)r and (x+(2)r as Cartesian hulls of the sets x+(1) and 
X+(2). We will prove that from inequalities (3.37) there follows 

Assume that the previous expression does not hold, i.e., there is a point x* 
which belongs both to (X"+(1)r and to (X+(2)t Assume for uniqueness that 
q* (x*) = 1. Let the features XI, x2, ... , Xn assume the value 0 at the point x*. 
The point x* is thus an ensemble of n zeros, i.e., (0, 0, 0, ... , 0). If x* belongs to 
( x+ (2) r 1 then such a set s of points XI I x2 I • • • 1 xf 1 t ~ n, exists that for each 
i = 1, 2, ... , n such a point x' exists in the setS that x~ = 0. Furthermore, each 
point x' E S belongs to x+(2), i.e., for each of them q*(x') = 2, Px 12 (x') > 0 
holds. 

We will show that in this case probabilities Px1 2(x) can be decreased in the 
points xi, x2 , ••• , xt and probabilities can be increased in other points, includ
ing the point x*, all that without changing marginal probabilities PX;I 2 (x;). In 
such case only probabilities of the points xi, x 2 , •••••• , xt are decreased, which 
are assigned by the strategy q* to the second class. There is one point at least 
(it is the point x*) which is assigned by the strategy q* to the first class and the 
probability of which increases. As a consequence of a change of probabilities in 
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deliberately selected points, the probability of the wrong decision about the ob
ject in the second state increases. As this contradicts to the requirement (3.37), 
it proves the relation (3.37) too. 

We will prove that the possibility of expected change of probability follows 
from the inequality ( x+ (1) r n ( x+ (2) r f. 0. The proof will be based on two 
assertions. 

Assertion 3.2 If the set S contains two points x1 and x2 only then the model 
m exists for which the inequality R( q*, m *) < R( q*, m) , m E M, holds. A 

Proof. Select some point x'. Its coordinates x;, i = 1, ... , n, are determined 
by the following rule. If x} = 0 then x; = xy. If xy = 0 then x; = x}. In other 
words, the i-th coordinate of the point x' is equal to the non-zero coordinate 
which is either x} or xf. If both these coordinates are equal to zero then the 
i-th coordinate of the point x' is equal to zero too. For the point x' determined 
in this way and for points x1 , x2 and x* it holds: How many times a certain 
value of the i-th coordinate occurs in a pair of points x1 and x2 , exactly that 
many times this value occurs in the pair of points x' and x*. Let us remind 
that all coordinates of the point x* are zeros. 

Example 3.2 Let x1 = (0, 0, 0, 5, 6, 3) and x2 = (5, -2, 0, 0, 0, 0). As was sai,d 
earlier, the point x* = (0, 0, 0, 0, 0, 0). In this case x' = (5, -2, 0, 5, 6, 3). A 

Let D. ==min (Px 12 (x 1 ),px12 (x 2 )). Let the probability distribution Px 12 be 
given by the equations: 

Pxj2(xt) 

Pxjz(xz) 

Pxjz(x*) 

Pxjz(x') 

PxJ2(x) 

Px1z(x 1 )- D.; 

Px1z(x2 )- D.; 

Px 1z(x*) +D.; 

Px 1z(x') +D.; 

Px 12 (x), x ¢ {x\x2 ,x*,x'}. 

(3.38) 

If the probability Pxjz changes to PxJz in this way then the marginal probability 
Px;Jz does not change. The reason is that as many summands in the right-hand 
side of (3.12) increased by D., as many summands decreased by D.. At the same 
time the probability of the wrong decision about the object in the second state 
increases minimally by D.. Indeed, the strategy q* decides like this: q* (x1 ) = 2, 
q*(x2 ) = 2, q*(x*) = 1. If q*(x') = 1 then the probability of the wrong decision 
increases by 2D.. When q*(x') == 2 then the probability of the wrong decision 
increases by D.. • 
Assertion 3.3 Let S = { x1, x2 , ... , x1}, t > 2. In this case either such a model 
m exists for which R( q*, m *) < R( q*, m) holds, or a set of points S' exists the 
number of points of which is smaller than the number of points in the set S, 
and its Cartesian hull contains the point x* too. A 

Proof. We will denote by I the set of indices {1, 2, ... , n }. For each point 
x we will denote by I(x) the subset of thof'P indices which correspond to the 
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zero coordinate in the point x. Therefore I(x*) = UxES I(x) = I. The set S 
apparently contains two points. Let us denote them as x1 and x2 for which 
I(x1 ) f= I(x2 ). Let us create two new points x', x", according to the points x1, 

x2 , so that I(x') = I(x 1 ) U I(x2 ). This means that the i-th coordinate of the 
point x' is equal to zero if this coordinate is zero in one of two points x1 or x 2 

at least. All other coordinates will be determined in such a way that the same 
property holds for the quadruplet of points (x1 , :c2 , x', x") which we mentioned 
in the proof of Assertion 3.2. It is also valid here that the number of times a 
certain value of the i-th coordinate appears in the pair of points x1 and x2 , it 
appears the same number of times in the pair of points x' and x". It is easy to 
show that it is possible to find the pair of points with such properties. 

Example 3.3 
x1 = (0,0,0,0,1,2,3,4,5), 

x 2 = (5,4,0,0,0,0,3,2,1). 

The pair of points x' and x" can have, for example, the form 

x' = (0,0,0,0,0,0,3,4, 1), 

J.: 11 = (5,4,0,0,1,2,3,2,5). 

Let us denote the variable~= min (PxJ2 (x1 ),PxJ2 (x2 )) which is positive be
cause x1 E x+(2) and x2 E x+(2). The new model is determined exactly 
according to the relation (3.38), where x* is replaced by x". Let the strategy 
q* assign one of the points x', x" to the first class at least. The probability 
of the wrong decision about the object in the second state will increase ow
ing to the change of the model and thus the inequality R(q*, m*) < R(q*, m) 
will be satisfied. If q*(x') = q*(x") = 2 then the point x1 will belong to the 
set x+(2) in the new model because its probability is already positive. As 
I(x') = I(x 1) U /(x2 ) holds, the inequality UxEs·I(x) =I holds too for the set 
S' = {x',x3 , ... ,xk} which has one point less than the setS. The setS' is ob
tained so that the points x1 , x2 are excluded from and the point x' is included 
into the set S. • 

And so we have proved in the more general case that the inequality R( q*, m *) ~ 
R(q*, m) does not hold for all models m when the Cartesian hulls of classes 
intersect. It follows from this property that the strategy q*, for which the 
corresponding Cartesian hulls intersect, is not the strategy that we look for. 
But because you have already proved that the strategy sought really exists, 
this can be only a strategy whose Cartesian hulls do not intersect. All other 
considerations are the same as in the case in which the number of the features 
is 2. Therefore we can say that we have viribus unitis managed your task. 

Well, strictly speaking we have not finished yet because it is not quite clear to 
me whicl1 of the considerations mentioned can be generalised easily for the case 
in which the number of states is larger than 2. 

You have certainly noticed that your proof of the existence of the worst model 
can be generalised almost without any change also for the case of an arbitrary 
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number of states. Furthermore, and it is not too difficult to prove it, if m* 
is the worst model and q* is the Bayesian strategy for this worst model then 
the classes, in which the strategy decomposes the set of observations X = 
XI X x2 X ... X Xn, will be rectangles again. It is similar to the case of two 
states. 

But it does not follow from the abovesaid that this Bayesian strategy depends 
only on one feature. In this case the strategy depends on not more than IKI-1 
features, where IKI is the number of states. For example, if the number of 
states is 3 then it is decided, based on one single selected feature, whether it 
is a certain selected class, sa.v tlw class k1 • If not then it is decided, based on 
another feature (and possibly the same one), whether the class is k2 or k3 . We 
will not continue explaining these things to you. Perhaps, not because they 
are not interesting but rather because everyone would prefer to sing some nice 
songs to listening how his songs are sung by somebody else. There are a lot of 
such songs in the investigated area. We like to praise you and thank you for 
discovering this area. 

Please, notice as well that even if it is sometimes difficult to formulate Linnik 
task of evaluating complex hypotheses (see Subsections 2.4.6 and 2.4.7), their 
solutions are surprisingly simple. It may not be by chance. Well, Linniks' 
tasks occur as soon the knowledge about the statistical model of the recognised 
object is uncertain or incomplete. That is why the strategy must not be too 
sensitiw to the statistical model used in pattern recognition. The robustness 
is secun~d just by simple strategies. 

Examine one more task and you will be surely convinced how simple the ex
act solution of the statistical task under the condition of incomplete knowledge 
of the statistical model of the object can be. 

Assume X is a two-dimensional space (a plane), J( = { 1, 2}, and the random 
variable x to be, under the condition that 1.: = 1, a two-dimensional Gaussian 
random variable with statistically independent components with unit variance. 
The conditional mathematical expectation /-ti of the random variable x under 
the condition k = 1 is not known. It is only known that it is one of the vectors 
in the convex closed set !1!1 , as shown in Fig. 3.2. 

Gnder the condition k: = 2, :r is the same random yariable, but with different 
mathematical expectation which is also unknown. It is known only that it is 
one of the vectors from the set 1U2 which is closf~d, convex and does not intersect 
with !111, see Fig. 3.2. 

You may have seen two proposals in literature how to recognise a given x 
under such uncertain conditions. 

1. The nearest neighbom· classifier calculates for each x E X the values 

d1 = min 1·(x, fl) and d2 = min r(x, ft), 
11EAI1 ttEA/2 

where r ( x, 11) is the Eudich~an distance of points x and /1· Then, x is assigned 
into the first or second class. if r/1 S r/2 or d1 > d2 , respectively. 

2. The class'ification acconling to the integml of the probability is based on the 
assumption that JL 1 and JL 2 are random variables with the uniform proba-
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--+--------------XJ 

Figure 3.2 Two convex sets corresponding 
toK={l,2}. 

--4-------------- XI 

Figure 3.3 The decision as a separation of 
a plane by a straight line. 

bility distribution on the sets lvh and M2 • Two quantities are calculated 

where f(x, JL) is the probability density of the Gaussian variable in the point 
x, the mathematical expectation being JL· The state k is then assessed 
according to the ratio si/s2 • 

Your task is to find the strategy which solves Linnik task correctly in the given 
case. 

It is needed to find the pair 

(JL~, JL2) = argrnin r(JLI, JL2) . 
U•I·I•2)EM1 xM2 

The next step is to determine the Bayesian strategy for the model m •, in which 
the probabilities PK(l) and PK(2) are the same, and Px 11 (x) = f(x,JLi) and 
Px 12 (x) = f(x, JL2). This strateKY decomposes the plane X into two classes by 
means of a straight line according to Fig. 3.3. I will denote this strategy as q* 
and the probability of the error, wl1ich the strategy q* assumes on the model 
m*, will be denoted as c*. In view of q* being the Bayesian strategy form*, 
R(q, m*) ;:::: c* holds for any strategy q. Furthermore, it is obvious from Fig. 3.3 
that for any model m = (PK(l),pK(2),f(x,JLJ),f(x,JL'2)), JL1 E M1, JL2 E M2, 
PK(l) + PK(2) = 1, PK(l);:::: 0, PK(2);:::: 0, the inequality R(q*,m) ~ c• holds. 
This means that the model m • is the worst one and the strategy q* is the 
solution of the task. 

The strategy described is much simpler than the strategies usual in the liter
ature, from whicl1 you mentioned only the nearest neighbour classification and 
the classification according to the integral of tl1e probability. In the first pro
posal in which the observation x is assigned to a class according to the smallest 
distance from the exemplar, it is necessary to solve two quadratic programming 
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tasks. It is yet not so difficult in the two-dimensional case but problems can 
occur in a multi-dimensional case. In the second classification proposal accord
ing to the integral of the probability, it is necessary to calculate an integral 
of the Gaussian probability distribution on a polyhedron in recognising each 
observation. I do not know, even in a two-dimensional case, from where to 
begin my calculation. The simplicity of the exact solution of Linnik task is 
really surprising in comparison with tlw two mentioned strategies. 

You must add to your evaluation that the strategy q* which you have found is 
the solution of a well defined task. Having any a priori probabilities of the states 
and any mathematical expectations /.LJ and /.L2 , you can be sure that the prob
ability of the wrong decision will not be greater than f.*. The value f.* serves as 
the guaranteed quality that is independent of the statistical model of the object. 
There is no other strategy about. which the same can be said. It is not possible to 
express any similar assertion about the recognition based on the nearest neigh
bour and on the integral of the probability that would sound as a guarantee. 

We would like to offer you a small implementation exercise that relates to 
the Gaussian random variables. It does not solve any basic question and it 
belongs more or less to mathematical or programming folklore. You will not 
lose anything when you look at such an exercise. 

We have already mentioned in the lecture that in the case of two states and 
in the case that the observation x under the condition of each state is a multi
dimensional Gaussian random variable, in the search for a decision it is needed 
to calculate a value of a certain quadratic function in the observed point x and 
compare the obtained value with a threshold. When there are two features only 
and they are denoted by symbols x, y then the following discriminant function 
has to be calculated 

f(x, y) = ax2 + bxy + cy2 + dx + ey +g. (3.39) 

Eight multiplications and five additions are needed for each observation x, y. 
The computational time can be saved for calculating these values in a recogni
tion process. The function (3.39) can be calculated in advance into a table, say 
for 1000 integer values of x and y. Assume that it is needed in the application 
to make the quickest possible calculation of the table. A program can be writ
ten that requires only two additions for each point (x, y), x = 0, 1, 2, ... , 999, 
y = 0, 1, 2, ... , 999, when tabulating the function (3.39), and even no multipli
cation. Try to find out yourself how to organise such a calculation of values in 
the table. 

I think I have found the procedure based on the deduction 

f(x,y) = ax2 + bxy + cy2 + dx + ey + g, 

f ( x, y) = f ( x - 1, y) + 2ax + by + d + a , 

f(O, y) = f(O, y- 1) + 2cy + c- c. 
(3.40) 

(3.41) 
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The program, which I introduce later, will use tlw constants: A = 2a, 8 = b, 
C = 2c, D = d +a, E = e- c, G = g, about which I assume that they were 
calculated in advance. By (3.40) and (3.41) I obtain tl1e following formula 

f ( x, y) = f ( x - 11 y) + Ax + By + D 1 

f(O,y) = f(O,y -1) + Cy + E I 

f(0 1 0) =G. 

(3.42) 

(3.43) 

(3.44) 

By (3.43) and (3.44), I can write the program in C programming language 
which tabulates the function f for ''alues x = 0, y = 0, 11 ••• 1 999. 

fCur = f[O] [0] = G; DeltaCur = E; 
for (y=1; y < 1000; y++) 

f[O] [y] = fCur += DeltaCur += C; 

When each command L1 is satisfied then the value DeltaCur assumes the value 
Cy +E. The mlue fCur is f(O, 0) before the command L1 is performed for 
the first time and then, when performing the command again and again, it is 
increased by the value DeltaCur = Cy +E. Each new value fCur, which is 
calculated correctly according to formula (3.43), is transferred into f(O, y). 

The following program fragment creates the array Delta(x), x = 11 2, ... , 
999 with values Delta(x) = Ax+ D. Furthermore, the variables f(x 1 y), for 
:1: = 11 2, ... , 999 and for y = 0 are filJPd up. 

fCur = G; DeltaCur = D 
for (x=1; x<1000; x++) 

f[x] [0] = fCur += Delta[x] = DeltaCur +=A; I* L2 *I 
.4fter each command L2 is satisfied, the variable DeltaCur is filled by the value 
Ax+ D. This variable is stored in the element Delta(x) and it is added to the 
variable fCur, whose content is f (x-1, 0) before the command L2 is issued and 
it is stored in the element f (x, 0) after the command is issued which is correct 
with respect to (3.42). 

Finally, let us show the la..'it pmgram section which fills up tl1e rest of the 
array j(:I: 1 y) for variables x = 1, 2 .... 1 999 andy= 11 21 ••• 1 999. 

for (y=1; y < 1000; y++) { 
fcur = f [0] [y]; 
for (x=1; x < 1000; x++) 

f[x] [y] = fcur += Delta[x] += 8; 
} 

The logic of this pmgram is almost tlw same as that in the two previous program 
fragments. The variable Delta (x) is filled up IJy the ~·a.Jue Ax+ By+ D after the 
comw;wd L3 is issued ead1 time and therefore the variable f (x, y) is created 
according to the formula (3.42). 

In the prognun fz'agnwnts mentioned the addition is performed only in com
mands witl1 attacl1Nl comments L1 to L3. It wa..'l 2(ny -1) in the first program, 
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2(nx- 1) in the second program, and 2(n,r- l)(ny- 1) in the third program, 
where nx, and ny are the numbers of values of variables x, and y, respectively. 
The total number of additions is thus 2( n.r ny- 1) which means that the average 
number of additions for every value f(x, y) is less than 2. It is definitely less 
than 8 multiplications and 5 additions that would have to be performed if each 
value of the function f ( x, y) was calculated directly according to formula (3.39). 

Assume for the moment that you have to tabulate a quadratic function that 
depends on three variables x1 , x2, x3 and not just on two variables x, y as in 
the previous case, 

2 2 2 j(x1,x2,x3) =au x 1 + a22 x 2 + a33 x3 

+ a12 X1 Xz + a23 X2 X3 + a13 X1 X3 

+ b1 x1 + bz x2 + b3 :r3 

+c. 

In this case 15 multiplications and 9 additions are needed to calculate the value 
of a given function in one point (x1 , x 2 , x3 ). See how the calculation complexity 
increases for the best tabulation possible in comparison to the two-dimensional 
case. 

It seems incredible, but the tabulation of the function of three variables needs 
again only 2 additions and no multiplication for each entry of the table. This 
property even does not depend on the number of variables being tabulated. 
When I encountered this property I said to myself again that the quadratic 
functions are really wonderful. 

You are right, but do not think that other functions are worse. When you think 
a bit about how you should tabulate a cubic function, you will find out quite 
quickly that 3 additions and no multiplication are again needed to tabulate it. 
Again, this property does not depend on a number of variables. In the general 
case, when tabulating a polynomial function of degree k of an arbitrary large 
number of variables, only k additions and no multiplications are needed for 
each table entry. 

It has been said in the lecture that if all features are binary, then the strat
egy (3.3) is implementable by a hyperplane. I have seen and heard this result 
many times, for example in the book by Duda and Hart {Duda and Hart, 1973}. 
It is a pleasant property, of course, that eases the analysis of these strategies 
and makes it more illustrati,·e. That is why I am surprised why hardlJ· anybody 
has noticed that a similarly pleasant property is valid not only in the case of 
binary features. I will try to make such a generalisation. 

Let k( i) be the number of values of the feature :r;. lVithout loss of generality 
I can assume that the set of values of the feature x; is X;= {0, 1, 2, ... , k(i)-1}. 
I shall express the observation x = ( x1 , J: 2 , ... , X 11 ) as a different observation 
y with binary features in the following way. I will number the elements of 
observations y using two indices i = 1, 2, ... , n and j = 0, 1, 2, ... , k(i) - 1. 
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I shall express the feature YiJ in such a way that YiJ = 1, if tlw feature X; 

assumes its j-th value, and YiJ = 0, if the feature Xi does not assumes its j-th 
T1 l . . . fi . 2::" l Px-1dx;) b 'tt · th r value. 1e c 1scnmmant unctwn ._1 og ' ( ·) can e wn en m e 10rm 

1- PX-12 x, 
~~~ ~k(i)-1 . . h h 0 ffl 0 0 ••• 0' I PXjll(j) d th t t 
L....i= 1 L....j=O Yij a.,1 , w ere t e coe cwnt a.,1 IS og Px;l 2(j), an e s ra egy 
(3.46) obtains the form 

ll k(i)-1 

x1, if L: L: Dij Yij ~ (} , 
i=1 j=O 

(3.45) xE 
11 k(i)-1 

x2, if L: L: Dij Yii < () 0 

i=! j=O 

This result actually asserts that any strategy of the form 

{ 

x1, 

xE 

Xz, 

1l ( ) if ~ IO PX;Il X; > (} 
L.., g Pxlo(x·) - ' i.=l . l- 1 

(3.46) 
if ~ lo Px;~dx;) < () 

L.., g Px 12(x;) ' 
i=l . 1 

can be expressed using the linear discriminant function. But it is not yet 
the generalisation of the result given in the lecture. If all the features xi are 
binary, i.e., if k(i) = 2, then from the relation (3.45) it follows that the strategy 
(3.46) can be implemented by a hyperplane in a 2n-dimensional space. On 
the other hand, the result from the lecture asserts that the strategy (3.46) is 
implementable in this case by means of a linear discriminant function in an 
n-dimensional space. The form of the strategy (3.45) can be improved so that 
the number of binary features will not be 2:::'= 1 k(i) but 2:::'=1 k(i)- n. I shall 
introduce new variables y;J = YiJ - Yio, i = 1, 2, ... , n, j = 1, 2, ... , k(i), and 
the new threshold 8' = () - 2::;'= 1 a.;o. It is obvious that the strategy (3.45) is 
equivalent to the strategy 

n k(i)-1 

if L L Dij Y~j ~ ()' , 
i=1 J=1 

11 k(i)-1 

if L L Dij y;j < ()' 0 

i=1 j=1 

This result generalises the result given in the lecture for the case in which the 
features Xi are not binary. 

Each strategy of the form (3.46) can be expressed using linear discriminant 
functions in (2::;'= 1 k(i) - n)-dimensional space. In the particular case in which 
k(i) = 2 for every i, the dimension of this space is n. 

I am sure that this more general result can simplify the analysis of strategies 
of the form of (3.46) in various theoretical considerations. 

Very good. We look forward to it. 

March 1997 
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3.4 Bibliographical notes 
In this brief lecture we have not introduced new results. A more substantial 
contribution arose here in the new view on the conditional independence of 
features with the help of Jii"i Pecha in the discussion after the lecture. 

Two statistical models. i.e., the conditional independence of features and 
the Gaussian probability distribution are described in greater detail from the 
pattern recognition point of view in [Duda and Hart, 1973; Devijver and Kittler, 
1982; Fukunaga, 1990]. The conditional independence of features was treated 
by Chow [Chow, 1965]. 

We adopted into the lecture from [Duda and Hart, 1973; Fukunaga, 1990] 
the proof concerning the property that for conditionally independent binary 
features the classifier is linear. The generalisation of this property for the case 
of non-binary features with a finite number of values was proposed by Jiff 
Pecha. 

Properties of multi-dimensional Gaussian vectors were carefully analysed 
outside pattern recognition [Anderson, 1958]. 



Lecture 4 

Learning in pattern recognition 

4.1 Myths about learning in pattern recognition 
The development of various areas of sciem:e and technology that substantially 
change human possibilities passes almost all the time through the following 
three stages. 

In the first stage, as in fairy tales, a miraculous instrument is usually sought 
that would allow us to perform what has been impossible until now (for example 
to develop a flying carpet and float in the air). In the second stage, various mod
els are created which imitate dreams in fairy tale stage (i.e., the models were in 
a way already flying) although they are too far from any practical exploitation 
because they are, after alL nothing more than mere toys. Something similar to 
a product (e.g., an airplane) appears only in the third stage and it fulfils the 
practical requirements, a little at the beginning, and more and more later. 

There is not any doubt about tlH' importance of the third stage. However, 
it is plausible to realise quite clearly that the two first stages have their own 
essential place too. Thinking in a fairy tale manner is clearly nothing more than 
an effort to perceive the result demanded. During the creation and examination 
of toys the principles are cleared up that check whether it is possible to realise 
this or that dream. It is checked whether some wishes happen to be unrealistic 
(even if they sound extremely urgent), namely, owing to a discrepancy with 
the laws of nature. In particular, a theoretical substance of a future product 
is r.reated in a model construction stage because quite different problems are 
to be solved in the third stage. A quick and sloppy passing through the first 
two stages of fairy tales and toys can lead to deep, long term, and negative 
consequences. 

Current pattern recognition is an uncanny mixture of fairy tales, toys and 
products. This can be said <~specially and to the highest degree about the part 
of pattern recognition that is called learning. 

In the previous lectures we han~ seen that certain knowledge had been needed 
to construct recognition strategies, i.e., functions q: X -t K. This is a serious 
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obstacle on its own since not every one possesses this knowledge. We will be 
convinced many times in the following lectures that there are, unfortunately, 
far more obstacles of this kind than we would wish. The reaction to such a 
situation usually occurs as a dream about a miraculous tool, e.g., in the 'Lay 
table, lay!' form. ¥/ith its help it would be possible to avoid all the difficulties 
at once. This fairy tale has usually the following wording in pattern recognition: 

'There is a system (a genetic, evolutionary, neural, or exotic in another way) 
which works in the following manner. The system learns first, i.e., the training 
multi-set x1 , x 2 , ... , Xt of observational examples is brought to its input. Simul
taneously, each observation Xi from the training multi-set is accompanied by the 
information k; representing the reaction to the observation which is considered 
correct. When the learning finishes after l steps, the normal exploitation stage 
of the system begins, during which the system reacts through the correct answer 
k to each observation x, and even to one which did not appear in the learning 
stage. Thanks to the information about the correct answer not having been 
provided explicitly, the system is able to solve any pattern recognition task.' 

In such cases it is usually hopeless to try to find an understandable answer to 
the question of how the task is formulated, for which the solution is intended, 
and to learn more specifically how the system works. The expected results 
seem, at least to thE;) authors of the proposals mentioned, to be so wonderful 
and easily accessible that they regret on losing time on trifles like those of 
the unambiguous task formulation and the exact derivation of the particular 
algorithm which should solve the task. The fairy tale is simply so wonderful 
that it is merely spoiled by down to earth questions. 

The more realistic: view of this fairy tale leads to current models of learning 
and their formulations that are going to be brought forward in the following 
section. 

4.2 Three formulations of learning tasks in pattern 
recognition 

We shall denote the conditional probability of observation x under the condition 
of the state kin two ways. The first notation Px IK (xI k) already has been used. 
Here the function PXIK has been considered as a function of two variables x 
and k, i.e., the function of the shape X x [{ --t lR with the domain given 
by the Cartesian product X x [{. The same function of two variables can 
be understood as an ensemble of functions of the form X --t lR of one single 
variable x where each specific function from the ensemble is determined by the 
value of the state k. The func:tion from this ensemble that corresponds to the 
state k E K is denoted by PXlk· The conditional probability of observation x 
under the condition of the state k is thus the value of the function PXlk in the 
point x which will be denoted by PXJk(x). 

When is learning necessary? It is at the time when knowledge about the 
recognised object is insufficient to solve a pattern recognition task without 
learning. Most often the knowledge about the probabilities PXlf>(x I k) is in
suffici~nt, i.e., it is not known exactly enough how the observation x depends 
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on the state k. The lack of knowledge can be expressed in such a way that 
the function PXIK is known to belong to a class P of functions but it is not 
known which specific function from the class P actually describes the object. 
Expressed differently, knowledge can be determined by the ensemble of sets 
P(k), k E K. Each of the sets comprises the actual function PXIk; however, 
which one is not known. The set P or, what is the same, the ensemble of sets 
P(k), k E K, can quite often (roughly speaking almost always) be parame
terised in such a way that the function f(x, a) of two variables x, a is known 
and determines the function f (a) : X --t ffi. of one single variable for each fixed 
value of the parameter a. At present it is not necessary to specify more exactly 
what is meant by the parameter a and to constrain the task prematurely and 
unnecessarily. The parameter a can be a number, vector, graph, etc.. The 
set P(k) is thus {f(a) I a E A}, where A is the set of values of the unknown 
parameter a. Our knowledge about the probabilities PXIK(x I k) which is given 
by the relation PXIK E P means that the value a* of the parameter a is known 
to exist for which PXIk = f(a*). 

Example 4.1 Parametrisation of P(k). Let P be a set consisting of a proba
bility distributions of n-dimensional Gaussian random variables with mutually 
independent components and unit variances. Then the set P(k) in a parame
terised form is the set {f(J.L) I J.L E ffi."} of the functions f(J.L): X --t ffi. of the 
form 

f( )( ) _ rr" _1 (-(Xi- 1-l·i?) J.L x - ~<>= exp . 
i=I v271' 2 

Based on knowledge of the functions PXIk• k E K, defined up to values of the 
unknown parameters a1, a2, ... , an, the function q(x, a1, a2 , ••• , an) can be cre
ated which will be understood as a strategy given up to the values of unknown 
parameters. The function q(x, a1, a2, ... , an) illustrates how the observation x 
would be assessed if the parameters ak, k = 1, 2, ... , n determining the distri
bution PXIk• were known. In other words the parametric set of strategies can 
be created 

into which the strategy sought surely belongs. 
We have already learned from the previous lectures that the statistical tasks 

in pattern recognition can be formulated and solved not only in the case in 
which the statistical model of an object is determined uniquely, but also when 
it is known to belong to a certain set of models. A set of unknown parameters 
can be considered as a non-random intervention which influences a statistical 
model of the object, and the task is formulated as a non-Bayesian statistical 
estimate with non-randomintervention. 

Nevertheless, it can happen that in such an approach the guaranteed level 
of risk will be insufficient. It happens when an a priori known set of models is 
too extensive (as it happened in Example 4.1). Because of that the admissible 
set of strategies is so rich that it cannot be substituted by a single strategy 
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without incurring essential losses. In such situations it is necessary to narrow 
the set of models or the possible strategies set by using additional information. 
This additional piece of information is obtained from the teacher in a process of 
learning. The information has the form of an ensemble T = ( (x1, ki), (x2, k2), 
... , (x1, kt)) in which Xi E X and ki E K. If the processing of the additional 
information mentioned depends on how many times an element (x, k) occurred 
in the ensemble T then the ensemble is treated as a multi-set and it is called 
the training multi-set. If the learning outcome depends only on whether an 
element occurred in the ensemble at least once and does not depend on how 
many times it occurred then the ensemble T is treated as a training set. 

Supervised leaming (i.e., learning with a teacher) must choose a single strat
egy being chosen in one or other convincing way from the set of a priori known 
strategies, namely on the basis of information provided in a learning process. 

The most natural criterion for the strategy choice is, of course, the risk 

L L PxK(x, k)Vll(k,q(x)), (4.1) 
:rEX ~·EK 

which will be obtained in using the strategy the wrong decisions of which are 
quantified by the penalty W. But the criterion cannot be computed because the 
function PxK(x,k) is not known. The lack of knowledge about the function 
PxK(x,k) is substituted to a certain degree by the training set or multi-set. 

Various formulations of the learning task differ in how the most natural 
criterion is replaced by the substitute criteria which can be calculated on the 
basis of information obtained during the learning. Nevertheless, a gap always 
remains between the criterion that should, but cannot, be calculated, and the 
substitute criterion which can be computed. This gap can be based on consci
entiousness (intuition or experience) of the learning algorithm's designer or can 
be estimated in some way. We will first introduce the most famous substitute 
criteria on which the approaches to learning, popular today, are based. Later 
we will introduce the basic concepts of the statistical learning theory, main task 
of which is just the evaluation of how large the gap we spoke of can be. 

4.2.1 Learning according to the maximal likelihood 
Let PX!K(x I k, ak) be a conditional probability of the observation x under the 
condition of the state k which is known up to an unknown value of the parameter 
ak. Let the training multi-set 

be available. The selection is treated similarly as it is common in statistics. 
The most important assumption about the elements of the training multi-set 
T is that they are understood as mutually independent random variables with 
probability distribution 
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In this case the probability of the training multi-set T can be computed for 
each ensemble of unknown parameters a = ( ak, k E K) as 

I 

L(T, a)= II PK(ki) PXIK(Xi I ki, ak;) (4.2) 
i=l 

under the condition that the statistical model of an object is represented by 
the mentioned values. 

In learning according to the maximal likelihood, such values az, k E K, are 
found that maximise the probability (4.2), 

l 

a* = (aZ, k E K) = argmax II PK(k;) PXIK(Xi I ki, ak;). (4.3) 
(ak,kEK) i=l 

Then the ensemble a* of values ( az, k E K) found is treated in the same way a.s 
if the values were real. This means that the ensemble (a A;, k E K) is substituted 
into the general expression q(x, a1 , a2, ... , an) and the recognition is performed 
according to the strategy q(x, ai, a;, ... , a~). 

The expression (4.3) can be expressed in a different but equivalent form 
which will be useful in the coming analysis. Let a(x, k) be a number that 
indicates how many times the pair (x, k) occurred in the training multi-set. 
We can write under the condition of non-zero probabilities PXIK(x I k, ak) 

a* = argmax IT II (PK(k) PXIK(x I k, ak)t(x,k) 
(ak.kEK) xEX kEK 

argma~ L L a(x, k) logpK(k) PXIK(x I k, ak) 
(ak,kEI\.) ~'EK xEX 

argmax L L a(x, k) logpXIK(x I k, ak). 
(ak.kEK) kE/( xEX 

( 4.4) 

The expression (4.4) maximised according to the values (ak, k E K) constitutes 
the sum in which each term of addition depends only on one single element 
of this set. The maximisation task (4.4) decomposes into IKI independent 
maximisation tasks that search for az according to the requirement 

aZ = argmax L a(x, k) logpXIK(x I k, ak) . 
ak xEX 

(4.5) 

The previous Equation (4.5) shows that it is not needed to know a priori 
probabilities PK(k) when determining ak. 

4.2.2 Learning according to a non-random training set 
The strategy obtained for the solution of the learning task according to the 
maximal likelihood (4.3), (4.4), (4.5) depends on the training multi-set T very 
substantially. Learning according to the maximal likelihood demands that the 
training multi-set is composed of mutually independent examples of random 
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pairs with certain statistical properties. The second approach to learning 
(which is common mainly in the recognition of images) does not tune the 
recognition algorithm using random examples because it is not easy to get 
them. Instead, a carefully selected patterns are used for learning which from 
the designer point of view: 

1. represent well the whole set of images which are to be recognised, and 
2. any of the images chosen for learning is good enough, of a satisfying quality, 

not damaged, so the recognition algorithm should evaluate it as a very 
probable representative of its class. 

These considerations, up to now informal and inaccurate, are formalised in 
the following way. Let X(k), k E K, be the ensemble of examples each of 
them consisting of representatives reliably selected by the teacher. The recog
nition algorithm should be tuned using that ensemble of examples in which 
each x E X(k) was regarded as a quite probable representative of k-th class. 
The parameter az which determines the probability distribution PXIK is to be 
chosen in such a way that 

aZ = argmax min PXIK(x I k, ak). 
akEA .rEX(A') 

It is seen from the previous requirement that in such an approach to learning 
the information from the teacher is expressed by means of a training set and 
not a multi-set. The solution of the task no longer depends on how many times 
this or that observation has occurred. It is significant that it has occurred at 
least once. 

Example 4.2 Comparison of two learning methods for multi-dimensional 
Gaussian distributions. If P(k) is n set of functions of the for·m 

Ill ( ( )2) 1 - x·- Ji.:k 
p(xlk, JlA,) =II l'tL. exp ' '· 

i=l y27r 2 

then in the first formulation (learning according to the maximal likelihood) the 
Ji.'k is estimated as the mean value (1/l) E!=l x; of observations of the object 
in the k-th state. If the learning task is solved in its second formulation (based 
on the non-mndom training set) then the Jl'k is estimated as the centre of the 
smallest cir-cle containing all vectors which were selected by the teacher as rather 
good repr·esentatives of objects in the k-th state. • 

4.2.3 Learning by minimisation of empirical risk 
Let W(k, d) be a penalty function and Q = { q(a) I a E A} be a parameterised 
set of strategies expressed as the strategy q(a): X -+ D defined up to values of 
certain parameters a which are unknown. The quality of each strategy q(a) is 
measured by the risk R which is achieved when this strategy is used, 

R(a) = L L PXK(x,k) W(k,q(a)(x)). (4.6) 
A'EK •·EX 
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The risk R(a) should be minimised by an appropriate selection of the value 
a. However, the risk cannot be measured exactly because the statistical model 
PxK(x, k) is not known. Fortunately, based on the training multi-set T 
((x1 , kl), (x2 , k2 ), ... , (xt, kl)) the empirical risk can be defined, 

1 l 

R(a) = l LW(ki,q(a)(xi)), (4.7) 
i=l 

which can be measured and seems to be a close substitute of the actual risk 
(4.6). 

The third approach to learning in pattern recognition tries to create para
metric a set of strategies on the basis of partial knowledge about the statistical 
model of the object. From this parametric set, such a strategy is next cho
sen which secures the minimal empirical risk ( 4. 7) on the submitted training 
multi-set. 

Example 4.3 Learning by minimisation of empirical risk for multi-dimen
sional Gaussian distributions. Let us have a look at what the third approach 
just discussed means in a special case, the same as that in which we have 
recently illustrated the dissimilarity between the learning according to the max
imal likelihood and the learning according to the non-random training set, see 
Example 4.2. 

If the number of states and number of decisions is equal to two and the 
observation is a multi-dimensional Gaussian random variable with mutually 
independent components and unit variance then the set of strategies contains 
strategies separating classes by the hyperplane. The third approach to learning 
aims at finding the hyperplane which secures the minimal value of the empirical 
risk (or the minimal number of errors in the particular case) on the training 
multi-set. & 

A variety of approaches to learning in pattern recognition (and we have not 
mentioned all of them, by far) does not at all mean that we would prefer 
one approach to the other. We think that it will be cleared up in the future 
that each approach will have its advantages with respect to certain additional 
requirements, whose importance has not yet been fully comprehended. Such 
a clarification has not yet appeared which in exaggeration means that not 
everything needed and possible has been dug out from the fairy tale and toys
creating stage. Nevertheless, it already is possible to state, though based on an 
imperfectly theoretically analysed model, that some fairy tales have undergone 
substantial modifications. The most important observation is that learning has 
already and surely lost the meaning of a magic wand for idle people which 
would allow one to avoid laborious and careful work during the construction 
of a recognition algorithm. Such an idea, hoping that the algorithm would be 
found in the learning process on its own, has disappeared too. 

We see that there is a difference between recognition itself and recognition 
with learning. The recognition itself is used for a single recognition task, 
whereas the recognition with learning is used for an unambiguously defined 
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class of tasks. The learning is nothing else than the recognition of what task 
has to be solved and, subsequently, the choice of the right algorithm for this 
task. To be able to make such a choice a designer of a learning algorithm 
has himself to solve all the tasks that can occur. In other words, he has to 
find a general solution for the whole class of the tasks and present this general 
solution as the set of parametric strategies. When this is done this general 
solution is then to be incorporated into the body of the learning algorithm. 
Such a deformed fairy tale about pattern recognition with learning has totally 
lost its gracefulness and charm, no doubt, but it has gained a prosaic solidity 
and reliability because it has stopped being a miracle. 

4.3 Basic concepts and questions of the statistical theory 
of learning 

In spite of all the varieties of approaches to learning in pattern recognition (and 
we have not introduced all of them, by far), there exists a group of questions 
which arises in the framework of any known approaches. The formulation of 
questions and, mainly, the effort to give a comprehensible answer to them 
constitutes the contents of statistical learning theory in pattern recognition. 
These questions will be described informally first and then in the form of explicit 
statements. 

4.3.1 Informal description of learning in pattern recognition 
Basic problems related to learning have been analysed in the familiar works of 
Chervonenkis and Vapnik. We will introduce the main results of these studies. 
Before doing so we will show in an informal example what these problems are. 

Imagine someone, whom we will call a customer, coming to someone else, 
whom we will call a producer. The customer has ordered a pattern recognition 
algorithm from the producer. After, perhaps, a long dialogue the customer 
and the producer are convinced that they have come to an agreement on what 
the recognition task is about. The customer has submitted as an appendix 
to the agreement the experimental material that consists of the set of images 
x1, x2, ... , Xt and the corresponding sequence k1, k2 , ••• , kt of answers (states) 
which the algorithm ordered should give for the images provided. It is agreed 
that the algorithm will be checked principally by this experimental material. 
Assume that the experimental material is fairly extensive, say l = 10000. The 
outcome that the producer should deliver to the customer is the recognition 
strategy. 

The customer in this respect does not care at all how the strategy has been 
found, and, in addition to that, if something called learning has been used 
in creating the algorithm. The customer is only interested in the quality of 
the created strategy. Assume, to ensure uniqueness, that the quality is given 
by the probability of a wrong decision. Because this probability cannot be 
measured directly, the customer and the producer have agreed that the num
ber of errors which the strategy makes on the experimental material will be 
used as a substitute for the quality. Both sides agreed at the same time that 
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such a substitution can be justified (pay attention, the error follows!) by the 
law of large numbers which, roughly speaking, claims that in a large number 
of experiments the relative frequency of an even differs only a little from its 
probability. 

The question to which the answer is sought is far more complicated in reality 
to be smoothed away by a mere, and not quite well thought out reference to 
the law of large numbers. Let us express more exactly what this complexity 
pivots on. 

Let Q be a set of strategies and q a strategy from this set, i.e., q E Q. 
Let the ensemble T be a training multi-set (x1, k1), (!:z, kz), ... , (xt, kt) and T* 
be the set of all possible training multi-sets. Let R(T, q) denote the relative 
frequency of wrong decisions that the strategy q makes on the multi-set T. 
Let us denote by R(q) the probability of the wrong decision that is achieved 
when the strategy q is used. And, finally, let us denote by V: T* -+ Q the 
learning algorithm, i.e., the algorithm which for eac_!l selected multi-set T E T* 
determines the strategy V(T) E Q. The number R(T, V(T)) thus represents 
the quality achieved on the training multi-set T using the strategy which was 
created based on the same multi-set T. By the law of large numbers it is 
possible to state, in a slightly vulgarised manner for the time being, that for 
any strategy q the random number R(T, q) converges to the probability R(q) 
provided the length of the multi-set approaches infinity. The length of the 
training multi-set is understood as the number of its elements. This not very 
exact, but basically correct, statement does not say anything about the relation 
between two random numbers; the first of them is the number R(T, V(T)) and 
the second is the number R (F (T)). 

If we assumed, with reference to the law of large numbers, that these two 
numbers coincide for the large lengths of the multi-sets T then it testifies that 
the concept of the 'law of large numbers' is used as a mere magic formula 
without clear understanding of what it relates to. The law does not say anything 
about the relation between the two numbers mentioned. 

In reality the convergence of the random numbers R(T, V (T)) and R (V (T)) 
to the same limits is not secured. In some cases this pair of random numbers 
converges to the same limits and in other cases the numbers R ( T, V (T)) and 
R(V(T)) remain different whatever the length of the training multi-set Tis. 
We will show the example of the second mentioned situation. 

Example 4.4 The estimate of the risk and the actual risk can also differ 
for infinitely long training multi-sets T. Let the set X of observation be a 

one-dimensional continuum, for example, an interval of real numbers. Let two 

functions Px 11 (x) and p x1 2 (x) define two probability distributions of the random 
variable x on the set X under the condition that the object is in the first or in 

the second state. Let it be known that densities Px1dx) and Px12 (x) are not 
infinitely large in any point x which means that the probability of each value 
x, as well as of any finite number of values, is equal to zero. Let V (T) be the 
following strategy: it is analysed for each x E X if the value x occurs in the 
training multi-set T. If it does, i. c., if some x; is equal to x then the decision 
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ki is given for observation x. If the observation x does not occur in the training 
multi-set T then k = 1 is decided. 

Two assertions are valid for this learning algorithm V. The probability of 
the wrong decision R(V (T)) is an a priori probability of the second state PK (2) 
because the strategy V(T) assigns practically all observations into the first class 
independently on the training multi-set T. Indeed, the probability that the ran
dom x appears in the finite multi-set T is equal to zero. This means that the 
probability of the answer k = 2 for r.andom observation is equal to zero too. 

On the other hand, the~number R(T, V(T)) is equal, of course, to zero with 
the probability 1. Indeed, R (T, V (T)) = 0 for an arbitrary multi-set T, in which 
any element (x, k) does not occur more than once and the total probability of 
all other multi-sets is equal to 0. 

Consequently we have two random variables. The first is PK(2) with the 
probability 1 and the second is equal to zero with probability one. This fact holds 
for an arbitrary length of the training set T. There [pre it cannot happen for 
any lengths of the multi-set T that random variables R(T, V(T)) and R(V(T)) 
approach each other. It does not contradict the law of large numbers since it 
does not have anything in common with it. A 

The learning algorithm presented is apparently a deception because it is based 
on remembering the whole training multi-set and the following correct recog
nition only of those observations that occurred in the training multi-set. The 
deception was made possible because of the assumption that the value of em
pirical risk R(T, V(T)) can serve as a decent approximation of the actual risk 
R (V (T)). The notion of the learning algorithm should be narrowed in such a 
way that not all algorithms of the form V: T* --+ Q could have a right to exist. 
Not only deceptions such as the one mentioned should be excluded but also all 
less obvious incorrectness in which it is manifested that the empirical risk has 
nothing in common with the actual risk. 

The set of learning algorithms which remain after this exclusion is not en
tirely homogeneous and can be separated into groups of better and worse al
gorithms. Let us illustrate again the sense of such a classification of learning 
algorithms on our informal example. 

Let us assume that after the imaginary contact between the customer and the 
producer (as introduced at the beginning of Subsection 4.3.1) the customer has 
made the following correct conclusion. He has noticed that he can be cheated 
by the producer and he cannot escape from this situation even with the help 
of increasing the amount of experimental material. None, even any arbitrarily 
large number, of the test images can guarantee that, in the practical phase of the 
recognition algorithm application, the same recognition quality will be secured 
as was found on the test images. The customer notices that these troubles have 
two reasons. First, the failure is made possible because the producer knows 
the experimental material in advance and has enough possibilities to adapt to 
any experimental data. Second, the customer has noticed that he must not 
rely on the law of large numbers without clear understanding of what the law 
concerns. So far he has understood the law in the not very accurate formulation 



4.3 Basic concepts and questions of the statistical theory of learning 111 

that a variability of a large number of independent (or conditionally dependent) 
random variables is compensated for so much that its sum is relatively constant 
(for instance with respect to the mean value). The customer substituted an 
insufficient accuracy of this formulation by the following examples. 

Example 4.5 Law of large numbers and the pressure of gas. The pressure of 
gas on the surface of a container is almost constant even though each molecule 
hits the surface at random instants. • 

Example 4.6 Law of large numbers and chemical reactions. The progress of 
chemical reactions can be predicted with the help of differential equations even 
if it concerns the resultant of random behaviour of single molecules. There is a 
large number of participating molecules and their mutual dependence is small. • 

Now he concludes that he should know more exactly what the law concerns. 
The original formulation of the law of large numbers was made by Bernoulli. 
Let q be the a priori chosen strategy. One of several possible, and for our 
explanation suitable, expressions of the law of large numbers is 

(4.8) 

where l is the length of the training multi-set v1(q) is a relative frequency 
of errors which the strategy q makes on the training multi-set of length l, 
p(q) is the probability of the wrong decision achieved when the strategy q is 
used, P{} is the probability of the event that is expressed within the brackets. 
Equation (4.8) illustrates that the experiment about indirect measurement of 
the actual quality p(q) of the strategy q is characterised by means of three 
parameters. The first parameter is the length l of the experiment. The second 
parameter gives the accuracy c of the strategy with help of which the probability 
of error of the strategy p(q) is appreciated by the sentence 'the probability p(q) 
is not larger than Vt(q) + c and it is not smaller than Vt(q)- c' or, as is usually 
expressed in the handbooks of practitioners: 

p(q) = llt(q) ±c. (4.9) 

And finally, the third parameter is the reliability "' of the assertion ( 4.9) which 
stresses that the assertion (4.9) can be erroneous. Thus the reliability is the 
probability of the event that ( 4.9) is an erroneous statement, in other words, 
that the wrong strategy will pass the test (called also false positive). The law 
of large numbers (4.8) claims that these three parameters of experiments con
tradict each other. Consequently in a short experiment such an estimate of 
the probability p(q) cannot be achieved that is exact and reliable at the same 
time. The law (4.8) shows at the same time that no pair of three parameters 
mentioned is in contradiction. For instance, for an arbitrarily short length l 
of the experiment the arbitrarily small probability "' > 0 can be achieved that 
expresses the reliability of the assertion (4.9). However, this can occur only for 
a rather large value c that expresses the precision of p(q) estimate in Equa
tion ( 4.9). What is important for us is that the experiment's length can be 
planned so that arbitrarily small precision E > 0 and arbitrary reliability "' > 0 
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can be achieved. Actually, the length l of the experiment can be quite large, 
that is, 

-ln 7J 
l?.~· (4.10) 

Example 4. 7 Accuracy, reliability, and length of the experiment shown on 
specific numbers. Having in mind the previous relation {4.10}, the customer 
can determine more exactly, at least for himself, what result of an experiment 
will be considered positive. The customer realises that any experiment has the 
restricted accuracy c given by the highest admissible probability of the wrong 
decision and the reliability 71· In his particular case he chooses c = 2% and 
77 = 0.1% and formulates the rule according to which he accepts or rejects the 
proposed strategy q. If the strategy q recognises about 9000 observations without 
error, then he accepts it and deduces that the probability of the wrong decision 
for the accepted strategy does not exceed 2%. Such a rule can be justified on the 
basis of the correctly understood law of large numbers. He substitutes c = 2% 
and TJ = 0.1% into the inequality (4.10} and writes 

l > -ln 0.001 = -( -6.9077) = 8635 . 
- 2 (0.02) 2 0.0008 

The customer equipped with this knowledge enters a shop selling programs for 
pattern recognition and chooses a program which does not make any single 
mistake on the testing multi-set prepared in advance. He is convinced that he 
already has what he needs this time. Indeed, the purchased program has been 
created not considering the experimental material. That is why he concludes, 
that the possibility of a direct swindle has been excluded. The customer makes 
a mistake here again. 

Despite all illusory cogency, the rules used do not protect the customer from 
choosing a wrong pattern recognition strategy, because it is not taken into 
account from how extensive a set the strategy is chosen. The extent of this set 
has a substantial significance. Indeed, the customer makes a wrong choice if one 
single strategy out of the bad ones passes the test. Imagine the counterexample 
in which a choice is made from the set of wrong examples only, even in the case 
of an extremely strict test being used. The probability that some of the wrong 
strategies will pass the test can actually be quite large if the set of examined 
strategies is quite extensive. 

The customer, having acquired this important but not very pleasant expe
rience, comes to the conclusion that it is not enough for reliable choice of the 
strategy that the length of the experimental material satisfies the condition 

P { I v, ( q) - p( q) I > c} < 77 , 

which is too weak. Instead, it has to fulfil the condition 

P {sup jv,(q)- p(q)l > e} < 7J, 
qEQ 

(4.11) 
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which is: (a) much more strict compared to the condition (4.11); (b) it requires 
that the probability that a single wrong algorithm from the set Q passes the 
test is low; and (c) this condition depends significantly on the cardinality of the 
set of recognition algorithms Q, from which the choice is made. Our illusory 
customer starts understanding the merit of the questions that the statistical 
theory of learning (to be explained in the next subsection) tries to answer. 

4.3.2 Foundations of the statistical learning theory 
according to Chervonenkis and Vapnik 

Let Q be the set of strategies of the form q: X-+ K, PXK: X x K-+ JR. be a 
statistical model of the recognised object that is not known. The probability of 
the wrong decision p(q) corresponding to the strategy q is given by the formula 

p(q) = L L PxK(x, k) W(k, q(x)) , 
xEX kEK 

in which it for the penalty W 

{ 1 if k 'I k* , 
W(k,k*) = o: if k = k*, (4.12) 

holds and the symbol k* denotes an estimate of the actual state k using the 
strategy q. 

Let Vt ( q) be a random variable represented by the frequency of a wrong 
decision which the strategy q assumes on the random training multi-set 
T= ((x1,kl), (x2,k2), ... , (xt,kt)) oflength l, 

It is known by the law of large numbers that the relation between the value 
p(q) and the random variable Vt(q) can be expressed by the following inequality 
for an arbitrary c > 0 

(4.13) 

The strategies can be divided into correct and wrong ones. The strategy q is 
considered correct if p(q) :5 p* and wrong if p(q) > p*. It is not possible to 
decide immediately about the correctness of a strategy. However, on the basis 
of the relation (4.13), the following test can be performed. If v1(q) ::::; p* - c 
then the strategy has passed the test (it is likely to be correct); otherwise it 
has not passed the test (it is likely to be wrong). It is possible to calculate 
the reliability of the test, which means the probability of the event that the 
wrong strategy passes the test. By (4.13) this probability is not larger than 
exp (-2c2 l). 

In the case in which learning is used for finding this strategy, not only a 
single strategy q but a set Q of strategies are put through the test. A strategy 
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q* E Q is chosen in this or that manner and it is checked whether the variable 
v1(q*) is greater or less than p*- c. The strategy found is definitely accepted 
or rejected. The test described can fail if there is one wrong strategy at least 
in the set Q which passes the test. The probability of this situation is small if 
the probability 

P { 3q E Q (lvt(q)- p(q)l >c)} 
is small, or equivalently, if the probability 

is small. 

P {max lvt(q)- p(q)j > c} 
qEQ 

(4.14) 

The reliability of the whole learning process is influenced by the probability 
(4.14), not by the probability (4.13). The probabilities (4.13) and (4.14) are 
substantially different. The main property of the probability ( 4.13) is that it 
can assume an arbitrary small value for the arbitrary c > 0 when the proper 
length lis chosen. Owing to this property the relation ( 4.13) is one of the basic 
formulce of classical mathematical statistics. 

A similar property is not guaranteed for the probability (4.14). The prob
ability (4.14) can no always be arbitrarily decreased by increasing the length 
l. In other words, the probability (4.13) converges always to zero for l -t oo, 
whereas the probability (4.14) may or may not converge to zero for l -t oo in 
dependence on the set of strategies Q. This fact expresses the central issue of 
learning in pattern recognition, which cannot be solved by mere reference to 
the law of large numbers. 

Let us show the most important properties of the probability (4.14). We will 
start from the simplest case in which the set Q consists of a finite number N 
of strategies. In this case 

p { ~EaJ lv,(q)- p(q)l > c} ~ L p { lv,(q)- p(q)l > c} 
qEQ 

~ N exp( -2c2l). (4.15) 

We will show how this simply derived relation can be interpreted in learning 
within pattern recognition. 

1. Q is a set which consists of N strategies in the form X -t K; 
2. Tis a random multi-set (xl,kl),(x2,k2), ••• ,(x1,kt) of the length l with 

the probability n~=l PxK(Xi, ki); PxK(X, k) is a joint probability of the 
observation x E X and the state k E K; 

3. We will determine two subsets of strategies for two certain numbers p* and c. 
The strategy belongs to the set of wrong strategies if p( q) > p*. The strategy 
belongs to the subset of strategies that passed the test if v1(q) < p*- c. 

4. An arbitrary strategy that passed the test is selected from the set Q. 
5. It follows from the relation (4.15) that the probability ofthe wrong strategy 

selection is not larger than N exp( -2c2l). 
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A generality of the interpretation given above is important. Its validity depends 
neither on the set Q nor on the statistical model Px K and not on the learning 
algorithm either. 

This fact was expressed by Chervonenkis and Vapnik in the following, though 
not very thoroughly formulated, theorem which is presented here in nearly 
original wording. 

Theorem 4.1 Chervonenkis and Vapnik. The estimate of the training multi
set length. If from the set consisting of N strategies a strategy is chosen that 
has the smallest relative frequency v of errors on the training multi-set of length 
l, then with a probability 1 - TJ it can be stated that applying this strategy the 
probability of the wrong decision will be smaller than v + c provided that 

InN -lnry 
l = 2r:;2 ( 4.16) 

• 
This theorem correctly expresses the most substantial property of learning: the 
broader the class of strategies is, i.e., the less the specific pattern recognition 
task was investigated in advance, the longer the learning must last to become 
reliable enough (which is always needed). 

From a practical point of view, Equation (4.16) defines the demands for the 
length of learning too roughly, that is with a too big reserve. For instance, 
when the set Q is infinite, and as a matter of fact only such cases occur in 
practice, then the recommendation ( 4.16) does not yield anything because it 
requires endlessly long learning. This contradicts our intuition and, as we will 
see later, the intuition is correct. This means that the relation (4.16) can be 
substantially improved. The length of learning will not depend on such a rough 
characteristic of the set Q as the number of its elements is, but on other more 
gentle properties of this set. These properties are the entropy, the growth 
function, and the capacity of the class. Let us introduce definitions of these 
concepts. 

Let Q be a set of strategies and x1 , x2 , .•. , x1 be a sequence of observations. 
Two strategies ql E Q and q2 E Q are called equivalent with respect to the 
sequence x1,x2, ... ,xm, if for any i the equality q1(xi) = q2(xi) holds. Thus 
each sequence of observations induces the equivalence relation on the set Q. 
Let denote number of equivalence classes corresponding to this relation by 
~(Q,xJ,Xz, ... ,xf). In other words, the ~(Q,x 1 ,x2 , .•. ,xt) corresponds to 
the number of different decompositions of the sequence x1 , x 2 , . •• , x1 by means 
of strategies from the set Q. 

Example 4.8 Decomposition of real numbers through a threshold. Let 
X1, x2, . .. , Xt be real number·s and q be a strategy of the following form: each 
strategy is characterised by the threshold value (} and maps an observation x 
into the first class if x < (}, and into the second class if x 2: (}. It is obvious 
that the number ~( Q, x1, x2, . .. , xt) is greater by one than the number of dif
ferent numbers in the sequence x 1 , x2 , ... , x1. Well, ~( Q, x 1 , x2 , ... , xt) = l + 1 
happens almost always. A 
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Because the sequence of observation is random then the number ~(Q, x1, 
x2 , ••• , x1) is also random. The mathematical expectation of the logarithm 
of this number can be defined 

l 

L ··· L L ··· L ITPxK(Xi,ki)log~(Q,xl,x2,···,xl). {4.17) 
ZlEX :z:,EX klEK k,EK i=l 

We will denote it H1(Q) and call it the entropy of the set of strategies Q on 
the sequences of the length l. 

Our main goal is to show how large the length of learning l should be in 
order to obtain a fairly accurate and reliable result of learning. This means 
that 

P {max lvt(q)- p(q)l > c} 
qEQ 

should be fairly small for a quite small c. Before doing so we must exclude from 
consideration all situations in which this probability does not converge to zero 
at all. In this case learning does not make any sense because the frequency of 
errors on the learning sequence does not have anything in common with the 
probability of error for a learning sequence of arbitrarily large length. The 
complete description of all such hopeless situations is given by the following 
theorem. 

Theorem 4.2 Chervonenkis and Vapnik. The necessary and sufficient con
dition of a uniform convergence of empirical risk convergence to the real 
risk. The probability 

P {max !vt(q)- p(q)! > c} 
qEQ 

(4.18) 

converges to zero for l --+ oo and for any € > 0, if and only if the relative 
entropy Ht(Q)/l converges to zero for l--+ oo. A 

Proof. The proof on the Theorem 4.2 is rather complicated and long [Vapnik 
and Chervonenkis, 1974]. • 

Theorem 4.2 provides an exhaustive answer to that difficult question. Of course, 
this theorem, like any exact and general statement, can be used only with 
difficulties in particular cases. The theorem says that the difficult question 
about the convergence of the probability 

P {max lvt(q)- p(q)l > c} 
qEQ 

to zero is equivalent to the convergence of the relative entropy H1(Q)/l to zero. 
This second issue is not easy either. It suffices to look at the formula (4.17) 
and realise at the same time that the function PxK(x, k) is not known either. 
That is why the two following steps are so important and lead to rougher but 
more constructive conditions. 
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The first step is based on the term of the growth function. Let 6.1 ( Q, x1, 
x2, ... , x1) be the number of possible decompositions of the sequence x1, x2, 
... , x1 by strategies of the set Q. Let us introduce the number m1 ( Q) by 

mt(Q) = max D.t(Q,xl,Xz, ... ,xt). 
:z:l, ... ,X[ 

The sequence of numbers mt(Q), l = 1, 2, ... , :::o, is called the growth func
tion. The number logmt(Q) is tied up with the entropy Ht(Q) by the simple 
expression logmt(Q) ~ Ht(Q). Thus if 

1. logmt(Q) - 0 (4.19) lm l - , 1-+oo 

then limt-+oo Ht(Q) = 0 and the expression (4.19) can be used as a sufficient 
condition (but :wt a necessary one) to assure convergence of the probability 
(4.18) to zero. Equation (4.19) can be checked in an easier manner because the 
probability distribution PxK(x, k) need not be known in order to calculate the 
growth function. With the help of the growth function it is possible not only 
to prove the convergence of the probability (4.18) to zero but also to find the 
upper bound of the empirical risk deviation from the actual risk. 

Theorem 4.3 On the upper bound of the empirical risk deviation from the 
actual risk. 

(4.2~ 

It can be seen that Equation ( 4.20) assessing the reliability of learning is similar 
to Equation (4.15) that holds for the case of the finite set Q. The growth 
function plays in Equation ( 4.20) the same role as does the number of strategies 
in Equation ( 4.15). This means that the growth function can be considered the 
measure of the complexity of the set Q which is analogous to the number of 
strategies for the case of the finite sets Q. Certainly, if the growth function 
can be calculated for the finite set Q then exactly the growth function should 
be used, and not the mere number N of strategies in the set Q. The growth 
function describes the structure of the set of strategies more expressively and 
more precisely than the simple number of strategies in that set because it 
considers the diversity of strategies. A mere number of strategies simply ignores 
this diversity. 

The second step towards the simplified assessment of learning reliability is 
based on the concept of the capacity of the set of strategies. The concept of 
the capacity of the set of strategies, informally speaking, is the smallest possible 
number of observations which cannot be classified in an arbitrary way by the 
strategies from the appropriate set. The name VC dimension it is also used 
in the literature for the capacity of the set of strategies according to the first 
letters of the surnames of the original authors. We use the name introduced by 
Chervonenkis and Vapnik in their original publications. 

First, let us have a look at how the capacity of the set of strategies is defined 
in simple examples. The exact definition for the general case will be introduced 
later. 
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Example 4.9 Capacity of the set of strategies for classification of real num
bers according to the threshold. Let X be the set of real numbers and Q 
be the set of strategies of the abovementioned form for classification into two 
classes only: any strategy is characterised by the threshold (} and assigns the 
number x E X to the first class if x < (}, and to the second class if x ~ (}. 
For any x E X there is such a strategy q' in the set Q which assigns the ob
servation x to the first class, and another strategy q" which assigns x to the 
second class. Let x1 and x2 be two different points on the coordinate axis X. 
For these two points either x 1 < x2 or x2 < x1 holds. Let us choose x1 < x2 
to assure certainty. This pair of points cannot already be classified arbitrarily 
into two classes by means of strategies from the set Q. Indeed, there is no 
strategy in the set Q that assigns x2 into the first class and x1 into the second 
class because x2 > x1 . Thus the given set Q of strategies is such that there 
is a point on the straight line X that can be classified in an arbitrary man
ner using different strategies from the given set. But for any pair of points 
such classification of these points exists, which can be made with no strategy 
from the given set. In this case the capacity of the set of strategies Q is equal 
to two. .& 

Example 4.10 Capacity of the richer set of strategies. Let us extend the set 
Q and illustrate how the capacity of the set of strategies is defined in this richer 
case. Let Q be the set of strategies each of which being determined by the pair 
of numbers a, 0. The observation x is assigned in the first class if ax < (}, and 
in the second class if ax ~ (}. Let x1 , x2 be two distinct points on the straight 
line X such that X1 =f. x2. There are 22 possible decompositions of this pair of 
points in two classes and each of them can be implemented with some strategy 
from the set Q. Let us analyse any triplet of distinct points x1 , x2, x3 and let 
us assume that x1 < x 2 < X3. There are 23 decompositions of this triplet in 
two classes but not all of them are implementable by means of the strategies 
from the set Q. No strategy from Q can assign x1 and x3 in the first class and 
the x2 into the second class. The given set Q is such that some pair of points 
x1, Xz can be decomposed in an arbitrary way in two classes and then no triplet 
of points can be already decomposed in an arbitrary manner into two classes. 
Such a set of strategies has the capacity 3. .& 

Having presented two simple particular cases, we can proceed to the general def
inition of the capacity of the set Q of strategies q: X -+ { 1, 2}. Let x1 , x2 , ... , x1 

be the sequence of observations, Ct: {1, 2, ... , l}-+ {1, 2} be the decomposition 
(classification) of this sequence into two classes, Ct be the set of all possible 
decompositions in the form{1, 2, ... , l} -+ {1, 2} which is a set consisting of 2' 
decompositions. 

The number r defines the capacity of the set Q of strategies of the form 
q : X -+ {1, 2} iff 

1. There exists a sequence x1, x2, ... , Xr-l of the length r- 1 such that for any 
classification Cr-1 E c;_1 a strategy q E Q exists such that q(x;) = Cr_ 1 (i), 
i = 1, 2, ... , r- 1; 



4.3 Basic concepts and questions of the statistical theory of learning 119 

2. For any sequence x1 , x2 , ... , Xr of the length r there exists a classification 
Cr E c; such that no strategy q E Q satisfies the equalities q(xi) = Cr(i), 
i = 1, 2, ... , r- 1. 

The definition of the capacity of the set Q can be formulated in an equivalent 
way by means of the growth function. Let 

m1 (Q), m2(Q), ... , ffir-1 (Q), mr(Q), ... , mt(Q), ... (4.21) 

be the growth function for a set Q. In this sequence m 1 ( Q) is not larger than 
21 , m 2 (Q) is not larger than 22 and in the general case the l-th element mt(Q) 
is not larger than 21. If an element, say the l-th element mt ( Q) has value 21, 

then the preceding (l- 1)-th element is 21- 1 too. The reason is that if some 
sequence of the length l can be decomposed in all possible manners, then it 
naturally holds also for any its subsequence of the length l - 1. It follows from 
the abovesaid that the sequence ( 4.21) consists of two contiguous parts. The 
initial part, whose length can even be zero, is composed of sequence elements, 
which has the value 21, where l is an ordinal number of the element in the 
sequence (4.21). The elements in the second part of the sequence are lesser 
than 21. 

The capacity of the set Q is an ordinate number by which the start of the 
second part is indexed, i.e., the minimall, for which mt(Q) < 21 holds. 

It is immediately obvious from the definition that if r is the capacity of the 
set of strategies Q, then m1 ( Q) = 21 holds for any l < r. Much less expected is 
that the values m1 ( Q) for l ~ r are also influenced by the capacity and cannot 
assume arbitrary values. It follows from the next theorem. 

Theorem 4.4 Upper limit of the growth function. If r is the capacity of the 
set Q then for all lengths of sequences l ~ r 

holds. 

1 szr-l 
mt(Q) :S (~ _ l)! ( 4.22) 

Proof. We refer the interested reader to [Vapnik and Chervonenkis, 1974]. • 

By Theorem 4.4, the inequality (4.20) can be rewritten in the form 

(2l)r-l 1 2 
TJ < 4.5 e-4< {l- 1) 

(r- 1)! ( 4.23) 

which expresses the explicit relation between all three parameters describing 
learning: the accuracy E, the reliability TJ and the sufficient length l of the 
training multi-set. The set Q in the formula ( 4.23) is represented by its only 
one parameter, i.e., by the capacity r. 

Let us summarise the main supporting points that lead to the sought result. 
1. For the analysis of reliability of learning in pattern recognition, the knowl

edge how the probability 

P { lv1(q)- p(q)l > E} ( 4.24) 
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behaves when l --+ oo does not suffice. It is necessary to analyse a more 
complicated probability 

P{ max lvt(q)- p(q)l > c:}. 
qEQ 

(4.25) 

2. The fundamental difference between (4.24) and (4.25) is that at l --+ oo 
the probability (4.24) converges to zero for any strategy q and any c > 0, 
whereas the probability ( 4.25) in some cases converges to zero and in some 
cases it does not, according to the complexity of the set Q. 

3. The exhaustive description of the set Q from the point of view of the con
vergence of (4.25) to zero is the entropy of the set of strategies Q (see 
Theorem 4.2) which can be defined uniquely, but cannot be constructively 
calculated if the statistical model is not known. 

4. The growth function of the set Q can be constructively calculated because 
it does not depend on the statistical model of the object. If the growth 
function is known then the upper bound of the probability (4.25) can be 
estimated as well as the speed at which this probability converges to zero, 
see the formula (4.20). 

5. The simplest description of the set Q is its capacity which explicitly influ
ences the length of the training multi-set which suffices for required accuracy 
and reliability of learning. 

4.4 Critical view of the statistical learning theory 
The fundamentals explained of the statistical learning theory deserve all respect 
and thanks to its mathematical justification they do not require any indulgence. 
That is why they withstand any critical remarks given, particularly, in this 
section. 

The results of the statistical learning theory, as well as the other theoretical 
results, have the form of the implication 'if A is valid then B is valid'. Let us pry 
into the rightfulness of recommendations following from the statistical theory 
of learning, for instance, from the elegant formula of (4.23). Naturally, we will 
not manage it if we start from the same assumptions from which the relation 
(4.23) was derived. If we want cast a doubt on the practical applicability of 
the relation ( 4.23) we have to pose the question first of all of whether the basic 
assumptions are transparent enough (the statement A in our implication) to be 
able to answer definitely whether the assumptions are satisfied. At the same 
time it has to be known if the theoretical results (that is the assertion B) can 
be experimentally verified. 

The central assumption on which the statistical learning theory stands is 
the assumption about randomness of the training multi-set (x1, ki), (x2 , k2 ), 

... , (xt, kt). It is assumed that the elements of training multi-set are mutually 
independent and their probability distribution PXIK(x I k) is the same as that 
during recognition. The problem is not that sometimes the assumption is sat
isfied and sometimes not. It ean happen with any supposition. The crucial 
problem is that it is not known how it should be investigated if the assumption 
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is satisfied in the real task and not merely in its artificial substitute. The prob
lem of the relation between theoretical models and reality is difficult in general 
because it cannot be solved in the framework of any theoretical construction. 
But particularly difficult problems are those where the relation between statis
tics and real problem is sought. 

This vexed nature, even in the exaggerated form, is expressed by the follow
ing tale, which is known in the pattern recognition folklore. 

Example 4.11 The customer is a geologist. [Zagorujko, 1999) Imagine a 
geologist being a customer and coming to a supplier demanding a solution of a 
pattern recognition task. It is to be found out by measuring physical properties 
of a piece of rock whether it contains iron or whether it is dead. The customer 
can take the responsibility that the decision strategy solving this task is imple
mentable with the help of linear functions of the chosen measurable physical 
propert·ies of the rock. The supplier is required to find out professionally the 
parameters of the appropriate linear decision function. It appears that this is a 
situation ideally suited to pattern recognition based on learning. 

When the supplier requests that he needs a training multi-set to fulfil the job, 
it does not embarrass the customer. The customer is already prepared for this 
situation and takes two pieces of rock out his rucksack. He is sure that one of 
them contains the iron and the other is dead. Such a training multi-set appears 
to be too short to the supplier who calculates, very quickly applying known 
formultE, that he needs at least 200 samples of the rock containing iron and 
at least 200 dead pieces of rock to assure quite reliable and accurate learning. 
Neither this demand embarrasses the wstome·r: he takes out of his rucksack a 
geological hammer and crushes each piece of rock into 200 pieces. The S1tpplier 
clearly understands that he has obtained something quite different from what he 
needs but he is not able to express in an understandable way the recommendation 
which the customer should follow when he prepares the training multi-set. & 

The first serious objection to the practical applicability of recommendations 
that follows from the statistical learning theory is this: recommendations follow 
from assumptions that cannot be constructively proved. In another words, in 
the recommendation of the form 'if A is valid then B is valid', the statement 
A is formulated in a way about which it is not possible to say whether it is 
satisfied. But this is not the only imperfection. Let us have a look at, and 
we will be extremely critical again if the statement B can be constructively 
proved. 

Let us draw our attention to the crucial difference between the two following 
statements. The first is 'the probability of the wrong decision is not larger than 
E'. The second statement reads 'the probability of the fact that the probability 
of the wrong decision will be larger than E is not larger than 77'. The first 
statement characterises the specific strategy. Each specific strategy, including 
the one that will be obtained as a result of learning, can be analysed and it can 
be found out if the first statement is true. 

The second statement does not characterise a specific strategy but a popula
tion of strategies. We do not even consider that it can be quite difficult to find 
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out empirically the validity of this statement. What is important is that it is 
entirely impossible to find out the correctness of a statement on the basis of one 
single strategy from the population in case the statement relates to the whole 
population. We want to draw attention to a serious drawback now, i.e., that 
a single strategy is considered to be the result of learning but the statistical 
theory of learning actually concerns properties of a population of strategies. 
This means that the theory speaks about something quite different. Such a 
cogitation naturally cannot serve as a guarantee to a demanding customer. 

This is a very serious discrepancy between the producer of a pattern recog
nition algorithm and its user. Imagine that a producer supplied us with a 
product. When it is discovered after some time that the product did not work, 
the producer starts to insist, that it is a mere coincidence and that such cases 
do not occur in his business more than in one in ten thousand cases. The worst 
thing we can do in this situation is to start discussing the topic with him. On 
the basis of a single product, which is at disposal at the moment, the supplier 
cannot prove to us that he is right as well as we cannot prove to him that he is 
wrong. In this case we should kindly interrupt his speech and tell him that he is 
talking about something in which we have no interest at all. We are indifferent 
to whether the products he supplied to other customers work correctly. We are 
interested only in the functionality of the single product he has delivered to us. 

Of course, the criticism presented of the statistical view on learning is very 
strict. It testifies much to the maturity of the statistical theory of learning. Its 
inadequacy appears only if such a strict view is used. These critical considera
tions would probably not be introduced if there was not another, deterministic, 
view of learning, which is indeed not as developed as the statistical one but is 
deprived only of inadequacies we now point to. 

4.5 Outlines of deterministic learning 

To avoid the inadequacies mentioned of statistical learning, we have to get on 
with our comprehension more deeply and challenge some assumptions which 
have been accepted as self-evident up to now. We will even repudiate some 
assumptions. 

In a widely accepted view of learning in pattern recognition, it is taken 
as self-evident that the result of learning is a recognition strategy. The goal 
already formulated in such a way hides in itself an incorrectness because the 
initial information usable for learning is not sufficient to determine the learning 
strategy unambiguously. In a simplified formulation, the stated goal of learning 
does not differ substantially from such a nonsense as the desire 'on the basis 
that a number q satisfies the inequality 3 ~ q ~ 4 it should be found out what 
the number q is equal to'. 

The initial information about the strategy sought consists of two parts. The 
first is an a priori information about the set of strategies which includes the ac
tual but unknown strategy, too. The second part is the training set or multi-set. 
The information contained in both parts usually does not determine the actual 
strategy in an unambiguous way. The training set or multi-set only allows to 
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exclude such strategies from the a priori possible strategies that are in contra
diction to it. As a result of this narrowing, a narrower set of possible strategies is 
obtained. In the general case it is still a set containing more than a single strat
egy. In such a case the demand to find such a strategy about which it is known 
only that it belongs to a certain set is similar to the abovementioned nonsense. 

In order not to come across such nonsense, it is necessary to explicitly say 
good bye to the idea that the result of learning is a strategy. The strategy 
q* : X ---+ K cannot be considered as the goal of learning because q* cannot be 
determined uniquely. The goal can only be to find out what result is provided 
by a correct but unknown strategy q*(x) for some given observation x which is 
to be recognised. The construction that we call ta'Ught in recognition is based1 

on this principal idea: even in spite of the 'Unambiguity of the strategy q*, its 
value for some observations x E X can be determined uniquely. It is natural 
that the unambiguity cannot be reached for all observations x E X. In the case 
in which such an ambiguous observation is recognised, the learning algorithm 
does not provide any answer and merely says that learning was insufficient to 
assess correctly the observation. We will show more precisely how such a taught 
in recognition can work. 

Let X be a set of observations and q* : X ---+ D be a strategy t.hat will be 
called the correct strategy. The strategy q* is unknown but the set of strategies 
Q, into which q* belongs, is known. 

Let illustrate the described construction by an example. 

Example 4.12 Decomposition of a plane by a straight line. Assume X be 
a two-dimensional space (a plane), Q is the set of strategies, each of which 
separates the plane X into two parts by means of a straight line. j, 

Let X D be a training set of the form 

(4.26) 

where di = q*(xi) is the decision, i = 1, 2, ... , l. The sequence (4.26) differs 
considerably from the training multi-set Ton which statistical learning is based, 
and which has the form 

(4.27) 

where ki is the state in which the object was when the observation Xi was 
observed. 

Special conditions are necessary for obtaining the sequence (training multi
set) T under which the state of the object becomes directly observable. Some
times it is not possible to provide such conditions. We will not insist that one 
of these two approaches is always preferred to the other. But sometimes, in 
the case of image recognition, it is much easier to obtain the sequence (training 
set) X D than the sequence T. 

1 V.H. The term 'taught in recognition' was selected for the translation from Czech into 
English even when 'supervised recognition' seems to match the Czech or Russian equivalent 
better. The latter term is likely to be confused with 'supervised learning'. 
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There is another important difference. Statistical learning requires that the 
sequence T has certain statistical features, but it can be impossible to check 
them practically. The construction to be created in the sequel does not require 
that the sequence X D has such statistical properties. To obtain the sequence 
X D it is necessary that there is a device at disposal, possibly even a quite 
sophisticated one, let us call it teacher, that is able to point out the required 
decision for any arbitrary observation. The device which is being taught will 
eventually replace the teacher and recognise the new unknown observation on 
its own. The device will be called taught in classifier. We have chosen the 
unusual animate term because we like to stress the active role of the taught 
subject (as will be explained soon). 

The taught in recognition uses the knowledge that the correct strategy sat
isfies the relation 

q*EQ, q*(xi)=di, i=l, ... ,l. ( 4.28) 

In the previous relation, the set of strategies Q, the observation Xi and the 
decision di, i = 1, ... , l are considered as known. The strategy q* is unknown. 
It has to be determined in the taught in recognition task about each pair x E X, 
dE D, whether it follows from Equation (4.28) that q*(x) =d. Let us denote 
by Q(XD) the set of strategies which satisfy Equation (4.28). It is to be 
determined in the task whether the set Q(X D) is not empty, and in addition 
for chosen x E X to verify 

3d E D [ 'v' q E Q (X D) ( q ( x) = d)] ( 4.29) 

The previous formula says that all the strategies which satisfy Equation ( 4.28) 
(consequently, the correct strategy q* too) assign x to the same class d. If this 
statement is correct then the correct value q*(x) be determined unambiguously. 
If the statement (4.29) is not satisfied then the only possible answer is not 
known, because the information obtained from the teacher does not suffice for 
a justified conclusion about the value q* (x). 

Example 4.13 Decomposition of the 
plane by a straight line. (Continua
tion of Example 4.12) Figure 4.1 shows 
the training set represented by white and 
black circles. The white circles illus
trate points for which q* ( x) = 1 holds 
and the black circles display points for 
which q*(x) = 2 holds. The set Q(XD) 
is not shown in the figure but it is the 
set of straight lines that correctly sepa
Tf!te tjye training set. Two convex sets 
X1, X2 are shown in the figure. Both 
of them are bound by tl!._e pol1J..line of in
finite length. The set X 1 U X 2 consists 

Figure 4.1 Training set consisting of white 
and black circles. ,\\ and X.2 denote re
gions where unambiguous decision is pos
sible. 
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of those points x E X for which the statement (4.29) holds. For each x E X1 
the q*(x) = 1 holds, and for each x E X2 the q*(x) = 2 holds. • 
To check the validity of the statement ( 4.29) it is not needed to represent in 
some particular manner the set Q(X D) of all possible strategies which satisfy 
Equation (4.28). In fact, it can be seen that the original Equation (4.28) is 
already the most suitable for direct verification of the statement (4.29). We 
will show how such a verification can be done. 

For each decision dE D and observation x EX which has to be recognised, 
we will write a relation similar to Equation (4.28), 

q* E Q' 
q*(xi) = di, 

q*(x)=d, 

; = I, 2, ... ,l, } dE D. (4.30) 

Equation ( 4.30) does not express a single expression but an ensemble consisting 
of IDI relations and each of them corresponds to one decision d E D. There 
has to be checked for each relation from the ensemble (4.30), i.e., for each value 
d, whether it is contradictive. Thus the statement (4.29) is equivalent to the 
statement that there is just a single relation in the ensemble ( 4.30) which is 
not contradictive. 

We will show at the end of our example how the equivalence of these two 
statements can be used to recognise a specific observation. 

Example 4.14 Recognition of the single observation based on the training 
set. Two auxiliary sets X D1 = (X D U {(x, 1)}) and X D2 = (X D U { (x, 2)}) 
have to be created based on the training set X D. It is to be checked whether 
there is a straight line for both sets which classifies them correctly. The result 
of the analysis can be just one of the four following possibilities. 

1. If the set X D1 can be correctly classified with the help of the straight line 
and the set X D2 cannot be classified in a similar way this means that the 
answer q* ( x) = 1 is sure to be cor·rect. 

2. If the set X D1 cannot be classified with the help of the straight line and it 
can be done for the set X D2, then the answer q* (x) = 2 is sure to be correct. 

3. If each of the sets can be classified with the help of the straight line then it 
means that the device did not make enough progress in teaching to be able 
to recognise correctly the submitted observation. That is why it must give 
the answer not known. It is important that the taught in classifier detects 
its inadequacy by itself in the learning process. In this case it can address 
its teacher with a question of how the given observation is to be classified 
correctly. When it receives the answer then it can incorporate it into the 
training set and use it later to recognise next observations better. 

4. If none of the sets can be classified with the help of the straight line then 
it means that the in·itial information which the device had learned from the 
teacher was contr·adictive. The taught in classifier with a good sense of 
humour· would be able to give the answer 'you do not know' in this case, and 
present to the teacher the smallest possible paT't of the training set provided 
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earlier by the teacher that contains the discovered contradiction. In this case 
the teacher could modify the answers which he had earlier considered to be 
correct or change the set Q. As is seen, it is not easy to distinguish in this 
case who actually learns from whom. & 

In the next lecture, which will be devoted to the linear discriminant functions, 
we will see that the contradiction in sequences can be discovered constructively. 

In the general case the analysis of the contradiction in Equation (4.30) pro
vides more useful information, from a pragmatic point of view, than a mere 
statement about the validity of Equation (4.29). Let D(x) C D be the set of 
those decisions dE D whose incorporation into Equation (4.30) does not lead 
to contradiction. In this case, even if ID(x)l::f.l but D(x) ::j:.0, D(x) ::f. D, i.e., 
when it is not possible to determine the correct answer uniquely, those deci
sions d cf. D(x) can be determined which cannot be correct for the observation 
x. The practical useful result of recognition may not be only the single cor
rect answer q*(x) but the whole set D(x) of decisions which do not contradict 
observations. 

In the proposed taught in classifier hardly anything has remained from what 
has been earlier considered as learning in pattern recognition. What has re
mained from the earlier case is only that the result of recognition is influenced 
by the training set. The phase of actual learning disappeared entirely in the 
taught in classifier created. However, the taught in classifier has not lost fea
tures of intelligent behaviour; moreover, it seems to have even improved them. 
Indeed, an approach in which teaching precedes recognising, and later, the 
recognition starts without being taught, is very far from the mutually fruitful 
relations between the teacher and the student. Such an approach much more 
resembles the drill of correct behaviour than education. As we have seen, hard 
solvable problems occur as a result of separating learning and recognition in 
time. Well, it is difficult, or even impossible, to mediate during the teaching 
phase all that has to be sufficient in any future case in which learning will be 
no longer possible. 

The arrangement is entirely different with the suggested procedure. The 
taught in classifier is ready to be recognising in each stage of its activity. Knowl
edge obtained so far from the teacher suffices to solve some tasks and does not 
suffice for others. The first group of tasks is solved by the taught in classifier 
correctly, no doubt. For the other group of tasks the classifier approaches the 
teacher and enlarges its knowledge. In each stage of such a behaviour, i.e., in 
the taught in recognition, the taught in classifier has the possibility of process
ing the information obtained from the teacher. It can detect contradiction in 
it, or redundancy on the other hand. Redundancy means that some elements 
in the training set follow from other elements. Finally, the taught in classifier 
need not wait until an observation occurs which it is not yet able to recog
nise correctly. It can create such an observation artificially and approach the 
teacher with it. By doing so it can influence in an active way the content of 
the training set, i.e., the knowledge received from the teacher. 
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It is only now that we can see how much we miss in the current statistical 
theory of learning, to be able to call it the theory of intelligent behaviour. 
With a certain degree of exaggeration it can be said that ingenious analysis 
was applied to algorithms resembling more drill than intellectual behaviour. 

4.6 Discussion 
I would like to ask several questions concerning learning. The first of them, 
I am afraid, is not very concrete. I feel a deference to subtle mathematical 
considerations with help of which the main asymptotic properties of learning 
algorithms were formulated. I can only presume how back breakingly difficult 
the proofs of theorems, presented in the lecture, can be. It may be natural 
that after an enthusiastic declaration a sentence starting with 'but' usually 
follows. I became rather firmly convinced that· the scientific significance of 
the all theory about learning discussed lies hidden within the theory and that 
there are considerably fewer recommendations resulting from the theory and 
addressing the world outside it. When reading the part of the lecture about 
the relation between the length of the training multi-set, the accuracy and 
reliability of recognition, I have spontaneously recalled the various oriental 
souvenirs. For instance, a bottle with a narrow neck and a ship built inside 
it, or several Chinese balls carved from a single piece of ivory and hidden one 
inside another. When I see such objects I admire the craftsmen's mastery, and 
mainly the patience needed to create it. At the same time, I cannot get rid 
of an unpleasant impression from the unanswered question: for what, in fact, 
could the sailing boat inside a bottle or Chinese balls be useful? I would not 
like to formulate my questions more precisely because they would not sound 
polite enough. 

The question is indeed somewhat philosophical. That is why we would like 
to remark first that the most important knowledge, substantially changing the 
human mind about the world, does not have the form of recommendations 
but rather of prohibitions. They do not answer the question 'how to do' but 
rather 'what is impossible'. Recall the energy conservation law. The knowledge 
of the law will hardly be useful when you would like to lift a piano to the 
apartment on the tenth floor. On the other hand, the knowledge of the energy 
conservation law will surely help you if someone comes to you with a project 
of a self-acting machine which can lift the piano without consuming external 
energy. Without getting deeply into, how the machine is invented, without 
looking out for specific erroneous suppositions on which the machine's design is 
based (and such an analysis can be quite difficult), you can save time and effort 
and be quite sure that the person bringing you the design is either cheating 
or is simply an ignoramus. It is not so long, about three hundred years, since 
mankind did not have as strong and quite general weapon at its disposal as 
the energy conservation law is. That is why an enormous intellectual effort 
was wasted first in designing a perpetuum mobile and again later in trying to 
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understand why it did not work. Well, it seemed so obvious that a perpetuum 
mobile should work, and moreover, it would be so excellent if it worked. 

The scientific and practical value of Chervonenkis-Vapnik theory is that it 
clearly prohibits some trends in designing learning algorithms in pattern recog
nition. Let us have a look at the fundamental Theorem 4.2 about the necessary 
and sufficient condition allowing the recognition device to learn on its own. The 
condition says that the relative entropy H(l)/l has to converge to zero when the 
length l of the training multi-set increases to infinity. Even though the entropy 
H(l) can be almost never calculated, the theorem has, in spite of it's lack of 
constructiveness, a strong prohibiting power. The entropy H(l) can be easily 
calculated for a universal recognition device which can implement an arbitrary 
decomposition of the space of observations. The entropy value H(l) in this case 
is equal to the lengths l of the learning sequence. The relative entropy H(l)/l 
then is equal to one for an arbitrary l. That is why the necessary condition 
that the device can learn is not satisfied. The strict restriction consequently 
follows from the statistical theory of learning: learning in a universal pattern 
recognition device is impossible. 

Knowledge of this restriction can save you a lot of time and stress. You surely 
have heard lectures several times or you have read articles, in which it is proved 
in the first paragraph that the proposed recognition algorithm is universal, 
and in the second paragraph the learning procedure of the same algorithm is 
described. Usually it is quite difficult to find some counterexample which would 
prove that the algorithm is not universal. It is even more difficult to prove 
that there are classifications which cannot be achieved by learning. Without 
analysing it in a complicated way, you can be quite sure that the author has 
made a blunder in at least one of the two paragraphs mentioned. You can 
also require the author to explain how his results agree with the Chervonenkis
Vapnik theorem. If he does not know anything about the theorem you can 
stop discussing it without any hesitation, because his professional level can be 
compared to that of the mechanics 300 years ago. He has not yet known, after 
all, what everyone should know in these days. 

I did not exactly expect such an answer to my question. It is perhaps my fault 
because I did not ask it precisely enough. I assumed you would stress more the 
practical usefulness of relations specifying the necessary length of the training 
data for learning. And neither do I understand everything even I would wish 
to. I assume that I will have problems in determining the capacity of the set of 
strategies. Are there some recommendations on how to calculate the capacity 
in particular cases? 

Unfortunately, we can add hardly anything to the definition of the capacity of 
the set of strategies given in the lecture. Only experience is needed to learn 
how to estimate the capacity quickly. Practice the calculation of capacities of 
the following two sets of strategies. 

Let X be a two-dimensional linear space in the first case and let the set of 
strategies contain all strategies which decompose the space X into two parts 
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Figure 4.2 Four possible decompositions of 
three points in the plane with the help of 
straight lines. 

Figure 4.3 The convex hull of four points can 
be a triangle. 

with the help of a straight line. The second case resembles the first one but 
X is a three-dimensional linear space in which each strategy decomposes the 
space X into two parts with the help of a plane. 

I tried to get used to the concept of the capacity of a set in the two-dimensional 
example. I have found out that the capacity of the set is CAP = 4 on the basis 
of the following purely geometrical thoughts. There is such a triplet of points 
which can be decomposed by a straight line into two classes in an arbitrary way. 
For example, it can be the triplet of points x1 , x2 , and x3 shown in Fig. 4.2, 
where all four possible decompositions using four straight lines are illustrated. 

It is possible to imagine that no quadruplet of points x1 , x2 , x3 , x4 can be 
decomposed by a straight line into two classes in an arbitrary manner. It is 
obvious because if three out of four points lie on a single straight line then 
not all decompositions are realisable. Actually, the point in the middle cannot 
be separated by any straight line from the other two points. If no triplet of 
points is collinear then the convex hull of the quadruplet of points x 1 , x2, X3, 

X4 can constitute just one of the two following configurations: either a triangle 
(Fig. 4.3); or a quadrilateral (Fig. 4.4). 

In the first case it is not possible to sep
arate the point which is located inside the 
triangle from the other three vertices of the 
triangle. In the second case it is not pos
sible to separate one pair of the opposite 
quadrangle vertices by means of a straight 
line. That is why the capacity of the class 
mentioned is equal to four. Figure 4.4 The convex hull of four 

Purely geometrical considerations do not points can be a quadrilateral. 

suffice in the three-dimensional case. I have 
analysed the case analytically and the result suits not only the three-dimen
sional case but also the general k-dimensional case. 

Let X beak-dimensional space and Xi, i = 0, 1, ... , k + 1, be an ensemble 
of k + 2 points in this space. Certainly the vectors Xi- x0 , i = 1, ... , k + 1, are 
linearly dependent. This means that the coefficients ai, i = 1, ... , k + 1, exist, 
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not all of them being equal to zem and satis(ving the equation 

k+l 

La; (x; - xo) = 0, 
i=l 

or the equivalent equation 

k+l k+l 

Xo L:ai =I:: a; X;. 
i.=l i=l 

The sum 2:~,;t11 a; is denoted as -a0 and the equation 2:~:~ a; Xi = 0 is 
obtained in which the sum 2:~:~ a; is equal to zero too. As not all coefficients 
a; equal zero, some of them are positive and others are negative. The symbol 
I+ denotes the set of positive coefficients and I- denotes the set of negative 
coefficients, i.e., 

I+= {i 1 a;> o}, r = {i 1 ai < o}. 

"k+l As wi=O a; = 0 holds, the equation 

I: a; = - I: 0; =~ o 
iE/- iEI+ 

holds too. Let new variables (3;., i = 0, 1, ... , k + 1, be introduced such that 

if i E I- , 

" a,· wiEI+ 

if i E J+. 

There follows from the equation 2:~:~ a; x; = 0 that 

L (~;X; + L a; X; = 0 
i.E/- iEI+ 

::::} ( La; x; =-La; x;) 
iEI- iEJ+ 

(4.31) 

::::} ( L [3; x; = L [3; x;) ' 
iEI- iE/+ 

where 

I: [3; = I: fj, = 1. (4.32) 
iEI- iE/+ 

I can assert now that there is no such hyperplane for which the ensemble of 
points x;, i E 1-, lies on one side of it and the ensemble of points x;, i E J+, lies 
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on its other. Indeed, if such a hyperplane existed then also the vector o: E X 
and a number (} would exist that would satisfy the system of inequalities 

(a, x;) ~ () ' 

(o:,x;)<(), 

i E J+, } 
i E 1-, 

( 4.33) 

where (o:,x;) denotes the scalar product of vectors o: and x;. Because the sum 
of all coefficients B;, i E J+, is equal to 1 and all coefficients are positive, it 
follows from the first group of inequalities in the system ( 4.33) that 

L 3; (a,:r;) ~ (). 
iEf+ 

and it follo·ws from the second group of inequalities that 

L /3; (o:,x;) < (}. 
iEJ-

This means that the inequality 

L /3; (o,:r;) > L f:J; (a,:r;) 
iEJ+ iEI-

holds. But from the derivation (4.31) the equation 

iEI- iEI+ 

(4.34) 

follows which contradicts the inequality ( 4.34). I have pwved that in the k
dimensional space no ensemble of k+2 points can be decomposed in an arbitrary 
manner into two classes by means of a hyperplane. 

It is not difficult to slw11· that an ensemble of k + 1 points exists that can be 
decomposed into two classes in an arbitrary manner using a h,YlJerplane. For 
instance, it could be the ensemble: the point x 0 has all coordinates equal to 
zero, and the point x;, i = 1, ... , k, has all coordinates equal to zero except 
i-th coordinate which is non-zero. I can thus consider the following statement 
as proved. 

Let X be the k-dimensional space and Q be a set of strategies of the form 
X -+ {1, 2}. Each strategy decomposes the space X into two classes using a 
hyperplane. The capacity of the set Q is k + 2. 

Indeed, the capacities of the set of strategies are not as terrible as it might 
look at first glance. 

We are glad to hear that. Have a look at the following set of strategies in a 
two-dimensional space to be more certain about capacities: each strategy is 
defined by a circle which decomposes a plane into two parts: the inner and the 
outer part of the circle. We will prompt you a little: apply the straightening 
of the feature space. 
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I have managed the circle case with your hint quite quickly. First, there is a 
quadruplet of points in the plane which can be decomposed by means of circles 
into two classes in an arbitrary manner. For instance, it can be the quadruplet 
illustrated in Fig. 4.5, where also all possible decompositions using eight circles 
are shown. Consequently the capacity of given set of strategies is not less than 5. 

Figure 4.5 Eight possible decompositions of four points in the plane by means of eight circles. 

Second, I will prove that already no ensemble of five points can be decom
posed into arbitrary two classes with the help of circles. Thus the capacity of 
the introduced set of strategies is equal to 5. 

Let x and y be the coordinates of an arbitrary point in the plane. The given 
set of strategies contains strategies q in the form: 

q(x,y)~{ 1 ' if (x- xo) 2 + (y- Yo) 2 :S r 2 , 

2, if (x- xo) 2 + (y- Yo) 2 > r 2 , 
( 4.35) 

or {I, if ( ') ( )2 2 x- xo)~ + y- Yo > r , 
q(x,y) = 2' 

if (x - xo) 2 + (y- Yo) 2 :S r 2 . 
( 4.36) 

Each strategy in the form (4.35) or (4.36) can be expressed in the form 

{ 1 , if 0: X + (3 y + "( Z > 0 , 
q(x,y,z)= 2, if ax+(Jy+-yz <.e, ( 4.37) 

where z = x 2 + y2 . The converse holds, i.e., any strategy in the form (4.37) on 
the set of points satisfying the constraint z = x2 + y2 can be expressed either 
in the form (4.35) or in the form (4.36). A direct statement is sufficient for 
me from which it follows that the capacity of the class ( 4.35 ), ( 4.36) cannot be 
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greater than the capacity of the class (4.37). The class (4.37) is the class of 
linear decision functions in the three-dimensional space. I had proved before 
that a capacity of the class ( 4.37) was 5. In such a way I have proved that the 
capacity of the class (4.35), (4.36) is equal to 5. 

Now I can see that the capacity can be also determined exactly for the 
set of strategies given by the quadratic discriminant functions in a general 
form. Those strategies in question are those optimal in the case in which the 
observation x under the condition of each fixed state k is an n-dimensional 
Gaussian random variable in a general form. The strategy of this kind then 
has the form 

q(x)=1, if f(x)?_(),} 

q(x)=2, if f(x)<O, 
(4.38) 

for a threshold value () and for a quadratic function f which has the form 

n n n n 

(4.39) 
i=l i=l j=i+l i=l 

The designation Xi in Equation (4.39) denotes the i-th coordinate of the point 
x. I will show that the set X* exists which consists of2n + ~n(n- 1) + 1 points 
and can be decomposed into two classes in an ai"bitrary manner. From this 
it will immediately follow that for the capacity CAP of the set of strategies 
studied 

1 
CAP> 2n + 2n(n- 1) + 1 ( 4.40) 

holds. The ensemble X* of points is defined in the following way. The ensem
ble will consist of the sets Xi and Xi introduced in addition (each of them 
consisting ofn points), and also of the set X 2 (consisting of ~n(n- 1) points) 
and the set X 0 containing a single point. The points in the set Xi will be 
numbered by the index i = 1, 2, ... , n. The point with the index i will be 
denoted by (xi)- and will be defined as the point in which all the coordinates 
equal zero but the i-th one the value of which is -1. In a similar way the i-th 
point in tile ensemble Xi will be denoted by (xi)+. It will be defined that all 
coordinates in this point equal zero except the i-th one which assumes the value 
+ 1. The points in the set X 2 will be numbered by two indices i = 1, 2, ... , n 
and j = i + 1, i + 2, ... , n. The (ij)-th point will be denoted as xii and will be 
determined as the point in which all the coordinates equal zero except the i-th 
and j-th the value of which is 1. The single point of which the set X 0 consists 
will be denoted by x0 and will be defined as the origin of the coordinate system. 

Let Xi and x; be an arbitrary decomposition of the ensemble X* = Xi U 
Xi U X2 U Xo into two classes. Let us prove that such coefficients ai, f3ii, "Yi 
exist for the given decomposition and such a threshold value () exists in the 
strategy (4.38), (4.39) that it satisfies the system of inequalities 

f(x) ?_ (), X E Xi, } 
f(x) < (}, X E X:.i . 

( 4.41) 
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Because f(x 0 ) = 0 the threshold value(} cannot be positive if x0 E Xi. On the 
other hand, the(} must be positive if x0 E X2. I will choose(} = t if x0 E X2, 
and (} = - ~ if x0 E Xi. I will analyse only the first case because the analysis 
of the seco~d case is almost the same. I will show how tlw coefficients a;, /3ij, 

'Yi can be determined which satis(v the constraints 

f(x) = 1, x E Xi, } 

f(x)=O, xEX2, 
( 4.42) 

and thus satis(v the constraints (4.41) too. We will introduce the auxiliary 
notation, i.e., the numbers (ki)-, (ki)+, kiJ, i = 1, 2, ... , n, j = i+ 1, i+2, ... , n 
such that 

(ki)- = 0, if (xi)- Ex;, 
(ki)- = 1, if (xi)- E Xi, 
(ki)+ = 0, if (xi)+ Ex;, 
(ki)+ = 1, if (xi)+ E Xi, 

kij = 0, if xii Ex;, 
kij = 1, if xiJ E Xi. 

If tllis notation is used the system of equations (4.42) assumes the form 

f((xi)-) 
!((xi)+) 

f(xil) 

= (k')+, z_ = ~, 2, .. :, n, 
(ki)-, } . 

= kiJ , J = z + 1, z + 2, ... , n, 

or, which is equivalent, 

Q;- 'Yi 

a;+ 'Yi 

a; + a J + 'Yi + 'YJ + /3;j 

i = 1, 2, ... , n, 
j = i + 1, i + 2, ... , n. 

The system of equations ( 4.44) has an obvious solution 

which proves the inequality (4.40). 

( 4.43) 

( 4.44) 

Furthermore, I will prove relatively easily that the capacity of the set of 
strategies analysed cannot be greater than 2n + tn(n- 1) + 2. It was shown 
in the lecture that the n-dimensionallinear space X can be mapped into the 
2n + ~n(n -!)-dimensional spaceY in such a way that an arbitrary strategy in 
the fc';rm ( 4.38) to ( 4.39) in the space X corresponds to a decomposition of the 
spaceY using the hyperplane. I have already proved earlier that the capacity 
of the set of hyperplanes in an rn-dimensional space is equal to m + 2. From 
what has been said it follows that the capacity of the set of hyperplanes in the 
spaceY is 2n + ~n(n- 1) + 2. The capacity of the set of strategies in the form 
(4.38) to (4.39) ~annat be greater and thus 

1 
CAP ~ 2n + 2n(n- 1) + 2. 
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From this, with regard to the inequality (4.40) proved earlier, the equation 

1 
CAP = 2n + 2n(n- 1) + 2 

follows. 

When you have so thoroughly investigated the model with Gaussian random 
variables, could you do, for completeness, the same also for the model with 
conditional independence? Try to determine the capacity of the set of strategies 
in the form 

{ 

X1, if t log Px;~ 1 (:i) ~ o, 
1'-1 PX;J2( ,) 

xE 7i 
,, .f "' 1 Px,11(xi) 0 
.'1.2 , 1 ~ og ( ) < , 

i= 1 Px, 12 Xi 

( 4.45) 

which are optimal in the case in which the observation x under the condition 
of a fixed state is the random variable x = (x1 , x2, . .. , Xn) with independent 
components. 

In the discussion after Lecture 3 I proved that any strategy of the form ( 4.45) 
could be expressed as a linear discriminant function of the dimension 

n 

Lk(i)- n, 
i=1 

where k(i) was a number of values of the variable Xi· From this result there 
immediately follows 

n 

CAP ~ L k( i) - n + 2 , ( 4.46) 
i=1 

because I have just proved that the capacity of the set of hyperplanes in an 
m-dimensional space ism+ 2. 

I will now show that in the inequality ( 4.46) the relation~ can be substituted 
by an equality. I need to prove that an ensemble of 2:;~ 1 k(i)- n + 1 of points 
in the space X exists which can be decomposed into two classes by means of 
strategies of the form (4.45). 

The ensemble sought may be constructed in the following way. Let me 
choose an arbitrary point x0 = (x?, xg, .. . , x?1 ) and include it in the ensemble. 
Then every point x' differing from x0 in only one component is included in the 
ensemble too. So the number of points in the ensemble will be 2::~ 1 k(i) -n+ 1. 
Have I to prove that such a set of observation can be decomposed in an arbitrary 
way? 

It is not necessary. We think that it is quite clear. We thank you for cooperation 
and this will be enough for today. 

April 1997. 
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4. 7 Bibliographical notes 
Three formulations of learning tasks have been introduced in this lecture. The 
first formulation with respect to the maximal likelihood is a direct transfer 
of known statistical methods into pattern recognition [Nilsson, 1965]. Let us 
mention only Gauss and Fisher [Fisher, 1936] from the statistical sources re
lated to the most likely estimates. If someone is interested in the matter we 
recommend the textbook by Waerden [Waerden, 1957]. A theoretical analysis 
of the properties of learning algorithms in pattern recognition according to the 
first formulation is represented by [Raudys and Pikelis, 1980]. 

The second minimax formulation of learning according to a non-random 
ensemble was suggested in [Schlesinger, 1989], who was inspired by practical 
tasks [Schlesinger and Svjatogor, 1967]. The theoretical analysis of the ap
proach will be given in this monograph in Lecture 8. 

The third formulation seeks a strategy which correctly recognises the training 
sequence [Rosenblatt, 1962; Ajzerman et al., 1970]. Many other publications 
stem from these works. The third formulation was analysed by Chervonenkis, 
Vapnik [Vapnik and Chervonenkis, 1974; Vapnik, 1995], [Vapnik, 1998] and has 
been developed into a deep theory. The first work mentioned established the 
basis of our explanation in this lecture. 

Let us compare Raudis' theory analysing the learning in the first formulation 
with respect to the maximal likelihood [Raudys and Pikelis, 1980] with the 
conclusions by Vapnik with respect to the third formulation. The first case 
yields less general assumptions and thus estimates a shorter training sequence. 
The second approach is more general and thus more pessimistic in its estimates. 

Another interesting view of statistical learning theory is given in [Vidyasagar, 
1996]. 

We have adapted Zagorujko's example with geologist [Zagorujko, 1999]. This 
book is of interest on its own, as it gives insight into the research of one Russian 
group strong in clustering, and lists several tasks solved practically. 



Lecture 5 

Linear discriminant function 

5.1 Introductory notes on linear decomposition 
In the previous lectures we have pointed out several times that linear discrim
inant functions deserve some special attention. First, some statistical models 
are known to have the Bayesian or non-Bayesian strategy implemented, namely, 
by means of linear discriminant functions. 

Second, some nonlinear discriminant functions can be expressed as linear 
functions through straightening of the feature space which has been discussed 
in Section 3.2. This is possible in the case in which it is known that the 
nonlinear discriminant function f: X --+ lR can be expressed in the form 

f(x) = L aj fJ(x) 
jEJ 

with known functions fJ : X --+ IR, j E J and unknown coefficients a j. In 
this case the searching for a discriminant function, which in the input space 
X is nonlinear, is reduced to searching for a linear discriminant function in 
the straightened space Y of the dimension I Jl. The space X is mapped into 
the space Y so that the point x E X corresponds to the point y E Y the j-th 
coordinate of which is fi ( x). 

Third, from the theoretical standpoint it is important that there exists a 
universal way of representing the initial observation space in the space of prob
abilities where the solution of any known statistical task is implemented by 
means of linear discriminant functions, i.e., by means of the decomposition of 
the probability space into convex cones. 

Fourth, the capacity of linear strategies in an n-dimensional space is known 
to be n + 2 and the learning task to be eorrect. From that it follows that 
the strategy tuned to a finite training multi-set does not differ much from the 
correct strategy tuned to the statistical model. Therefore the tuning strategy 
for a concrete statistical model can be replaced by tuning for the given training 
multi-set. We point out once more that the replacement is possible thanks 

1~7 
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to the finite capacity of the linear discriminant function class. In the preced
ing lecture, for this case an explicit relation between the necessary length of 
the training multi-set, the accuracy, and reliability of learning was mentioned, 
expressed by a practically applicable formula. 

All these advantages would naturally not be of great importance if there were 
not at our disposal procedures for finding linear discriminant functions. They 
are the main topic of this lecture. We will see that different linear discriminant 
function tasks, which seem not to be similar to each other at first glance, are 
acting together (are collaborating, in fact). We will see that the properties of 
one type of tasks are helpful for solving other tasks the properties of which are 
not so evident. 

5.2 Guide through the topic of the lecture 

We start with a survey which will provide an overview of linear discriminant 
functions and so make easier the understanding of basic outcomes from the very 
beginning. Further explanation in the lecture will provide a deeper insight in 
them and prove them. 

Let X be a multi-dimensional linear space. The result of the observation of 
an object is a point x in this space. Let k be the state of the object inaccessible 
to observation and let it assume two values {1, 2} only. Let it be known that 
the distribution of conditional probabilities PXIK(x I k), x E X, k E K, is a 
multi-dimensional Gaussian distribution. The mathematical expectation J-lk 
and the covariance matrix 17k. k = 1, 2, of these probability distributions are 
not known. However, it is known that the parameters (J-L1 , 171) belong to a 
certain finite set of parameters {(J-LJ,17J) I j E JI}. Similarly (ft2 , 172 ) are also 
unknown parameters belonging to the finite set { (J-Li, 17i) I j E J2 } . We used 
both the superscript and subscript indices. For example, J-ll and 171 mean real, 
but unknown, parameters of an object that is in the first state. Parameters 
(J-Li, 17i) for some of the superscripts j are one of the possible value pairs which 
the parameter can assume. 

This case can be illustrated with Fig. 5.1. Ellipses in the figure show five ran
dom Gaussian quantities which assume values in a two-dimensional space (on a 
plane). For the time being let us ignore the separating straight line q. Let, e.g., 
J1 = {1, 2, 3} and h = {4, 5}. It would 
mean that the object is characterised in 
the first state by a random vector, which 
has the first, second, or third probability 
distribution, but it would not be known 
which of them it was. It is similar for 
the second state and the fourth and fifth 
probability distribution. 

Thus we have two object classes and 
each of them is described by a mixture of 
Gaussian distributions. The components 
of each mixture are known, and unknown 

q 

k = 2 

Figure 5.1 Generalised Anderson task 
in a two-dimensional space. 
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are only their weights. If the state of the object k is to be found from the 
mentioned incomplete a priori knowledge of the statistical model and the known 
observation x then the task is to be formulated as a task of statistical decision 
making with non-random interventions (it has been described in a more general 
manner in Subsection 2.2.5). If we used the results of the analysis in our case, 
we would be seeking the strategy q: X -+ { 1, 2} which minimises the value 

( . j j ) . max c; J, J.L , a , q , 
JEJ1UJ2 

(5.1) 

where c;(j, J.Li, ai, q) is the probability that the Gaussian random vector x with 
mathematical expectation J.Lj and the covariance matrix ai satisfies either the 
relation q(x) = 1 for j E h or q(x) = 2 for j E J1. 

In other words, the minimal value c; and the strategy q* are sought that 
satisfy two conditions: 

1. The probability of a wrong estimate of the state under the condition that 
the actual state is 1 is not greater than c;, which is valid independently of 
the values of the mathematical expectation J.ll and the covariance matrix 
a1, but only when (J.Ll,al) E {(J.Li,ai),j E J!}. 

2. The probability of a wrong evaluation of a state under the condition that the 
actual state is 2, is not greater than c;, either, which is valid independently 
of the values of mathematical expectation J.L2 and the covariance matrix a2, 
but only when (J.L2,a2) E {(J.Li,ai),j E J2}. 

From the results presented in Subsection 2.2.5 it follows that the statistical 
decision making task with non-random interventions is reduced to searching 
for a minimax solution in the weight space of mixture components. 

We are interested in the task (5.1) with an additional constraint on the 
strategy q. We require the discriminant function to be linear, i.e., to be the 
hyperplane (o:, x) = (} and 

q(x) = { 
1, 

2' 

if (o:, x) > (} , 
if (o:, x) < (} , 

(5.2) 

at a certain vector o: E X and the threshold value 0. Recall that (o:, x) denotes 
the scalar product of the vectors o:, x. For the two-dimensional case illustrated 
above in Fig. 5.1, the observation plane should be divided into two half-planes 
so that the first half-plane should contain the majority of random realisations 
from the first, second, and third probability distributions, and the second half
plane contains those from the fourth and fifth probability distribution. This 
distribution is represented in Fig. 5.1 by the separating straight line q. 

The task (5.1) satisfying the requirement (5.2) is a generalisation of the 
known task by Anderson and Bahadur [Anderson and Bahadur, 1962], who 
formulated and solved the task for the case I J1l = I J2l = 1. Our more general 
case will be called generalised Anderson task. 

The abovementioned formulation of generalised Anderson task includes an
other particular case worth attention, i.e., when all covariance matrices ai, 
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j E J1 U h are unit. This task is used even in the case of pattern recognition 
algorithms which are determined by a training_set. It is referred to as the op
timal separation of a finite sets of points. Let X be a finite set of p~nts x1, ~2, 
.•. , Xn from the space X which is decomposed into two sub~ets xl and x2. 
A separating hyperplane is sought which will let the subset X1 remain in one 
half-space, and the subset -~2 in the other half-space. And moreover, the hy
perplane is as distant from the both divided subsets as possible. More precisely 
speaking, a vector o: and the threshold value(} are sought in order that: 

1. all x E X 1 satisfy the inequality 

(a, x) > (}; (5.3) 

2. all X E X2 satisfy the inequality 

(a, x) < (}; (5.4) 

3. under the conditions (5.3) and (5.4) the number 

( (a, x) - (} . (} - (a, x)) 
min mip. mm ---'-,....--'-

xEX! lnl ' xd2 lo:l 
(5.5) 

reaches its maximal value. 

Another simplification of the preceding task of optimal separation of two fin~e 
sets of points is a case in which an arbitrary hyperplane separating the sets X1 

and .Y2 is sought. This task is referred to as the simple separation of finite sets 
of points. This means that the solution must satisfy the conditions (5.3), (5.4) 
and does not take into account the requirement (5.5). 

We will begin this lecture by thoroughly analysing Anderson task. The 
minimised optimisation criterion will appear to be unimodal. This is a positive 
statement since for the optimisation easy steepest descent methods can be used 
with which the optimum can be found without being stuck in local extremes. A 
disadvantageous statement is that the minimised unimodal criterion is neither 
convex, nor differentiable. Therefore neither method calculating the gradient, 
nor that the gradient in the point corresponding to the minimum is equal to zero 
can be applied. The minimum will occur in the point where no gradient exists, 
and therefore other conditions for the minimum are to be found which are not 
based on the concept of the gradient. Such necessary and sufficient conditions 
for the minimum will be formulated and the steepest-decreasing algorithm will 
be presented which can be applicable even in this case. 

For a particular case of Anderson task, which is the optimal separation of 
the finite sets of points, we will prove that the optimisation conditions will be 
simplified to the minimisation of the quadratic function on a convex polyhedron. 
Such a task can be easily solved by elaborate methods of convex optimisation. 

For an even more specified task of a simple separation of sets of points we will 
first remember perceptron algorithms and quote some less known algorithms 
proposed by the Russian mathematician Kozinec. 
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At the close of the lecture we will present results which will cover all the 
tasks studied h~re in a single frame. This will reveal less obvious relations 
between Anderson general task, the optimal separation of the sets of points, 
and the most spedfitJd simple separation of the sets of points. Understanding 
these relations, we call""pwperly modify perceptron and Kozinec algorithms so 
that they will be applicable even for solving Anderson general task. 

5.3 Anderson tasks 

5.3.1 Equivalent formulation of generalised Anderson task 
We will be dealing with a generalisation of Anderson task in which the numbers 
of elements of the classes J1 and J2 need not be equal to 1. Without loss of 
generality we can assume that the recognition strategy based on comparing the 
value of the linear function (o:, x) with the threshold value () can be replaced 
by an equivalent strategy making decision according to the sign of the linear 
function (o:, x). It can be obtained in the following standard way. 

Let us map the original n-dimensional space X into (n+l)-dimensional space 
X 1 so that the point x in the space X is mapped to the point x 1 in the space 
X 1 • The first n coordinates of the point x1 are the same as the n corresponding 
coordinates in the point x and the coordinate number ( n + 1) is always + 1. 
We will denote the threshold value () as -o:n+l· We find out that the strategy 
based on examining the inequality (o:, x) > () can be replaced by an equivalent 
strategy based on examining the inequality (o:1 , x 1) > 0. In this case the first 
n components of the vector o:1 are the same as those with the vector o: and 
the component number (n + 1) is -{}. With respect to this modification we 
formulate generalised Anderson task once more. 

Let X be the multi-dimensional linear space as before, and J be a set of 
indices of a certain ensemble of Gaussian random variables which assume their 
values in this space. For each random variable from the ensemble determined by 
the index j E J the mathematical expectation pi and the covariance matrix r7i 
are known. The group J is divided into two classes J 1 and J 2 . Let the decision 
making strategy have the following form given by the vector o:. At (o:, x) > 0 a 
decision is made that the observation x is a realisation of the random variable 
from the first class and the (o:, x) < 0 is considered to be a realisation of the 
random variable from the second class. We will denote by the symbol c-i ( o:) 
the probability of the event that the realisation of the j-th random variable 
will not be included into the class where it actually belongs. This means that 
for j E J1 the symbol c-i ( o:) denotes the probability that the random Gaussian 
vector x with the mathematical expectation pi and the covariance matrix r7i 
will satisfy the inequality (o:,x) :S: 0. Similarly for j E h the symbol c-i(o:) 
denotes the probability of the inequality (o:, x) ~ 0 for the random Gaussian 
vector x, whose mathematical expectation is pJ and the covariance matrix is r7i. 

In generalised Anderson task, a vector o: f:. 0 is sought which minimises the 
criterion maxiEJ c-i(o:). Thus the following vector has to be calculated 

o: = argmin max c-i(o:). 
<> JEJ 

(5.6) 
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To make further analysis more convenient, we will present the task (5.6) in a 
slightly different equivalent formulation. Let us introduce vectors p,'i in this 
form 

for j E J1, 

for j E J2. 

Figure 5.2 illustrates the transformation for the case in which J1 = {1, 2} and 
J2 = { 3, 4}. For any yector a there holds that the probability of the inequality 
(a, x) ~ 0 for the rai}dQrn Gaussian vector x with the mathematical expectation 
p,i and the covariance mp.tiix cri is the same as the probability of the inequality 
(a, x) ~ 0 for the random Gaussian vector x with the mathematical expectation 
-p,i and the covariance matrix cri. Thus generalised Anderson task (5.6) can 
be expressed in the following equivalent formulation. 

For the ensemble ( (p,i, cri), j E J) , 
a non-zero vector a has to be sought 
which minimises the number m~x c;i (a), 

J 

a= argmin m~x c:i(a), (5.7) 
0 J 

where c:i (a) is the probability that the 
random Gaussian vector x with the 
mathematical expectation J.Li and the 
covariance matrix cri will satisfy the 
inequality (a, x) ~ 0. 

For better illustration let us go back 
to geometrical considerations. In the 
original task there were two sets cor

CD 
8 . ,f;\,. G ............ \:_) 

' \ I _____ -:_..._, ------G-,, ......... 
I \ '-. 3 

{~) --, 
Figure 5.2 The straight line separating the 
ellipses 1, 2 from the ellipses 3, 4 is equivalent 
to the straight line leaving the ellipses 1, 2 
and 3', 41 along one side. 

responding to Gaussian random variables and they were separated by a hy
perplane into two parts. In the present formulation we have one set and want 
to achieve to have it in one half-space (i.e., on one side of the separating hy
perplane). That very formulation of the task is convenient since in further 
examination it will not be necessary to keep in memory for each j whether it 
belongs to the set J1 or to the set h. For these two cases, therefore, different 
formulre will not have to be used. 

Before starting a formal analysis of the task (5.7) we will examine it infor
mally. 

5.3.2 Informal analysis of generalised Anderson task 
The input data for generalised Anderson task are formed by an ensemble of 
pairs ( (J.Li, cri), j E J). The ensemble characterises a certain group of multi
dimensional Gaussian random variables that assume their values in the linear 
space X. For the given vector J.L, the positive-definite matrix cr and for the 
number r a set of points x will be introduced which satisfy the condition 

(5.8) 
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• 
• 

0 

2 
J-l 

• 

Figure 5.3 Straight line passing through the 
origin, leaving the points J.!l, J.!2 and J.!3 along 
one side. 

Figure 5.4 Contact of one ellipse with the 
straight line. 

where · denotes a matrix product, in our case the product of a matrix and a 
vector. 

The set of points defined by the preceding inequality will be denoted E(r, J-l, 
a) and will be referred to as an ellipse of the size r, even in which we have in 
mind a multi-dimensional body. The concept of ellipse will be used also for a 
multi-dimensional case where from the geometrical point of view it would be 
called an ellipsoid. 

Let us express generalised Anderson task in the following equivalent form 
(on the basis of common sense and without any proof, for the time being). For 
the given ensemble of pairs ( (J-Li, ai), j E J) , such a vector a is to be found 
for the half-space {x E X, I (a, x) ~ 0} to contain the union of the ellipses 
UiEJ E(r, J-Li, ai) with their largest possible size r. 

If the formulation presented was really equivalent to the requirement (5.7) 
(and we will see later that it really is so) then the hyperplane, which is the 
solution of the task ( 5. 7), could be sought by means of a procedure which will 
be presented first in the simplest two-dimensional case. 

Let J-L1 , J-L2 and J-L3 be the mathematical expectations of three random vari
ables, as it is shown in Fig. 5.3. First, a straight line is to be drawn that passes 
through the origin of the coordinates and leaves all three points J-L1 , J-L2 and J-L3 

in the same half-space. 
If such a straight line were not exist, it would mean that for each linear 

discriminant function at least one random variable existed for which the proba
bility of the wrong decision was greater than 0.5. In such a case it would not be 
necessary to solve the task because even the best result would not be practically 
applicable. In Fig. 5.3 we can see that such a straight line does exist, e.g., as a 
horizontal straight line. Around the points J-L1 , J-L 2 and J-L3 the ellipses begin to 
grow whose sizes are the same at each instant and whose orientation depends 
on the matrices a 1 , a2 and a 3 . At the same time, with growing sizes of the 
ellipses, the position of the straight line changes so that all three ellipses should 
lie, all the time, in one half-plane defined by the straight line. The growth of 
the ellipse sizes continues till some ellipses (it may be even one ellipse) force the 
straight line into the only one possible position. Here a further growth of the 
ellipse sizes is no longer possible, since there is no such straight line to allow 
all three ellipses to lie in one half-plane. 

Let us see what the growth of ellipse sizes will look like in the case in Fig. 5.3. 
At the beginning the ellipse sizes grow without forcing the straight line to be 
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Figure 5.5 A particular case in which the 
straight line is closely contacted with one el
lipse. 

Figure 5. 7 Turning the straight line clock
wise further. 

Figure 5.6 The straight line contacts another 
ellipse. 

Figure 5.8 The straight line has contacted 
another ellipse. The growth of the ellipses 
ends. 

rotated. The initial growth will last only till one of the ellipses touches the 
straight line. In our case (when the matrices a1 , a2, 0"3 are the same) it is the 
ellipse 1, see Fig. 5.4. If the contact point were to fall exactly in the coordinate 
origin, further growth of the ellipse sizes would not be possible. This particular 
case of determining the straight line by one single ellipse is presented in Fig. 5.5. 
But in our case the contact point is not a coordinate origin, and thus the growth 
of the ellipse sizes continues and the straight line continues turning clockwise 
till it touches another ellipse. In our case it is the ellipse 2 in Fig. 5.6. If 
the contact points of the first and second ellipses were to lie along different 
sides with respect to the coordinate origin no further growth of the ellipse sizes 
would be possible and thus the growth of the ellipses would end. In our case 
such a situation has not occurred and ellipse sizes can grow further and the 
straight line is turning clockwise at the same time. The first ellipse stops to 
touch the straight line and the turning up now depends on the second ellipse 
only, Fig. 5. 7. 

The growth of ellipses continues either until the contact point does not 
reaches the origin of coordinates or until the straight line touches some other 
ellipse. In our our case it is the ellipse 3, see Fig. 5.8. The contact points 
of the second and third ellipses lie on opposite half-lines with respect to the 
coordinate origin and therefore with the growing size of the second ellipse the 
straight line would have to turn in one direction, and the growing size of the 
third ellipse would force the straight line to turn in the opposite direction. The 
growth of sizes of both the ellipses at the same time is no longer possible, and 
thus the found out position represents the solution of our task. 
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With a certain amount of imagination we can obtain some idea of what the 
growth of ellipse sizes might look like in a three-dimensional space (in terms of 
geometry they would be ellipsoids). Also the ellipse sizes here are growing till 
some ellipses force the separating plane into one possible position. This can 
happen either when the contact point gets to the coordinate origin, or when 
two contact points and the coordinate origin appear to be on one straight line, 
or, finally, when the triangle formed by three contact points incorporates the 
coordinate origin as well. 

On the basis of such an informally understood task we can consider the 
following necessary and sufficient condition for the optimal position of the hy
perplane in the task (5.7). 

Let H be a hyperplane and p,i, ai, j E J, be parameters of IJI random 
Gaussian vectors. The variable ri is a positive real number. Let xi, j E J, 
represent a point in which the ellipse 

touches the hyperplane H. Let J0 be a subset of those j E J for which 

ri = minri. 
jEJ 

For the optimal position of the hyperplane H with respect to the task (5.7) 
it is necessary and sufficient that the coordinate origin should lie inside the 
polyhedron the vertices of which are the contact points xi, j E J0 • 

This statement will be formulated more elaborately and will be proved. For 
a more accurate analysis of Anderson tasks both the original and generalised 
tasks, we will state more precisely the concepts of the ellipse and the contact 
point which we introduced when referring to intuitive understanding. 

5.3.3 Definition of auxiliary concepts for Anderson tasks 
Let X be n-dimensional linear space, Jl E X be n-dimensional vector and a be 
symmetrical positive-definite matrix of the dimension ( n x n). Furthermore, let 
the vector a E X and the number 0 decompose the space X into three subsets: 

the positive half space x+ 
the negative half space x
and the hyperplane X 0 

{ x E X I (a, x) > 0} , 
{x EX I (a, x) < 0}, 
{ x E X I (a, x) = 0} . 

Let us assume Jl E x+. Let us denote by F the quadratic function 

F(x) = ((x- p,), a- 1 • (x- p,)) (5.9) 

and for a certain non-negative number r the set E(r,p,,a) = {x E XIF(x) ~ 
r2 } is to be referred to as the ellipse of the size r. The highest value of r, at 
which the ellipse E(r, p,, a) is a subset of the set x+ UX0 , will be denoted by r* 
and referred to as the distance of the pair (p,, a) from the hyperplane X 0 . It is 
obvious that there exists one single point which belongs to both the hyperplane 
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X 0 and the ellipse E(r*, JL, a). It will be denoted by x0 and referred to as the 
contact point. It is also obvious that in the contact point the minimal value of 
the function F in the hyperplane X 0 is reached and the value of the function F 
in the contact point is (r*) 2 , i.e., the square power of the distance (JL, a) from 
X 0 . Explicit expressions for the distance and the contact point can be derived. 

To the respective optimisation task the Lagrange function corresponds 

<I>(x, .X)= ((x- JL), a- 1 · (x- JL)) +.X· (a, x) 

and the point x0 sought is the solution of the pair of equations 

grad <I>(x, .X) = 0, } 

(a:, x) = () 
(5.10) 

with respect to the variables x and .X. In particular, the first equation in the 
system (5.10) is 

2 a-1 · (x- JL) +.X· a= 0, 

from which it follows that 
.X 

xo = JL- 2 a· a, (5.11) 

where the Lagrange coefficient .X is to assume such a value at which the second 
equation in the system (5.10) is satisfied, i.e., the equation 

Its solution with respect to the coefficient .X is 

.X = 2 (a:, JL) - () . 
(a:, a . a:) 

(5.12) 

Let us substitute the expression (5.12) for the value .X into the formula for the 
contact point (5.11) to obtain an explicit expression for the contact point x0 . 

It no longer contains the undetermined coefficient .X, 

(a, JL) - () 
xo = Jl - ( ) a · a . a, a·a 

(5.13) 

When the expression for Xo is substituted into the formula (5.9) we obtain the 
size (r*)2 of the ellipse ((x0 - JL), a-1 · (x0 - JL)) = (r*)2 at which the ellipse 
touches the hyperplane (a, x) = 0. Let us do it. 

(r*) 2 = ((xo- JL), a- 1 · (xo- JL)) 

= ( (Jl- ~a. a:- Jl) , a- 1 . (Jl- ~a. a_ Jl)) 

(.x)2 (_x)2 = 2 ((a·a:),a-1 ·(a·a:))= 2 ((a·a:),a) 

= (~)2 (a:, a. a)= ((a:,JL)- ())2 (a, a. a:)= ( (a,JL)- () )2 
2 (a:, a· a:) ..j(a, a. a:) 
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This means that the dimension r* of the ellipse contacting the hyperplane 
(a, x) = () is 

r* = (a, /1) - () 

J(a, u ·a) 
(5.14) 

If we take into consideration that the vector 11 belongs to the positive half-space 
x+ then we will obtain an expression without the sign for the absolute value 

r* = (a, /1) - () 

J(a, 0' ·a) 
(5.15) 

In case the vector 11 belonged to the negative half-space x-, the corresponding 
expression would be 

r* = () - (a, /1) 

J(a, 0' ·a) 
(5.16) 

We will continue concentrating our attention on the formulce (5.15) and 
(5.16) obtained above. The numerator in (5.15) is the mathematical expecta
tion of the random variable (a, x) -B for the random vector x with mathematical 
expectation 11· The denominator is the mean square deviation of the random 
variable (a, x)- () for the random vector x with the covariance matrix u. From 
this it directly follows that the size of the ellipse contacting the hyperplane is a 
strictly monotonically decreasing function of the probability that the random 
variable x will get to the half-space defined by the hyperplane X 0 and different 
from the half-space in which the mathematical expectation 11 occurs. In this 
way we have proved the following lemma. 

lemma 5.1 Let x be a multi-dimensional random Gaussian variable with the 
mathematical expectation f1 and the covariance matrix 0', which assumes the 
values in a linear space X. Let the vector a E X and the number () decompose 
the space X into three subsets: 

positive half-space x+ = {X E X I (a, x) > B} ' 
negative half-space x- = {X E X I (a, x) < B} ' 
and the hyperplane X 0 = { x E X I (a, x) = B} . 

1. If f1 E x+ then the probability of the event x E x- is a strictly decreasing 
function of the distance of the pair (f1, u) from the hyperplane X 0 ; 

2. If f1 E x- then the probability of the event x E x+ is a strictly decreasing 
function of the distance of the pair (f1, u) from the hyperplane X 0 . A 

Proof. 
(5.16). 

Lemma 5.1 is an obvious consequence of the relations (5.15) and 

• 
5.3.4 Solution of Anderson original task 
Now we will formulate Anderson original task using concepts presented in the 
previous section. Let /11 and /12 be two vectors and u1 and u2 be two matri
ces. A vector a and a number () have to be found that are to decompose the 
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space X into half-spaces x+ and x- by the 
hyperplane X 0 so that J.t1 E x+, J.l2 E x- and 
the distances of the pairs (J.t1, cr1) and (J.t2, cr2) 
from the hyperplane X 0 should be as large as 
possible. 

Referring to the intuitive understanding, 
we claim that the hyperplane X 0 = { x E 
X I (a, x) = 0} is (a) a tangent hyperplane 
common with the two ellipses of the same size; Figure 5.9 Both ellipses touch the 
(b) both ellipses touch the hyperplane in the hyperplane in the same point. 

same point, as can be seen in Fig. 5.9. 
We will use explicit formulre (5.15), (5.16) for the maximal ellipse sizes and 

the formula (5.11) for the contact point. The statement will be proved by 
means of the system 

(a,J.t1)-8 

..j(a, cr1·a) 

(a, J.l2) - 8 

..j(a, cr2 ·a) 

2 (a,J.t1)- 8 
(a, cr1 ·a) ' 

(5.17) 

which by means of the newly introduced variables A' 1 = !A1 , A' 2 = -!A2 will 
be presented in the form 

(a,J.t1)-8 
..j(a, cr1 . a) 

().1 · CT1 + A2 · CT2)-1 · (J.t1- J.l2) , 

(a, J.t2) - 8 

..j(a, cr2 ·a) ' 

a· J.t1 -8 
a. CT1 . a 

(a, J.t2) - 8 
(a, cr2 ·a) · 

(5.18) 

The second equation in the relation (5.17) has been rewritten to the form (5.18) 
with respect to the requirement J.t1 E x+, J.t2 E x-. Both coefficients A1 and 
A2 are positive, and therefore their sum >.1 + >.2 is also positive. Note that 
the vector a need not be determined precisely, but only up to a multiple by 
a positive coefficient. The solution of the task, therefore, does not depend 
on precise values of the coefficients >.1 and >.2, but only on their ratio. Both 
coefficients can be, e.g., tied together by the following relation 

(5.19) 
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since any ratio between >.1 and >.2 can be achieved even on the condition given 
by the equation (5.19). Their ratio is 

(a, 0"2 ·a) 
(a, 0"1 ·a) · 

(5.20) 

Thanks to the second equality in the system (5.18) the product of the two first 
coefficients in the right-hand part of (5.20) is unit, and thus 

(a, O"z ·a) 
(a, 0"1 · a) · 

In this way we have arrived to Anderson smart original solution of the task. 
Note the condition (5.19) and write down the first formula of the system (5.18) 
in the form 

(5.21) 

which explicitly states the dependence of the vector a on the input data J.L1 , 

J.Lz, 0"1 and 0"2 up to the value of the coefficient >.. It is to be chosen such as to 
satisfy the condition 

1->. 
>. 

(a, 0"2 ·a) 
(a, 0"1 ·a) · 

The obtained result is elegant since a complex minimax task with n + 1 variables 
(n can be rather large) has been successfully simplified to search for a single 
number >.. As soon as the number >. is found the remaining n unknowns 
are obtained that are elements of the vector a, see (5.21). The value of the 
coefficient >. sought can be iteratively calculated. An arbitrary initial value 
is taken, e.g., >. = 0.5. Then by means of the formula (5.21) the vector a is 
calculated as well as the ratio 

"'(= 
(a, 0"2 ·a) 
(a, 0"1 ·a) ' 

and it is to find out if the already obtained ratio is equal to (1 ->.)/A.. If it 
is so then the task has been solved. If not then a new value of the coefficient 
>.', is stated that already satisfies the condition (1- >.')>.' = "'(, rewritten as 
>.' = 1(1 + "Y), and the iteration continues. 

Without intending to diminish the ingenuity of the procedure, we want to 
remark that from a computational standpoint the smartness was achieved in 
such a way that all the clumsiness was hidden in the relation (5.21) in the 
operation of matrix inversion. We would like to find an algorithm which would 
do without inverting, and, moreover, we would like to solve a more general 
task than that by Anderson. To achieve the result desired a more accurate and 
elaborate analysis will be nPeded compared to the current informal analysis. 
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5.3.5 Formal analysis of generalised Anderson task 
First, let us recall the main concepts of generalised Anderson task which has 
been referred to in Subsection 5.3.1. Recall that X is an n-dimensionallinear 
space and J is a finite set of indices. For each index j from the set J an n
-dimensional vector J.lj and a symmetrical positive-definite (n x n)-dimensional 
matrix CJJ are defined. Further on o: is an n-dimensional vector. For each 
triplet o:, J.1 and CJ a number c(o:, J-1, CJ) is defined which means the probability 
that a random Gaussian vector x with the mathematical expectation 1-1 and the 
covariance matrix CJ will satisfy the inequality (a:, x) :S 0. 

In the task a vector o: is sought that minimises the number maxJEJ c(o:, ILJ, 

CJJ) for the known J.lj, CJJ, j E J. We write 

o: = argmin max c( o:, 11j, CJJ) . 
et jEJ 

Let us denote the minimised function maxjEJ c(o:, J.lj, CJi) by the symbol f(o:). 
The given data suffice for proving the theorem which states that the function 
f(o:) is unimodal and thus its minimisation can be achieved. 

Theorem 5.1 Convexity of the set of vectors a. The set of vectors o: satis

fying the inequality f(o:) :S b is convex for each number b < 0.5. A 

Proof. Lemma (5.1) states that the probability c(o:, J.lJ, CJJ) strictly decreases 
with the growth of 

J (a:, (Jj . o:) 

This means that for each real b there exists such real c, that when c:( o:, J.lj, CJi) :S 
b is valid then the following expression is also satisfied 

(a:, J.lj) 
2': c. 

J(o:, (Jj. o:) 

If c:(o:,J.1J,CJJ) = 0.5 then there holds 

(o:,J.li) =0. 
J(o:, (Jj. o:) 

The condition /(a:) :S b is equivalent to the following system of equations 

E(o:,J.li,CJi) :S b, j E J. 

Thanks to the monotonicity the preceding system can be replaced by an equiv
alent system of inequalities 

(a:, J.lj) 
J (a:, (Jj . o:) 2': c: ' j E J' ( 5.22) 

where, in a way, the number c: depends on the number b. The system (5.22) 
can be written in the form 

(o:,pj)-c·v(o:,CJJ·o:)2':o, jEJ. ( 5.23) 
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The functions in the left-hand side of each inequality of the system (5.23) consist 
of two summands. The first of them is a linear function of the vector a, and as 
such it is concave. The function (a, ai ·a) is a convex function of the vector 
a. Thus the function -c (a, ai ·a) is concave since the number c is strictly 
positive by the assumption b < 0.5. The left-hand side in each inequality in the 
system (5.23) is a sum of two concave functions, and thus it is also concave. 
Therefore for each j the set of vectors satisfying the j-th inequality is a convex 
set. The set of vectors satisfying the system (5.23) is an intersection of convex 
sets, and thus it is also convex. • 

From the theorem proved it directly follows that in the domain where f(a) < 
0.5 no strict local minimum can exist which would not be identical to the 
global minimum. The strict local minimum is here the point a 0 , for which a 
!5-neighbourhood of the point a0 exists in which for each a :f. a0 the strict 
inequality /(no) < f(a) is satisfied. Let us assume the opposite, let a' and 
a" be two strict local minima. Without loss of generality, let us assume that 
f(a") ~ f(a') = c < 0.5. We will connect the points a" and a' with a 
straight line segment. Since the point a' is the local minimum then on this line 
segment there is a point a (and it can be quite near the point a') for which 
f(a) > f(a') = c must hold. This would, however, mean that the set of vectors 
a, for which f(a) ~ c < 0.5 holds is not convex. From Theorem 5.1 it follows 
that if the point a is reached in which the value f(a) ~ 0.5 then from this 
point we can get to the global minimum a* directly along the straight line a 
which connects the current point with the point a*. When moving along the 
straight line, the function f(a) will not be rising in any position. 

Actually even stronger statements are valid than those presented here. From 
each point a for which f(a) < 0.5 holds it is possible to pass along the straight 
line to the point a* in which the global minimum of the function f is reached. 
When moving along the straight line from the point a to the point a* the 
function f will be continuously decreasing. 

This property of the function f could be used for organising the procedure 
of its minimisation. But this procedure cannot be based on the motion in the 
direction of the gradient getting towards a zero-gradient point, as usually hap
pens, since the function being maximised is neither convex, nor differentiable. 
Necessary and sufficient conditions for the existence of a maximum are to be 
stated that are not based on the concept of the gradient. 

Further on a lemma is proved which deals with the necessary and sufficient 
conditions for the minimum of the number c:{a, f..L, a). The formulation of the 
lemma is based on the concept of the contact point of an ellipse { x E X J (x -
J.L,a · (x- J.L)} ~ r 2 } and a hyperplane {x EX I (a,x) = 0}. The contact point 
is marked x0 (a,J.L,a). On the basis of (5.13) referring to 0 = 0, the expression 
for xo(a,J.L,a) is 

(a,J.L) 
xo(a,J.L,a) =J.L- ( ) a·a. 

a, a·a 
(5.24) 

The proof is based on the concept of distance of the pair (J.L, a) from the hyper
plane {x EX I (a,x} = 0}. The distance is marked r*(a,J.L,a). Based on (5.15) 
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and remembering that () = 0 the expression for r* (a, fJ, a) can be written as 
follows 

r*(a,!J,a) = (a,Jl) (5.25) 
J(a, a· a) 

Lemma 5.2 Necessary and sufficient condition for optimality of a for one 
distribution. Let for a triplet (a, fJ, a) hold that (a, fJ) > 0. Let xo(a, fJ, a) be 
the contact point and ~a any vector which is not collinear with the vector a. 
For this case two implications are valid: 

1. If the following condition is satisfied 

(~a, xo(a,Jl,a)) > 0 (5.26) 

then a positive number T exists such that for any t, 0 < t ::; T, the following 
inequality is satisfied 

c: (a+ t · ~a,Jl,a) < c (a,Jl,a). 

2. If the following condition is satisfied 

(~a, xo(a,!J,a))::; 0 

then there holds 
c: (a+ ~a, fJ, a) > c (a, fJ, a). 

(5.27) 

(5.28) 

(5.29) 
A 

Remark 5.1 Lemma 5.2 states virtually that the necessary and sufficient con
dition for the optimality of the vector a is that the contact point xo (a, fJ, a) is 
identical with the coordinate origin, which was intuitively understood in infor
mally examining Anderson task. 

And in fact, if xo (a, fJ, a) = 0 then the condition ( 5. 28) is satisfied for any 
vector ~a, and thus for any vector ~a, that is not collinear with the vector a. 
The inequality (5.29) states that c:( a, fJ, a) < c:( a', fJ, a) holds for any vector a', 
that is not collinear with the vector a, which means that the vector a ensures 
the least possible value of the probability c:( a, fJ, a). 

On the other hand, if xo(a, fJ, a) =/:- 0 then a vector ~a exists for which 
(5.26) holds. It can be, e.g., the vector ~a= x0 (a,J1,a). Thus there exists a 
point a' = a + t · ~a having the value c:( a', fJ, a) which is less than c( a, fJ, a). 

Lemma 5.2 was stated in a less lucid form since just in the presented form 
it is helpful for the proof of the next theorem. Our objective is not to minimise 
the probability c(a,Jl,a) for one single pair (Jl,a), but to minimise the number 
maxjEJ c(a, fJj, ai) for- a certain ensemble of pairs. Lemma 5.2 is only an 
auxiliary result for our final aim. A 

Proof. (Lemma 5.2) We will examine a case where the condition (5.26) is 
satisfied, i.e., (~a, x0 (a, fJ, a)) > 0. We will consider the function r* (a+ t · 
~a, fJ, a) of the variable t. According to (5.25) it is the function 
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Its derivative in the point t = 0 is 

dr* (a+ t · t!.a, /-t, u) I 
dt 1=0 

( (~-t- ~(u ·a)), tia) 

J(a, u ·a) 
(5.30) 

On the basis of the expression (5.24) for xo(a,~-t,u) it is clear that in the 
fraction on the right-hand side of (5.30) the numerator is the scalar product 
(x0 (a, J.L, u) , tia), which is positive, as assumed. The examined derivative is, 
therefore, also positive. It follows from it that there exists such a positive T 
that for each t, 0 < t ~ T, the following inequality is satisfied 

r* (a+ t · t!.a, /-t, u) > r* (a, J.L, u) , 

from which, thanks to Lemma 5.1 the inequality (5.27) follows which was to 
prove. In this way the first statement of Lemma 5.2 is proved. 

We will now prove the second statement of Lemma 5.2, where the following 
condition is assumed 

(tia, xo(a, /-t, u)) ~ 0. 

Here the behaviour of the function r* (a, /-t, u) is to be examined not only in 
the neighbourhood of the vector a, as was in the previous case, but in a global 
sense, and therefore for an analysis of such a behaviour the knowledge of the 
derivatives of this function in the point a will not do. Thus additional consid
erations, but not very complicated ones, are needed. 

To be brief, we will denote a+ t!.a as a' and Xo (a, /-t, u) as xo. For the vector 
a' three cases can appear: 

(a',~-t) ~ 0; 

(a', 1-t) > 0, (a', xo) < 0; 

(a',~-t)>O, (a',xo)=O. 

(5.31) 

(5.32) 

(5.33) 

The case in which (a',xo) > 0 is excluded since (a',xo) ((a+ t!.a),x0 ) 

= (a, xo) + (tia, xo) ~ 0. And actually the summand (a, x0 ) is zero since 
according to the definition the contact point x0 belongs to the hyperplane 
X 0 (a) = {x E X I (a, x) = 0}, and (t!..a, x0 ) is not positive according to the 
assumption (5.28). 

When the condition (5.31) is satisfied then the statement of Lemma 5.2 is 
obviously valid, since a satisfies the inequality (a, J.L) > 0, and thus c:(a, J.L, u) < 
0.5. The inequality (5.31) means that c:(a',~-t,u) ~ 0.5. 

Let us examine the cases (5.32) and (5.33). The symbol F(x) will denote a 
quadratic function ( (x- J.L), u-1 · (x- 1-t)) and we will prove that in both cases 
(5.32) and (5.33) such a point x* in the hyperplane X 0 (a') = { x E X I (a', x) = 
0} exists that 

F(x*) < F(xo) . (5.34) 
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Thus the inequality (5.29) will be proved, and so will the entire Lemma 5.2. 
If the inequality (5.34) is valid (and we will prove its validity) then there holds 

(r*(a',J-L,u)) 2 = min F(x) :::; F(x*) < F(xo) = (r*(a,J-L,u)) 2 • (5.35) 
xEX 0 (a') 

By Lemma 5.1 it leads to the inequality (5.29) which was to be proved. 
We will prove first that for the constraint (5.32) the statement (5.34) is valid. 

The scalar product (a', x) depends continuously on the vector x, and so from 
the inequalities (5.32) it follows that there exists a number 0 < k < 1 such that 
the point x* = x0 · (1- k) + k · J-Llies in the hyperplane X 0 (a'). If J-Llies on one 
side from the hyperplane X 0 (a') and x0 lies on the other side of it then some 
intermediate point x* must lie just on the hyperplane. The value of the function 
Fin the point x* is F(x*) = F(xo · (1- k) + k · J-L) = (1- k) 2 · F(x0 ) < F(x0 ), 

which proves (5.34). 
Now we will prove that the statement (5.34) follows from the condition (5.33) 

as well. Since the vectors a and a' are not collinear, neither of the hyperplanes 
X 0 (a) and X 0 (a') are identical. Therefore a point x' exists which belongs 
to the hyperplane X 0 (a') and does not belong to the hyperplane X 0 (a). This 
point is not identical with the point Xo because Xo lies in the hyperplane X 0 (a). 
The point xo also lies in the hyperplane X 0 (a'), since the assumption (5.33) 
states that (a', xo) = 0. Let us draw a straight line through the points x0 and 
x' which also lies in the hyperplane X 0 (a') as stated before. Let us examine 
the behaviour of the function F along this straight line. 

F(xo + k · (x'- xo)) (5.36) 

= ( (J-L- xo - k · (x' - xo)), u- 1 · (J-L- xo - k · (x' - xo))) 

= F(xo)- 2k · ((x'- xo), u-1(J-L- xo)) + k2 · ((x'- xo), u-1 · (x'- xo)). 

If for the number k the following expression is supplied 

((x'- xo), u-1 · (J-L- xo)) 
k= ' ((x'- xo), u-1 · (x'- xo)) 

we can continue in modifying (5.36) 

F(xo + k · (x'- xo)) 

= F(xo)- 2k · ((x'- xo), u-1 · (J-L- xo)) 

((x'- xo), u-1 · (J-L- xo)) , -1 , 
+ k ' J ( 1 ) _ 1 ( 1 ) ) ' ( (X - Xo), 0' · (X - Xo)) 

\ X - Xo , 0' · X - Xo 

= F(xo)- k · ((x'- xo), u-1 · (J-L- xo)) 

= F(xo)- (((x'- xo), u-1. (J-L- xo)))2 
( (x' - xo), u-1 · (x' - xo)) 

( 5.37) 
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If we use the expression (5.11) for x0 then we obtain a-1 · (f..l- xo) = -~Aa 
which simplifies the formula (5.37) to 

F(xo+k·(x'-xo)) =F(xo)- (~A(a, (x'-xo))) 2 
. 

((x'- xo), a- 1 · (x'- xo)) 

Because x' ~ X 0 (a) and Xo E X 0 (a), the relations (a, x') -::/= 0 and (a, Xo) = 0 
are valid. Consequently the scalar product \a, (x'- x0 )) is not 2;ero. Accord
ing (5.12) A is a nonzero number as well as 2A(a, (x'- x0 )). Thus 

F(xo + k · (x'- xa)) < F(xo). 

From this it follows that on the straight line passing points x0 and x', there 
exists a point x* E X 0 (a') for whiCh (5.34) holds. • 

Now we have had sufficient knowledge to state the necessary and sufficient 
conditions for the vector a to minimise the value maxjEJ c(a, f..lj, ai). Let us 
note that (f..li, ai), j E J, are vectors and matrices. Let a be a vector that 
satisfies the inequalities (a, f..li) > 0, j E J. Further on we will need the 
numbers 

(rl) 2 = min (x-f..li,ai·(x-f..li)), jEJ, 
xEH(a) 

the subset J 0 of indices j E J, for which ri = minjEJ ri holds. We will need 
the set of corresponding contact points x~, j E J 0 , too. 

Theorem 5.2 Necessary and sufficient conditions for the solution of gener
alised Anderson task. If the convex hull of the set of contact points x~, j E J0 , 

includes the coordinate origin then for any vector a' which is not collinear with 
the vector a the following inequality holds: 

If the abovementioned convex hull does not include the coordinate origin then 
a vector ~a and a positive number T exist so that for any t, 0 < t ::=; T, the 
following inequality is satisfied: 

max c(a + t 0 ~a, f..lj, ai) <max c(a, f..lj, ai) 0 

jEJ jEJ 

Proof. First, we will prove the first statement of Theorem 5o2. It is assumed 
that such numbers 'YJ, j E J0 , exist which satisfy the conditions 

L"Yj·X~=Oo 
jEJO 

This means that any vector a' satisfies the equality 

L ')'J 0 (a', x~) = 0 0 

jEJO 



156 Lecture 5: Linear discriminant function 

The equality is certainly valid for some nonzero vector a' which is not collinear 
with a. This sum can be zero only when at least for one j* E J0 the following 
inequality is satisfied 

(a',xf) :50. 

The equation (a, x~) = 0 is satisfied for each j E J and thus also for j*. This 
means that the vector ~a = a'- a satisfies the inequality (~a, xf) :5 0. With 
respect to Lemma 5.2 we write c(a', flj*, ai*) > c(a, fli*, ai* ). The number 
maxiEJ c(a, fli, ai) is evidently e(a, fli*, ai* ), since j* E J0 , and the number 
maxiEJ c(a', fli, ai) is not less than c(a', fli*, ai* ). Thus maxiEJ c(a', fli, ai) > 
maxiEJ c(a, fli, ai). In this way the first statement of Theorem 5.2 is proved. 

We will denote by X 0 the convex hull of the set of contact points x~ and 
prove the second statement of Theorem 5.2 in which 0 ~ X0 is assumed. Then 
a vector ~a exists for which the inequality (~a, x~) > 0 for each j E J0 holds. 
It can be, e.g., the point argminxEXo lxl. As a result of the first statement 
of Lemma 5.2 it follows that there exist such positive numbers Ti, j E J0 

that 
V(j E J0 ) V(t I 0 :5 T1): c(a +~a· t, fli, ai) < c(a, fli, ai). 

The preceding statement remains valid when all numbers Ti are substituted by 
the number T' = miniEJo Ti, and after this substitution the order of quantifiers 
is changed. In this way we obtain the relation 

According to the definition of the set J0 each value c(a, fli, ai), j E J0 , is 
equal to maxiE.! c(a, fli, ai) and the expression (5.38) can be modified as fol
lows: 

V(t I 0 < t :5 T'): max c(a +~a· t, fli, ai) <max c(a, fli, ai). (5.39) 
jEJ0 )EJ 

The dependence of c(a, flj, ai) on the vector a is continuous. Therefore when 
for an index j' the inequality 

c(a, fli', aj') ::j:. max c(o, fLJ, ai) 
jEJ 

is satisfied it then remains valid at least for small values of t too, 

Thus a positive number T exists (it may be less than T') for which the inequal
ity 
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is valid for any t, 0 < t ~ T. Based on this we will rewrite the statement (5.39) 
in the form 

'V(t I 0 < t ~ T): max c:(a +~a· t,p.J,ui) <max c:(a,p/,ui), 
jEJ jEJ 

and in this way also the second statement of Theorem 5.2 is proved. • 

The Theorem 5.2 proved shows the procedure of minimisation of the number 
maxjEJ c:(a, J.Li, ui). The algorithm solving this optimisation task is to reach a 
state in which the polyhedron circumscribing the contact points xo(a, J.Li, ui), 
j E J0 , includes the coordinate origin. In this state the algorithm can be 
finished. If such a state has not occurred then a direction ~a is sure to exist 
such that when moving in that direction then the number maxjEJ c:(a, J.Li, ui) is 
decreasing. In the proof of Theorem 5.2 it can be seen how to find the direction 
~a. The direction sought is a vector having non-negative scalar products with 
the vectors corresponding to the contact points. The task of searching for the 
direction ~a appears to be identical with the task of the simple separation of 
a finite set of points. We can see that for solving generalised Anderson task we 
must have an algorithm for a simple separation of the sets of points and use it 
iteratively for each task minimising maxjEJ c:(a, J.LJ, ui). 

5.3.6 Outline of a procedure for solving generalised 
Anderson task 

On the basis of the analysis used up to now, we can outline a framework of an 
algorithm for solving generalised Anderson task. 
1. First, a vector a is to be found such that all scalar products (a, J.Li), j E J, 

should be positive. Finding such a vector appears to be identical with the 
task of the simple separation of finite sets of points. 
Another alternative would he to make sure that such a vector a does not 
exist. Then the task cannot be solved because the theory built so far, and 
even the present informal considerations, hold only for the domain where 
(a, p)} > 0, j E J. This resignation does not cost us much. Even if the task 
for this case was solved for some j E J the probability of an error would be 
greater than 0.5. But the same error is produced by the decision making 
rule which takes no regard to the observation x, and decides on inclusion 
to the first or second class in a random way. 

2. After finding the vector a which satisfies the condition 

(a, JLi) > 0, j E J, (5.40) 

it is necessary to calculate the contact points Xb, j E J, numbers r*i, to 
select the set J0 of those j for which there holds r•i = minjEJ r•i and to 
find such a direction ~a, which satisfies the conditions 

(5.41) 

We come again to the task of the simple separation of finite sets of points. 
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Another alternative would be to make sure that such a direction ~a does 
not exist. In this other case a result is obtained that the vector a, which 
has been found, solves the task. 
If a vector ~a exists which satisfies (5.41) then it is not unique, but there 
is a whole set of vectors ~a satisfying the condition. Among them the 
vector ~a could be sought in whose direction, in a certain sense, all errors 
c(a, J..li, ai), j E J, will be best reduced. It is natural that the vector ~a 
will be chosen so that the derivatives of all functions -E(a, J..li, ai), j E J 0 , 

should be as great as possible, i.e., 

(- ac(a+8tt·~)) ~a = argmax min 
Aa j 

or, which is the same, 

~a = argmax min /~a , x~. ) 
{AaiiAal=l} i \ J(a,aJ. a) 

If we denote x~/ J(a, ai ·a) by the symbol yi then we will obtain 

A • (~a, yi) 
ua = argmax mm I A I . 

Aa 1 ua 
(5.42) 

We can see that searching for such a vector is identical with the task of the 
best separation of the sets of points. 

3. After finding the vector ~a. which is characterised by the condition (5.42), 
we must find 

t = argmax min c(a +-~a, J..li, ai) (5.43) 
t jEJ 

and find a new vector a, as a ::= a + t · ~a. This vector is also sure to 
satisfy the condition (5.40). 

4. Go to the step 2 of the procedure. 

Let us see how far the outlined procedure is apt to be a basis for writing 
a practically applicable program. From the theoretical standpoint, the most 
important drawback is that the iterative cycle need not end. From the practical 
standpoint, it is not as inconvenient. The value 

decreases monotonically during iterations. This will usually do for a practical 
application: the user observes how the preceding value changes and informally 
decides whether to continue with the iterations hoping to obtain even substan
tially better results, or whether to stop the iterations at that moment. 

The computation of the number t according to the formula (5.43) represents 
the optimisation of a function, which is not very simply ordered, but it is, at 
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least, an unimodal function of one variable. There is a number of methods for its 
optimisation. For the realisation of the formula (5.43) they are suitable rather 
equally. In spite of that, the formula (5.43) is treacherous for programmers, so 
that in careless programming the program can run about ten to twenty times 
longer than is needed. 

Let us examine the auxiliary tasks (5.40), (5.41) and (5.42). The tasks (5.40) 
and (5.41) are the same. The task (5.42) includes the above two tasks. First, the 
task (5.42) is a particular case of generalised Anderson task, to whose solving 
the whole procedure sought is intended. Second, the task (5.42) is a particular 
case of generalised Anderson task, where all matrices ui, j E J, are unitary 
matrices. We might seem to be stacked in a logical loop: to solve Anderson 
task it is necessary to know how to solve the task (5.42), which can be solved 
only through the algorithm for solving generalised Anderson task. Actually, 
there is no logical loop since the particular case (5.42) has additional positive 
features, thanks to which its solving is much easier than that with the general 
task. 

Furthermore the property that the solution of the particular case (5.42) 
contributes to the solution of generalised Anderson task, this task itself has a 
further importance for the separation of the finite sets of points through linear 
discriminant functions. Such a kind of task is favourite in pattern recognition 
as one of the methods of learning. At the beginning of the lecture we made a 
note that it was worth being a favourite one. 

Now we will part with Anderson task for some time. First we will study the 
task of the linear separation of finite sets of points and then within the scope 
of this lecture we will again return to Anderson task. 

5.4 Linear separation of finite sets of points 

5.4.1 Formulation of tasks and their analysis 
Let J be a finite set of indices, which is decomposed into two subsets J1 and 
J2 , and X = { xJ, j E J} be a finite set of points in a linear space. A vector a 
is sought which satisfies the system of inequalities 

(a,xJ) > 0, 

(a,xJ) < 0, 

j E J1 , } 
j E h. 

(5.44) 

This system is referred to as a simple separation of finite sets of points. If this 
task has a solution then also the task 

I a j) o 
\~'X < ' 

(5.45) 

has a solution. If the system (5.45) has one solution then the same system has 
an infinite number of solutions. Therefore, let us make (5.45) stricter through 
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the requirement to seek a vector a and the greatest positive value of r satisfying 
the system 

(5.46) 

In other words, a vector a is to be found that maximises the number r when 
satisfying the system (5.46). An identical procedure is to seek the vector 

. ( . (a,xi) . -(a,xi)) 
a= argmax mm mm -

1
-

1
-, ~run I I . 

a JEJ1 Q JEh Q 
(5.4 7) 

The task ( 5.4 7) is referred to as the optimal separation of finite sets of points. 
This task is a particular case of generalised Anderson task in which for all j E J 
the matrices cri are unit matrices. 

In this particular case the task has an illustrative geometrical interpretation 
which will later be several times our basis in formal as well as in informal 
considerations. The task (5.45) requires a hyperplane to be found separating 
the set of points {xi, j E JI} from the set of points {xi, j E J2 }. The left
hand sides of inequalities in (5.45) represent the distance of the points from the 
hyperplane. The tasks (5.46) and (5.47) require us to find a hyperplane among 
all possible hyperplanes satisfying (5.45) which is most distant from the given 
points. 

From the analysis of generalised Anderson task we can see that the tasks 
(5.46), (5.47) can have even a different geometrical interpretation. An arbitrary 
vector satisfying the system (5.45) separates not only the points xi, j E J 1 , 

from the points xi, j E h, but it also separates a certain r-neighbourhoods of 
these points. The size of the neighbourhood, i.e., the number r, depends on 
the vector a. The task (5.46), (5.47) requires to find such a vector a which 
separates together with separating one set of points from the other even their 
largest possible neighbourhoods. 

We will denote the vectors x'i, j E J, so that x'i =xi, j E J1 , and x'i = -xi, 
j E h. The objective of (5.45) is to find a vector a for which there holds 

(a, x'i) > 0, j E .J, 

and the requirement (5.47) assumes the form 

a = argmax min /_In I , x'i) 
a JEJ \ Q 

(5.48) 

(5.49) 

Our tasks will be analysed in both formulations. The first formulation (5.48) 
has its origin in the task of simple separation of sets of points. Now a hyper
plane is to be found that will get all points into one half-space. The second 
task (5.49) originates in the task of optimal separation of the set of points. Now 
a hyperplane is to be found that, in addition to satisfying the conditions (5.48) 
of the first formulation, is most possibly distant from the set of points. 
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The distance is meant in the usual Euclidian sense. The formulation of the 
necessary and sufficient conditions for the optimal position of the hyperplane, 
which in the general case is provided by Theorem 5.2, can be expressed in 
the following nearly geometrical form. Assume we already operate with trans
formed vectors x'i and we will simply write them as xi. 

Theorem 5.3 Geometrical interpretation of conditions for optimal hyper
plane. Let X be a convex hull of the set of points {xi, j E J} and a* be a 
point from X, which lies nearest the coordinate origin, 

a* = argmin !xi . 
xEX 

When a* "I 0 then a* is the solution of the task {5.49). 

(5.50) 

Proof. For each j E J we will consider a triangle whose three vertices are 
the coordi~ate origin, the point a*, and the point xi. We will denote by the 
symbol X 1 . the side of a triangle that connects the vertices a* and xi. The 
relation X 1 C X is valid since a* E X, xi E X and X is convex. On these 
conditions, from the assumption (5.50) there follows that 

a* = argmin lxl . 
xEX' 

This means that in the side Xi of the triangle, it is the vertex a* which is the 
nearest point to the coordinate origin. Thus the angle at the vertex a* cannot 
be acute. The result is that the scalar product of the vectors -a* and xi - a* 
cannot be positive, 

(-a*, xi -a*) ~ 0. 

The same can be expressed as an equivalent statement 

I * 12 < ( * i) a _ a ,x . (5.51) 

The vector a* belongs to X, and therefore a set of non-negative coefficients ri 
exists the sum of which is 1, and there holds 

a* = 2: ri ·xi . 
iEJ 

(5.52) 

From what has been said the equality (a*, a*) = l:jEJ ri · (a*, xi) follows 
which will be written in a somewhat different form 

L 11 · ((a*,x1) -la*l 2 ) = 0. 
iEJ 

We can see that the sum of non-negative numbers (see (5.51)) is zero. This, 
however, can occur only when all summands equal to zero, i.e., 
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Some coefficients "fi, j E J, must not be zero since their sum must be 1. We will 
denote by J0 the set of indices j for which "fi :I 0 holds. For each such j E J0 

the equation (a*, xi) = ia*l 2 must hold, which together with the inequality 
(5.51) means that for each j E J0 , and for an arbitrary j' E J there holds 

(a*, xi) ~ (a*, x'i). 

From the above there follows that 

( a* i) _ . ((a* ,1)) 
~ , X - J.I~~ ~ , X , 

We have proved that in the expression (5.52) the non-zero coefficients are only 
the coefficients "fi by which the vectors nearest to the hyperplane (a, x) = 0 
are multiplied. So the expression (5.52) assumes the form 

a*= L "fi ·xi. 

iEJO 

We will start from the previous expression and prove that the convex hull 
of the contact points includes the coordinate origin, and this with respect to 
Theorem 5.2 will prove that a* is the solution of the formulated task. And 
in fact, if we use the formula (5.15) for the contact point and if we take into 
account that (Ti = 1 then we can write 

i_ i • (a*,xi) 
Xo - x -a . !a•i2 ' 

and 

( a* I: "fi. xi) 
"\"' -vi . xi = "\"' -vi . xi - a* . ' jEJo 
~ ' 0 ~ I I *I") 
jEJo iEJo a ~ 

_ ._ ._(a*,a*)_ ._ ._ 0 
-a a la*l2 -a a - . 

This means that the convex hull of the contact points includes the coordinate 
origin. • 

The theorem proved is already the solution of the task of optimal separation 
of the finite sets of points, since it reduces the task to minimisation of the 
quadratic function the domain of definition of which is a multi-dimensional 
convex polyhedron. Special features of the task allow to use even simpler and 
more illustrative algorithms. They will be quoted later. The theorem proved 
and the ideas of the proof can be summarised in relations which are valid for 
an arbitrary vector a and an arbitrary vector x E X, i.e., 

rp.in(-lal, xJ) ~ min/
1
a*l, xi)= ia*l ~!xi. 

JEJ a JEJ \ a* 
(5.53) 

The previous relations will be helpful in analysing algorithms solving the tasks 
of simple and optimal separations of finite sets of points. 
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5.4.2 Algorithms for linear separation of finite sets of points 
The task of optimal separation of finite sets of points might seem, at first 
glance, to be more important than the task of simple separation. Naturally, 
if an algorithm for solving the task (5.49) is at our disposal then it can also 
be used for solving the task (5.48). In spite of the indubitable truth of the 
preceding statement we realise that the task of the simple separation is valuable 
in itself. This is not only because the solution of the task (5.48) can be simpler 
compared with the problem (5.49) which is again quite natural. The fact is, as 
we will see later, that on the basis of thoroughly understanding the algorithm 
for a simple separation not only an algorithm for an optimal separation can be 
easily created, but also it may concern even the algorithm for solving generalised 
Anderson task. 

Kozinec algorithm linearly separating finite sets of points 

Let {xi, j E J} be a finite set of points for which an unknown vector a exists 
which satisfies the system of inequalities 

(a, xi) > 0, j E J. ( 5.54) 

We will show a procedure known as Kozinec algorithm, which can find a vector 
a, that satisfies the condition (5.54), even if it may, naturally, be different from 
a. 

We will create a sequence of vectors a 1 , a 2 , ... , a~., O:t+l, ... according to the 
following algorithm. 

Algorithm 5.1 Kozinec algorithm for simple separation of sets 

The vector 01 can be an arbitrary vector from the set X, i.e., from the convex closure 
of the set {xi I j E J}. For example, it can be one of the vectors xi, j E J. Let us 
admit that the vector o 1 has already been calculated. The vector Ot+l will be found 
according to the following rules: 

1. Such a vector xi, j E J, is sought that satisfies the condition 

( 5.55) 

2. If such a vector xi does not exist then it means that the solution of the task has 
already been found and o 1 is the vector sought. 

3. If the vector xi exists then we will denote it as x 1 . The vector Ot+l is determined 
in such a way that on a straight line connecting the points o 1 and x 1 a point is 
sought which is nearest the coordinate origin. This means that 

where 

Ot+l = (1 - k). Ot + k. Xt , k E R, 

k = argminl(l - k) · Ot + k · xtl. 
k 

( 5.56) 

(5.57) 

It is proved of Algorithm 5.1 that the vector a 1 is sure to occur in one of the 
steps which satisfies (5.54). This is stated in the following theorem. 
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Figure 5.10 Geometrical interpretation of properties of the points crt, Clt+l and Xt. 

Theorem 5.4 Convergence of the Kozinec algorithm. For the sequence a 1 , 

a2, ...... , at, at+1, obtained using the Kozinec algorithm, such t* exists 
for which 

(at.,xi)>O, jEJ, 

is valid. & 

Proof. The proof is based on the geometrical interpretation of properties 
of the points at, at+l and Xt, which the algorithm defines. The vector at+l 
is the foot of a perpendicular that goes through the coordinate origin and is 
perpendicular to the straight line passing through the points at and Xt, as can 
be seen in Fig. 5.10. In addition, it can be seen that the vector at+l is a convex 
linear combination of the vectors at and Xt. 

Since a 1 is a member of a convex set X and at+l is a convex linear combi
nation of points at and Xt, Xt EX, it follows that the vectors a 2, a 3, ... , at, ... 
are members of the X. For each of these vectors, therefore, the inequality 

\at\ ~ c, where c = mi_g \x\ 
xEX 

(5.58) 

is valid. It follows from the strict inequality in condition (5.54) that the set 
X does not include the coordinate origin, which means that the length of the 
vector at cannot converge to zero. 

On the basis of the geometrical interpretation of the relations between the 
vectors at, at+1 and Xt we will evaluate the ratio \at+II/!at! for at+l f. at. 
The point b is an intersection of the straight line interlaced with the points at, 
Xt with the hyperplane (at, x) = 0. We can see from Fig. 5.10 that 

1 

We will denote D = maxjEJ !xi!· Thanks to b E X the inequality \b\ < D 
holds. Using (5.58) we can write 

I 12 2 
~>~ 
\b\2 - D2 ' 
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and 
lo:t+11 < 1 < 1. 

lo:tl - J1 +c2 ID2 

It can be seen that the sequence of values lo:11, ... , lo:t I, ... is decreasing faster 
than a decreasing geometrical sequence. If the sequence o:1, ... , O:t, ... was infi
nite the number lo:t I could be less than any arbitrary positive number. Thanks 
to (5.58) the number lo:tl cannot be less than c. Therefore for some t* the 
vector O:t• must cease changing. The theorem has been proved. • 

For completeness we will indicate that the number t* can be estimated by 
means of the inequality 

lo:t+11 ( 1 )t• 
~:::; J1+c2ID2 

t• 

~ ~ (vl+~'/D') 
-t* -In 1 + - > In - · 1 ( c2 

) c 
2 D2 - D' 

*< ln(D2 Ic2 ) 

t - In (1 + c2 I D 2 ) 

At sufficiently small values of c2 I D 2 the property ln(1 + x) ~ x can be used 
for a simplified estimate 

Perceptron and Novikoff theorem 

The Kozinec algorithm for a linear classifier provides a smart and simple re
lation O:t+1 = (k- 1) O:t + k Xt· At first glance it might seem that only with 
difficulty could something simpler be found. It appears that such a simpler 
algorithm is used by the perceptron, i.e., O:t+1 = O:t + Xt· We will formulate 
the perceptron algorithm more precisely and introduce Novikoff theorem which 
proves that the perceptron algorithm solves the task of simple separation of 
finite sets. 

Let X = {xi I j E J} be a finite set of vectors, X be a convex hull of this 
set, and let 

c = mi.!!.lxl > 0 , D = max I xi I . 
xEX jEJ 

We will create the sequence of vectors o:1, o:2 , ... , O:t, O:t+l, ... in the following 
way. 

Algorithm 5.2 Separation of finite sets of points by means of the perceptron 

1. The vector 0! 1 is zero. When the vector Cl!t, t = 1, 2, ... is known then the vector 
Cl!t+l is determined according to the rules: 

2. If for all j E J the inequality (O!t,xj) > 0 is valid then the algorithm finishes. 

3. If x t is one of the vectors xj , j E J, for which the inequality ( 0! t, xj ) ::; 0 is satisfied 
then 
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The American mathematician Novikoff proved the following famous theorem. 

Theorem 5.5 Novikoff theorem on perceptron convergence. There exists a 
number t* :::; D2 /c2 , such that the vector at• satisfies the inequality 

for each j E J. 

Proof. Let us see what follows from the property that for some t the con
ditions (at. xi) > 0, j E J, are not satisfied and at+ I # at occurs. First, it 
follows that at each t' :::; t also at'+l #at' occurs. In addition, for each t' :::; t 
an Xt' was found such that (at', Xt') :::; 0. Therefore there holds 

from which it follows that 
(5.59) 

since a1 = 0. We will denote a* = argminxEX !x!. The number Ia* I is then c. 
According to (5.53) we obtain 

/ a* . j) * -\ Ia* I , x ~ Ia I - c . 

There holds for the scalar product (a* /Ia* I, atH), 

From that there immediately follows 

since a 1 = 0. By the triangular inequality the scalar product of vectors is not 
greater than the product of their absolute values. Therefore 

The result can be expressed in a more concise manner as an inequality 

latH I~ t ·c. 

If we divide the inequality (5.59) by the inequality lat+1 12 ~ t 2 · c2 then we 
obtain t :::; D2 / c2 . From this it follows that in the perceptron the vector a 
can be changed only if t :::; D2 / c2 . Thus, not later than in the step number 
(D2 /c2 ) + 1 the inequality (at, xi) > 0 is satisfied for each j E J. • 
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If we compare the perceptron algorithm with the Kozinec algorithm it might 
seem that the former is worth being preferred, since the upper limit for the 
number of iterations in the Kozinec algorithm is approximately 

D2 D2 
-ln
c:2 c:2 

and in the perceptron algorithm it is D 2 / c:2. Such a conclusion, however, would 
be too hasty because both the former and the latter evaluations are too rough. 
Even when it is not proved theoretically which of these two algorithms converges 
better, our practical experience allows us to claim that the convergence of the 
Kozinec algorithm is significantly better. Even despite the empirical experience, 
we do not intend to claim that the perceptron algorithm is worse. It is just 
the matter of empirical experience. Both the algorithms are simple and rich 
of ideas. We mean by it that they can be easily modified even for other tasks 
for which they may not have been originally intended. We will show such 
modifications and their unusual application later on. 

5.4.3 Algorithm for c:-optimal separation of finite sets of 
points by means of the hyperplane 

Let {xi, j E J} be a finite set of points the convex hull X of which does not 
include the coordinate origin. Further on, let 

r* = mi_!! lxl > 0 , 
xEX 

D = m~lxl = maxlxil, 
xEX JEJ 

o:* = argmin lxl . 
xEX 

We have already proved before that the vector o:* maximises the number 

%iY \ 1:1 , xi) . 

This means that the vector o:• is the solution of the task of optimal separation 
of finite sets of points. 

The vector o: (it can be different from o:*) is defined as theE-optimal solution 
of the task of finite sets of points separation, when for the positive value c: the 
following relation will be satisfied 

. \ o:* j) . \ 0: j) mm -1 - 1 , x - mm -1 -1 , x ~ c: • 
JEJ o:* JEJ 0: 

The Kozinec algorithm for a simple separation of finite sets of points has a 
favourable feature, i.e., after a slight modification it becomes the algorithm for 
the E-optimal solution of the task. The algorithm creates a sequence of vectors 
0:1, o:2, ... , O:t, O:tH, ... in the following way. 

Algorithm 5.3 e:-optimal separation of finite sets of points 

1. The vector a1 can be any vector from the set X, such as one of the vectors xi, 
j E .J. Assume that the vector Ctt has been found. The vector Ctt+l is created in 
the following way: 
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2. The satisfaction of the following condition is checked 

I I . ( Ot j) Ot - mm -
1 

-
1 

, x ~ c: , 
JEJ Ot 

j E J. (5.60) 

3. When the preceding condition is satisfied then the algorithm finishes. 

4. When the condition (5.60) is not satisfied then a point Xt in the set {x1 , j E J} 
is to be found the scalar product of which with the vector o1/lotl is the least. 

5. The vector Ot+l is determined as a point on the straight line segment connecting 
the points Ot and Xt distance of which from the coordinate origin is the least one. 

It can be seen that this algorithm hardly differs from the procedure quoted 
above for the simple separation given by the relations (5.55)-(5.56). The dif
ference is only in the stopping condition. In the algorithm for the simple sep
aration, the condition (5.55) finishes the algorithm when all scalar products 
(atflatl, xi) are positive. In the algorithm for the c:-optimal solution another 
condition, (5.60) is used which is stricter with small c:. According to this con
dition, the algorithm ends its operation only when all scalar products are not 
less than Inti- c:. 

For such a modified algorithm the condition (5.60) is surely satisfied in a 
certain step, since the lengths I at I is decreasing faster than does the geometrical 
series with a quotient less than 1. In this way, in an infinite continuation, the 
length Inti would converge to zero. This is, however, not possible because the 
vector a1 at any step t does not get over the limit of the convex set X. Thus 
its length cannot converge to zero. 

If the algorithm ended after creating the vector llt then this vector is the 
solution of the c:-optimal task. From the condition (5.60) for the algorithm stop 
and from the inequality 

min/ Ia* I, xi) ~ Inti, 
jEJ \ a* 

which was many times referred to (see 5.53), we obtain the inequality 

. \ a* i) . \ at i) mm -
1 

-
1 

, x - mm -
1 

-
1 

, x ::::; c: 
JEJ Q* JEJ llt 

stating that llt is the solution of the c:-optimal task. 
When once the modified algorithm is so easy, a question may arise of how 

it would behave at c: = 0, i.e., when it is not to be tuned to searching for an c:
optimal solution, but directly to the optimal solution. In this case the algorithm 
will usually operate for an infinitely long time (under the assumption, of course, 
that it is implemented on an ideal computer without numerical errors). But 
then it could hardly be called an algorithm. Despite this, it can be proved 
for this 'algorithm' that an infinite sequence a 1 , a 2 , ... , at, ... converges to the 
vector a*, which is the optimal solution of the task. But the sequence of lengths 
cannot be said to be upper bound by the decreasing geometrical sequence, 
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and therefore the analysis of convergence with such a sequence requires much 
finer considerations. Let us leave this analysis to future generations, since the 
theoretical incompleteness of the present analysis is no obstacle for practical 
application of the given 'algorithm' at c = 0. The user lets the algorithm run 
and observes at each iterative step the number I at I and the number 

( at• ·) rr!ax min -
1 

-,
1 

, xJ = ft . 
t 9 JEJ a 1 

The latter of the numbers shows that among the vectors calculated before a 
vector a occurred quality of which was ft. The former number Inti shows that 
even at an infinite continuation of the 'algorithm' a better quality will not 
be attained than that of la11. The following of the sequence development of 
the two above numbers is usually sufficient for the user to decide whether the 
operation of the 'algorithm' is to be interrupted or if it is to be let running in 
a hope that a substantially better solution may be attained. 

5.4.4 Construction of Fisher classifiers by modifying Kozinec 
and perceptron algorithms 

Let us now examine the tasks being solved and the particular algorithms not 
from the pattern recognition standpoint, but from a slightly different side. We 
will see that the tasks we are dealing with are nothing else than a solution of 
a special system of strict linear inequalities. Specific features of such tasks lie 
only in an a priori assumption that the system of equations is not contradictory. 
If we look at the tasks being solved from such a point of view then we can see 
that the given algorithms can be applied not only to the separation for which 
purpose they were originally created, but for any task that can be reduced to 
solving linear inequalities. Such tasks need not be sought outside the domain of 
pattern recognition; within the scope of pattern recognition we can find plenty 
of them. 

As one of them, the Fisher classifier [Fisher, 1936] will be studied, which 
will be introduced now. Let X be, as before, an n-dimensionallinear space, K 
be an integer number, and ak, k = 1, ... , K, be K vectors which determine the 
decomposition of the space X into K convex cones Xk, k = 1, ... , K, so that 
the point X EX lies in the set xk, if 

(ak,x)>(aj,x), j=1,2, ... ,K, j=f.k 

is satisfied. 
The decomposition of the space X into convex cones of the above properties 

is the Fisher classifier. 
Let X_ be~ finite ~ets of points in the space X which is decomposed into K 

subsets X1, X2, ... , X K. In the task, which we will refer to as Fisher task, such 
vectors a 1, a2, ... , aK are to be found for the inequality 

(5.61) 
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to be valid for any triplet (x, k,j) satisfying the condition X E xk, j f. k. The 
system (5.61) thus consists of a finite number of inequalities. They are just 
1-YI(K- 1). Our objective is to solve the system (5.61) under the condition 
that the solution of such a task is previously known to exist. It is obvious that 
the task of a linear separation of two finite sets of points is a special case of 
Fisher task at K = 2. The linear separation is achieved by means of the vector 
a 2 - a 1 . An unexpected result is that any Fisher task can be reduced into its 
particular case. And now we will show how to do it. 

Let Y be a space of the dimension nK. We will map into it the set X and 
the set of vectors a 1 , a 2 , ... , a K. The set of coordinates of the space Y will 
be decomposed into K subsets. Each of them consists n coordinates. Thus we 
can use the expression the 'first n-tuplet of coordinates', 'second n-tuplet of 
coordinates', 'n-tuplet of coordinates with the ordinal number k'. 

The ensemble of vectors a 1 , a 2 , ... , a K will be represented as a ( nK)-dimen
sional vector a the k-th n-tuplet of coordinates of which is the vector ak. Simply 
speaking, the sequence of (nK) coordinates of vectors a is created so that the 
coordinates of the vectors o:1 , a 2 , ... , aK are written into one sequence one 
after another. 

For each x E ,Y a set Y(x) C Y will be created which contains K -1 vectors. 
It will be done in the following way. Let k be the ordinal number of the subset 
,Y(k) to which x belongs. We will enumerate the vectors from the set Y(x) with 
numbers j = 1, 2, ... , K, j f. k. The symbol y(j, x) will denote j-th vector from 
the set Y(x). It will be created so that its j-th n-tuplet of coordinates is -x, 
~th n-tuplet is x, and all other coordinates are equal to zero. We will introduce 
Y as the set 

Y = U l"(x). 
xE.Y 

Let k and j be different numbers. Let X be a point from the subset xk. In 
the manner of creating vectors a and the set Y presented there holds ( ak, x) -
(aj, x) = (a, y(j, x) ), and therefore the inequality (ak, x) > (a1, x) is equivalent 
to the inequality (a, y(j, x)) > 0. The system of inequalities (5.61) will become 
equivalent to the system 

(a, y) > 0 , y E Y . (5.62) 

The system (5.62) can be solved by means of a perceptron or a Kozinec al
gorithm. We will obtain an (nK)-dimensional vector a, which satisfies the 
condition (5.62), and apparently expresses the ensemble that consists of K vec
tors a 1, a2, ... , aK, each from which is n-dimensional. This ensemble satisfies 
the conditions (5.61). 

The procedure for solving the task serves as an explanation only, and not 
as immediate programming hint. In writing the piece of software that is to 
construct the Fisher classifier practically, the set f" consisting of an ( nK)
dimensional vectors need not be explicitly present. This set is expressed by the 
structure of the program in which an algorithm for solving the system (5.62) 
of strict inequalities is modified. We will take into account that the system 
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(5.62) originates from the system (5.61). We will demonstrate that, e.g., the 
modification of a perceptron algorithm will appear incredibly simple. 

Let, in the step t of the algorithm, the vectors a~, k = 1, ... , K, be calcu
late<!: These vectors are to be verified and the existence of the point x in the 
set X is to be found which will be wrongly recognised by these vectors. The 
vectors x E X are to be examined one after another so that for each vector the 
number 

b =max (a~,x) 
k 

is calculated and then it is checked whether the equality (a;, x) = q_is satisfied 
for some j i- k. Let us mention that k is the number of the subset Xk to which 
the point x belongs. As soon as such a point x occurs, it means that it will 
not be correctly classified. The vectors ai and ak for the next iteration will be 
changed so that 

a~+l = a~ + x, a}+1 = a~ - x . 

When such a point does not occur then this means that the task has been 
solved. 

We could hardly find an algorithm the programming of which is simpler. 
The modification of the Kozinec algorithm leading to the Fisher classifier is 
slightly more complicated, but it is also rather simple. 

5.4.5 Further modification of Kozinec algorithms 
Let X1 and X2 be two finite sets of points in a linear space X the convex 
hulls X 1 and X 2 of which are disjunctive. Let the vector a and the number B 
decompose the space X into three subsets x+(a,B), x-(a,B) and X 0 (a,B) so 
that 

x+(a,B) = {x EX I (a,x) > B}' 

x-(a,B) = {x EX I (a,x) < B}' 
X 0 (a,B) = {x EX I (a,x) = B} 

The task of a simple separation of the sets X1 and X2 lies in finding such a 
vector a and the number B, so that X1 c x+(a,B) and X2 c x-(a,B), or, 
which is the same, that the following strict inequalities should be satisfied 

(a,x) > B, 
(a, x) < B, 

X E ~1, } 

X E X2, 
(5.63) 

- -with respect to the vector a and the number Bat the known sets X 1 and X2. 
We have already demonstrated how this task can be reduced to the task 

(a, x) > 0, X E X1 , 

(a, x) < 0 , X E X2 , 

and which was further reduced to become 

(n, :z:) > 0 , x E X . 
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Now we formulate the tasks of the optimal and c--optimal set separations and 
we will introduce Kozinec solution of the tasks without their equivalent trans
formations. We will see that such a direct solution has certain advantages. 

Let a and () be the solution of the system (5.63). The distance of the point 
X EX\ from the hyperplane X 0 (a,()) is ((a,x)- 0)/lal and the distance of the 
point X E x2 from the hyperpla_pe X0 (~()) is(()- (a,x))/lal. The task of the 
optimal separation of the sets x1 and x2 is defined as finding such a solution 
of the system (5.63), that maximises the number 

f( ()) . ( . (a, x) - () . () - (a, x)) 
a, = mm m1p I I , m1p I I 

xEX, a xEX2 a 

For r* = maxa () f(a, ()) the task of the f-Optimal separation of the sets x1 and - ' X2 is defined as finding the vector a and the number () for which 

r* - f(a, 0) ~c. 

Let us have a brief look at the main considerations leading to the solution of 
these tasks. The key idea is that the sets X1 and X2 can be optimally sepa
rated by a hyperplane which is perpendicular to the vector ai - a2, and passes 
through the centre of the straight line connecting the points ar and a2. The 
points ai and a2 belong to the convex hulls X 1 and X 2. These two points de
termine the shortest distance between the two convex hulls. Algorithms for the 
optimal and c--optimal separations, as well as the algorithm for creating a se
quence that converges to the optimal separation are based on the minimisation 
of the distance between the points a 1 and a 2 on the condition that a 1 E X 1 
and a 2 E X 2 . If we wanted to derive these algorithms we would recall, with 
slight changes, the way of deriving Kozinec algorithms for the previous case, 
when it was assumed that () = 0. We will present the algorithm for solving the 
tasks formulated here without deriving or proving them. For the reader who is 
eager to learn more they are left as a kind of individual exercise. 

W "11 f . 1 •) t t+1 d e w1 create a sequence o pomts a 1, ai, ... , a 1, a 1 , ... an a sequence 
f . t 1 2 t t+ 1 d" h c 11 . l . h o pom s a 2, a 2, ...... , a 2 , a 2 , ... accor mg tot e 10 owmg a gont m. 

Algorithm 5.4 Modification of Kozinec algorithm 

1. The _point a} is any point from the set X1 and the point a~ is any point from the 
set X2. 

2. Assume that the pair ai and a~ has already been created. For these pairs either 
the point x 1 E "X'1 is to be found for which the following condition holds 

(5.64) 

or the point x 1 E .X'2 for which there holds 

( 5.65) 
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X - ,t+l 
t- '-'1 

Figure 5.11 Geometrical interpretation of 
conditions as a relation of two points and 
five possible straight lines. 

Figure 5.12 Two possible geometrical in
terpretations of the change of point 01 

positions. 

3. If neither of these points exists then the algorithm stops the operation and provides 
the vectors ai and Q~ at the output. 

4. If the vector x 1 E X1 exists which satisfies the relation (5.64) then the vector Q2 

does not change, i.e., Q~+I = Q~ , and the vector Q1 is changed according to the 
rule 

Qi+ 1 = Qi (1- k) + x 1 • k, } 

h k . ( 1 (Qi - Q~, Qi - x 1)) w ere = min , 2 · 
IQi - xtl 

(5.66) 

The above rule means that the vector Qi+I is determined as a point on the abscissa 
connecting the points Qi and x 1 that is nearest to the point Q~. 

5. When the vector xt E -~2 exists satisfying (5.65) then Qi+I = Qi and 

Q~+I =Q~(1-k)+xt·k, } 

h k . (1 (Q~ - Qi , Q~ - xt)) w ere = mm , 2 · 
IQ~- xtl 

(5.67) 

The above rule says that the vector Q~+I is determined as a point on the abscissa 
connecting the points Q~ and xt that is nearest to the point Qi. 

According to the quantity c: in the expressions (5.64) and (5.65) the expressions 
(5.64)-(5.67) provide three different algorithms. 

1. When c: is a positive constant then this is an algorithm for the c:-optimal 
separation of the sets. 

2. When c: is a variable ~ lai -a~ I then this is an algorithm for the simple 
separation of the sets. 

3. When c: = 0 then this is an algorithm for creating an infinite sequence of 
vectors ai and a~, which converges to the vectors 

argmin 

For illustration, let us recall previous considerations with respect to the 
geometrical interpTetation. The conditions (5.64) and (5.65) can be visualised 
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by means of Fig. 5.11, where two points o:L o:~ and five straight lines are shown, 
which are perpendicular to an abscissa connecting the points o:i and o:~. Line 
1 passes through the point o:i. Line 2 passes through the point o:~. Line 3 and 
Line 4 lie between Line 1 and Line 2 so that the distance between Line 3 and 
Line 1 is ~e. Similarly, Line 4 is in the distance ~e from the Line 2. Finally, 
Line 5 lies half way between the points o:i and o:~. 

The conditions (5.64) and (5.65) have the following geometrical interpreta
tion. When e = \o:i - o:~\ then the conditions (5.64) or (5.65) state that either 
one point from the set X1 gets below the Line 5 or a point from the set X2 gets 
above this straight line, i.e., one of the points is not correctly classified. In this 
case one of the points o:1 or o:2 changes its p~sition. If such a point does not 
exist it means that Line 5 separates the sets X1 and X2. When e is ~positive 
constant then the condition (5.64) means that a point from the set X1 occurs 
below Line 3. The condition (5.65) states that a point from the set X2 comes 
above Line 4. In that case either of the points o:1 or o:2 changes its position and 
Line 5 can already classify the set X1 U X2 correctly. When no such a point 
exists then it means that Line 5 separates e-optimally the set X1 U X2 . And 
finally, when no point from X1 occurs below Line 1_ and no _point from X2 lies 
above Line 2 then Line 5 optimally separates sets X1 and X2. 

The algorithm changing the position of points o:1 and 0:2, which is expressed 
by relations (5.66) and (5.67), is also easy to comprehend in its geometrical 
interpretation. The case in which the vector o:1 changes and the vector 0:2 does 
not change is illustrated in Fig. 5.12. 

The point o:i+l is a point on the abscissa connecting the point o:i to the 
point Xt which is the closest to the point o:~. It is either the bottom of the per
pendicular drawn from the point o:~ towards the straight line passing through 
points o:i and Xt (Fig. 5.12a), or the point Xt (Fig. 5.12b). The first case occurs 
when the bottom of the perpendicular fits inside the abscissa and the second 
when the bottom lies outside the abscissa. 

We have made sure in an informal, and hopefully easy to understand, way 
that the described algorithm in the steady state solves one of three tasks de
pending on the value of the e. 

1. The task of simple separation of the point sets if the algorithm used changing 
variable e, 

2. The task of e-optimal separation of the point sets if the algorithm used the 
constant value e. 

3. The task of optimal separation of the point sets if e = 0. 

What remains now is to check whether the described algorithm converges to 
the stable state for sure. It is possible to prove using simple reasoning similar 
to that one applied in analysis of the Kozinec algorithm from Subsection 5.4.3 
that the algorithm definitely ends up in the stable state provided that e -:/:- 0. 
The reason is that the sequence of lengths \o:i - o:~ \ monotonically decreases 
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and decreases faster than geometric sequences with quotient 

1 < 1. 
y'1 + c:2fD2 

The variable D here is no longer 

ma~lxl 
xEX 
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as was the case in the Kozinec algorithm separating finite sets of points, but it 
is the value 

max ( rna~ lx- Yl , m~ lx- Yl) , 
x,yEXt x,yEX2 

which can be much smaller. The algorithm can converge faster and typically it 
is the case. 

5.5 Solution of the generalised Anderson task 
The comprehension of the task separating linearly finite sets of points allows us 
to express the solution of the generalised Anderson task completely. The basic 
thoughts aimed at the solution were sketched in Subsection 5.3.6. The piece 
of information which was missing to the complete solution of the tasks (5.40), 
(5.41) and (5.42) has just been talked through. 

However, the algorithms separating finite point sets are of importance not 
only because they are part of the solution of the Anderson task. We will show in 
this final chord of the lecture that Anderson tasks can be slightly modified and 
reduced to the simplest task which separates two point sets. This modification 
is almost negligible from the practical point of view. However, the point sets are 
not finite any more. Nevertheless the algorithms for simple separation which 
we already know can be reasonably modified to separate infinite sets too. 

5.5.1 e-solution of Anderson task 
Recall the generalised Anderson task which has already been formulated in 
Subsection 5.3.1. Let {p.i, j E J} is a finite set of n-dimensional vectors and 
{ ai, j E J} is a finite set of positive-definite symmetrical matrices of dimension 
n x n. The set J is divided into two subsets J1 and h. For j E J1 the vector 
a and the number B, the number er(j, a, B) represents the probability that the 
Gaussian vector x with mathematical expectation 1-LJ and covariance matrix 
ai satisfies the inequality (a, x) ~ B. The designation 'er' is introduced on 
the place of the function c: used before to prevent conflict with the symbol c: 
denoting a small value here. Similarly for j E h the number er(j, a, B) is the 
probability of the inequality (a, x) ~ B. The task was defined earlier (see the 
criterion (5.6)) as seeking 

(a*, B*) = argmin max er(j, a, B) . (5.68) 
01,0 j 
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Now let us break away from the purely mathematical content of generalised 
Anderson task, even though it is quite rich in itself. Let us see the task from 
the practical point of view. In the great majority of practical applications 
the main interest of the project designer is not to have an optimal recognition 
procedure, but very often it is sufficient to choose just a good one. If the optimal 
discrimination rule is found and errors occur, e.g., in 30% cases, the task has 
not been solved from the practical point of view. Neither the procedure being 
optimal does not help. But in another situation in which recognition is correct 
in 99.9% cases, one can hardly imagine in practice that a procedure would 
be rejected only because of not being optimal. Simply speaking, optimal and 
well applicable are two different concepts. An optimal procedure may not be 
applicable and in another situation, a not optimal procedure can be acceptable. 

The previous informal, but still reasonable, considerations make us replace 
the task (5.68) by seeking the vector a and the numbers 0 which satisfy the 
inequality 

m?JC er(j, a, 0) < £, 
J 

(5.69) 

where £ is the probability of the wrong decision which in a given application 
must not be exceeded. Further on we shall formally analyse the task (5.69) 
under the usual assumption that it has a solution. 

Let E(r, J.L, a) be an ellipse, i.e., a closed set of points x, which satisfy the 
inequality 

Let us point out two closed sets 

X 1 (r) = U E (r, /-Li, ai) and X 2 (r) = U E (r, /-Li, ai) . 
jEJt jEh 

The task (5.69) can be reduced to a task of the simple separation of infinite 
sets X1 (r) and X2(r) at a certain valuer. It results from the following theorem. 

Theorem 5.6 On e-solution of generalised Anderson task. Let the number r 
be the solution of the following equation for the given positive number£ < 0.5, 

The vector a and the number 0 satisfy the requirement 

max er(j, a, 0) < £ 
J 

if and only if a and 0 satisfy the infinite system of linear inequalities 

(a, x) > 0, 

(a, x) < 0, 

(5.70) 

(5.71) 

• 
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Proof. In the proof an explicit expression is needed for the maximal and 
minimal values of the scalar product 

f(x) = (a, x) (5.72) 

under the condition 

(5.73) 

The points sought which are the solution of this task satisfy the equation 

grad (f(x) +A· F(x)) = 0 

at some value of the coefficient A. On the basis of (5.74) we can write 

a+ A· a-1 · (J.L- x) = 0, 

from which it follows that 1 
x = p,+ -:\a ·a. 

(5.74) 

It is obvious that the extreme of the linear function on the convex set (5. 73) will 
be achieved at its limit, i.e., when F(x) = r2 • We will substitute the expression 
derived for x to the equation F(x) = r 2 and so ensure the value A, 

( (J.L- J.L - ~a · a), a- 1 · (J.L - J.L - ~a ·a)) 
1 ( -1 ) = A2 (a· a), a · (a· a) 

1 ( -1 ) 1 2 = A2 (a· a), (a ·a)· a = A2 (a, a· a) = r . 

From the above there follows in seeking the minimum that 

A=J(a,a·a), 
r 

since the number r is positive at c: < 0.5. Similarly, in seeking the maximum, 

A=-J(a,a·a). 
r 

The position vectors of the extremes sought are 

Xmin = J.L- J(a ,>.a) · a· a, } 

Xmax = j.L + · a · a . 
J(a, a· a) 

The minimum and maximum (5.72) under the condition (5.73) are 

minf(x)=(a,J.L)-r·J(a,a·a),} 

maxf(x) = (a,J.L) + r · .j(a, a· a). 

(5. 75) 
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We will prove now that any solution of the system ( 5. 71) satisfies the condition 
(5.70). When (5.71) is satisfied then the inequality (a,x) >()is satisfied for 
any point of the ellipse E (r,J..LJ,aJ), j E J1. Since this ellipse is a closed set 
the system of inequalities 

is a different written form of the expression 

min . (a, x) > () , j E J1, 
xEE(r,JL' ,u') 

or with respect to the expressions (5.75) already proved 

(a, J..Lj) - r · J (a, ai ·a) > () , j E J1 , 

and 
(a,J..Li)-() 

>r, jEh. 
J(a, ai ·a) 

Similarly, thanks to the second inequality in (5.71), we have 

(a,x) < (), x E E (r,J..Li,ai) , j E h, 

max . (a, x) < () , j E J2 , 
xEE( r,IJ.' ,uJ) 

(a, J..Lj) + r · J (a, ai ·a) < (), j E h , 
()-(a, J..Li) 

> r, j E J2. 
J(a, aj ·a) 

(5.76) 

(5.77) 

The numerator in the left-hand part of (5.76) is the mathematical expectation 
of a random number (a, x) -{}and the denominator is the mean square deviation 
of the same number under the condition that x is a random vector with the 
mathematical expectation f..lj and the covariance matrix aJ. The inequality 
(5.76) means that the probability of the event that the number (a, x) -()will 
be negative is less than 

This means that er(j, a,()) < E for j E J1 . Similarly, from the inequality (5. 77) 
there follows er(j, a,()) < E for j E J2 . In this way we have proved that the 
arbitrary solution of the system (5.71) satisfies (5.70) as well. 

Now we will prove that when the pair (a,()) does not satisfy the system 
(5.71) then it is not satisfied by the inequality (5.70) either. Assume that the 
inequality expressed in the first line of (5.71) is not satisfied. Then j E J1 and 
x E E ( r, f..lj, ai) exist such that (a, x) ~ (). From this there immediately follows 
that 

min . (a, x) ~ () , (a, f..lj) - r J (a, aJ · a) ~ () , 
xEE(j,IJ.' ,uJ) 
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Eventually er(j, o:, (}) 2 c is true. Similarly, when an inequality of the sec
ond line in the system ( 5. 71) is not satisfied then j E Jz exists such that 
er(j, o:, 0) 2 E. • 

Thanks to Theorem 5.6 the c-solution of Anderson task is reduced to seeking 
the number (} and the vector o: which satisfy the infinite system of inequalities 

(a:, x) > (}' 
(a:, x) < (} ' 

x E { x I ( MJ - x , ( CJJ) - 1 · (J1J - x)) ::::; r 2 } , 

x E { x I ( J1J - x , ( CJJ) - 1 · (J1i - x)) ::::; r 2 } , 

at a certain r, which depends on c. 

(5.78) 

With this simplification it is convenient that Anderson task has been trans
formed to the already well explored task of the simple linear separation. But 
at the same time, some rather serious apprehensions arise in connection with 
this simplification. First, the system ( 5. 78) consists of an infinitely large num
ber of inequalities. The perceptron algorithms explored and the algorithms by 
Kozinec were expressed only for finite sets of linear inequalities. Second, the 
expression of the system ( 5. 78) contains an inverted covariance matrix. Re
member that from the very beginning we have tried to avoid that. In spite of 
these apprehensions we continue analysing the task as expressed in (5.78). We 
will see that in spite of the existence of the inverse matrix in (5.78) we will be 
able to avoid inverting the matrix in solving the mentioned task. 

5.5.2 Linear separation of infinite sets of points 
'Io imple!!wnt the Kozinec algor~lun ~or simple linear separation of the sets 
X 1 and X 2 all points of the set X 1 U X 2 need not be examined, but in a way 
the point :r E ~\\ U ~Y2 , is to be found, which by means of current values of 
o:1 and 01 is not classified correctly. When the sets .\\ and X2 are properly 
expressed_ this wr~ng point can be then found without examining all points of 
the sets X 1 and X 2 . The Kozinec algorithm can be implemented even in the 
case of the system consisting of an infinite number of inequalities, which is, 
e.g., in our system (5.78). Further, for the validity of the Kozinec algorithm 
(for U!lambig~ty it will be referred to as the algorithm of Subsection 5.4.4) the 
sets X 1 and X 2 need not be finite. It is sufficient for the 'diameters' of these 
sets expressed as 

rna~ lx- Yl and 
.r,yEX, 

rna~ lx- Yl 
;r,yEX2 

not to be infinitely large and for their convex hulls to be disjunctive. We will 
slww that the diameters of the sets ~Y1 and ~Y2 are always finite. For ~Y1 and 
X 2 there hold 

X 1 = U { x I ( 111 - x, ( CJJ) -l · (J1i - x)) ::::; r 2 } , 

jEJ, 

~Y 2 = U { x I ( tt1 - x, ( CJi) - 1 · {ttJ - x)) ::::; r 2 } . 

jE.l, 
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The matrix a in the relations (5.78) are positive-definite, and thus the sets X\ 
and X2 are bound. The disjunctive character of X1 and X2 cannot be ensured 
in the general case, and so the algorithm quoted later can solve the c;-task, if 
such a solution exists. 

Let us study the problem how to look for an inequality in the system (5.76), 
which for the vectors a and the number () is not satisfied. Thus the index j E J 
and the vector x are to be found which satisfy the inequality ( x-J.Li , ( ai) -l · ( x
J.Li)) ~ r 2 and (a,x} ~()for j E J1 or the inequality (x-J.Li, (ai)- 1 ·(x-J.Li)) ~ 
r 2 and (a, x} ~ () for j E J2 • On the basis of our considerations used in 
the proof of Theorem 5.6, we claim that the first condition is equivalent to 
the statement that the minimal value of the scalar product (a, x} on the set 
{xI ((x- J.Li), (ai)- 1 · (x- J.Li)) ~ r 2 } is ~ ()for some j E J1 . The second 
condition is equivalent to the statement that for some j E J2 the maximal value 
of the scalar product (a, x} is ~ () on a similar set, i.e., 

( 3j E Jl I min . (a,x} ~ o) v (3j E J21 max . (a,x} ~ o) . 
zEE(j,J.I.J ,uJ} zEE{j,J.I.J ,uJ) 

Recall that the symbol V expresses the disjunction of the two conditions. 
Using the expressions (5.76) and (5.77) we will transpose the statement that 

the pair (a, 0) does not satisfy the infinite system of inequalities ( 5. 78) into an 
equivalent statement that the same pair (a, 0) satisfies some of the inequalities 

(5.79) 

which though their character is non-linear, their number is finite. In addition, 
each inequality can be easily verified because there is no need for inverting the 
covariance matrix ai. 

Assume that one inequality from the system (5.79) is satisfied. Let it be, 
for example, the inequality of the first line of (5.79). Then we can find a linear 
inequality from the infinite system (5.78) which is not satisfied and learn that 
it corresponds to the point x determined by the formula 

. r . 
x = J.L1 - · a1 · a . 

J(a, ai ·a} 
(5.80) 

When the pair (a, 0) satisfies some inequality from the second line of the system 
(5.79), i.e., for j E J2 , then the inequality from the system (5.78) which will 
not be satisfied corresponds to the point 

. r 
x = J.L1 + · ai · a . J(a, ai ·a} 

(5.81) 

Both expressions (5.80) and (5.81) can be calculated fast and easily, since they 
do not require the inversion of the covariance matrix ai either. We see that the 
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validity of the system (5. 78) containing an infinite number of linear inequalities 
can be constructively verified. In addition, a concrete inequality can be found 
that is not satisfied when the system (5. 78) is not valid. This property can be 
summarised in the following algorithm seeking the vector a and the number 
0, which satisfy the conditions (5. 78) on assumption that the values sought 
actually exist. 

Algorithm 5.5 e-solution of generalised Anderson task 

1. For the given c the number r is to be found which is the solution of the equation 

2. The algorithm creates two sequences of vectors aLa~, ... , aL ... and a~, a~, ... 
. . . , a~, ... , to which the searched vector at and the number (Jt correspond 

t t t 8t _ 1 (I t 12 I t l2) a = a1 - a2 , - 2 a1 - a2 . 

The vector a~ is an arbitrarily selected vector from the set X1 , for example, one 
of the vectors p,i, j E h, and the vector a~ is, for example, one of the vectors p,i, 
j E h. 

3. Assume the vectors a1 and a~ have already been created. For them the vector at, 

the number (Jt are to be calculated and the following conditions are to be checked 

as well as the conditions 

(at,J.Li) _ 8t 
> r, j E J1, 

y(at, ui ·at) 
(5.82} 

(5.83) 

4. When all these conditions have been satisfied then it means that the vector at 

and the number 81 are the €-solution of the task. 

5. When for j E J1 some of the inequalities (5.82) is not satisfied then a vector 

is to be calculated as well as the new vector a~+l according to the formula 

a~+l = ai · (1- k) + xt · k, 

where 
k = . ( 1 (a1 - aL a1 - x1)) 

mln , I t tl2 a 1 - x 

The vector 'a~ does not change in this case, i.e., a~+l =a~. 

6. If for j E h some the inequalities (5.83) is not satisfied then a vector 
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is to be calculated as well as the new vector a~+I according to the formula 

a~+I =a~ · (1- k) + x 1 · k, 

where 
k _ . ( 1 (a~ -a~ , a~ - x1)) 

-min ' I t tl2 a 2 - x 

The vector ai does not change in this case, i.e., at+! = ai. 

If Anderson task has an e-solution then the above algorithm is sure to arrive at 
a state in which both conditions (5.82) and (5.83) are satisfied, and therefore 
the algorithm stops. 

5.6 Discussion 
I have noticed an important discrepancy which erodes the analysis of Anderson 
task. On the one hand, you kept assuming during the analysis that covariance 
matrices ai were positive-definite. This assumption was used by you several 
times in the proofs. On the other hand, you claimed from the very beginning 
that without loss of generality the separating hyperplane sought went through 
the coordinate origin. But you achieved that by introducing an additional 
constant coordinate. The variance of the additional coordinate is zero, and 
just for this reason, the covariance matrix cannot be positive-definite but only 
positive semi-definite. 

I have waited to see how this discrepancy will be settled in the lecture, but 
in v·ain. Now I am sure that you have made a blunder in the lecture. I believe 
that you did this teacher's trick on purpose to check if I had read the lecture 
properly. There was no use doing that. Your lectures are very interesting to 
me, even if they are not easy reading matter. 

The teacher's trick you are speaking about is used by us from time to time, 
but not now. The discrepancy mentioned was made neither on purpose, nor 
through an oversight. It really is a discrepancy, but it has no negative effect on 
the final results. Have another glance at the complete procedure of Anderson 
task and its proof and you will see that everywhere where the assumption of 
positive-definiteness of matrices is made use of we could do without it. But 
we would only have to mention the case in which the covariance matrix is 
degenerate. It would not be difficult but it would interrupt the continuity of 
the argument. Let us now examine the most important moments of deriving 
the procedure. 

In deriving the procedure for solving Anderson task, covariance matrices are 
used in two situations. First, it is in calculating the values 

(5.84) 
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and for the second time in searching for the contact points 

j ( ) - j (JlJ' a) ( j ) x 0 a - J..l - ( . ) · a · a , 
a,aJ ·a 

(5.85) 

which are calculated for j for which there holds 

In the algorithm for the £-solution of Anderson task the covariance matrices 
are again helpful in calculating the points 

r . 
xJ = J..lJ - · ( a1 · a) J (a, ai . a) 

(5.86) 

which minimise the scalar product (a, x) on the set of vectors x which satisfy 
the inequality 

(5.87) 

The algorithms use only the formulre (5.84), (5.85) and (5.86). The for
mula (5.87) only illustrates the meaning of the relation (5.86) and is practically 
not used by the algorithm. Formally speaking, for the calculation of the for
mulre (5.84), (5.85) and (5.86) the matrices ai, j E J, are to be positive-definite. 
The matrices involve the quadratic function (a, aJ ·a), whose values form the 
denominators of fractions and thus the value (a, aJ · a) must be greater than 
zero for any a f. 0. However, based on the way in which the algorithm uses the 
value fl(a) in further calculation, (see formula (5.84)) and according to the 
meaning of the vectors x1 (see formula (5.86) ), the algorithm can be defined 
even for the case of a zero value of the quadratic function (a, ai ·a). The values 
jJ (a) are calculated because the least value is to be chosen from them. The 
value fl(a) for (a,aJ ·a) = 0 can be understood as a rather great number 
which is definitely not less than jJ(a) for the indices j, where (a,aJ ·a) f= 0. 
The contact points x~ are thus to be calculated only for the indices j, for which 
(a, aJ · a) f= 0 holds. When such points do not exist it means that there is 
a zero probability of wrong classification of the j-th random Gaussian vector 
for any index j. In this case the algorithm can stop the operation, since no 
better recognition quality can be achieved. We can see that such an augmented 
algorithm holds even for the case of degenerate matrices a1. 

Let us see how the vector xJ is calculated according to the formula (5.86) 
when (a, aJ · a) = 0. Recall that xi is a point of an ellipse and maximises 
the scalar product (a, x). Formally speaking, the formula (5.87) defines the 
given ellipse only in the case in which the matrix aJ is positive-definite, i.e., 
if all eigenvalues of the matrix are positive. Only then the matrix ai can 
be inverted. The ellipse, however, can be defined even in the case in which 
some eigenvalues are zero. For any size r it will be an ellipse whose points 
will lie in the hyperplane whose dimension is equal to the number of non-zero 
eigenvalues. In all cases, irrespective of whether the matrix ai can be inverted, 
the point xJ sought in such a created ellipse is given by the formula (5.86). An 
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exception is the case in which (a, ai · a} assumes a zero value. In this case the 
scalar products of all the points of the ellipse with the vector a are the same. 
This is because the whole ellipse lies in a hyperplane which is parallel with the 
hyperplane (a, x} = 0. Thus any arbitrary point of the ellipse can be chosen 
for the point xi. The simplest way is to choose the point Jli. 

As you can see, the final results can be stated for the case of degenerate, i.e., 
positively semi-definite, matrices. It is not even difficult, but only painstaking. 
If you feel like it then examine all the places in the analysis where the inversion 
of matrices is assumed and make sure that the assumption is not necessary 
for proving the above statements. But we do not think that you would come 
across significant results from the pattern recognition standpoint during this 
examination. In the minimal case it would not be a bad exercise in linear 
algebra and the theory of matrices for you. 

Could I, perhaps, ask you now to examine, together with me, a case which is 
part of the solution of Anderson task, i.e., seeking the vector a which maximises 
the function 

!( ) . (a,J.Li) 
a = mm -r;0====::='=7 

iEJ J (a, ai · a} 

Assume we have found the direction ~a in which the function f (a) is growing. 
And now we have to find a specific point a + t · ~a in this direction for which 
f(a + t ·~a) > f(a) holds. In another way, and better stated, 

. (a + t~a, Jli) 
t = argmax mm . 

t iEJ V( a+ t~a, ai ·(a+ t~a)) 
(5.88) 

The solving of this task was not mentioned at all in the lecture, and so I do 
not know what to think of it. On the one hand, it is an optimisation of a 
one-dimensional function which has one extreme in addition. It might seem 
that this is a simple task. On the other hand, I know that even such tasks are 
objects of serious research. 

Let us try it. The task of one-dimensional optimisation is only seemingly simple. 
If sufficient attention is not paid to it, it can be even troublesome. Moreover, the 
task (5.88) is a suitable probing field for optimisation and programmer's trifles. 
None of them is very significant in itself but if the application programmer 
knows about one hundred of them, it indicates that he/she is an expert. Even 
for this reason these trifles are worth knowing. Now we are at a loss which trifles 
to explain first. It would be better to explain to us how would you handle the 
task (5.88) yourself. 

First, I am to select a finite number of points on the straight line on which the 
point a + t · ~a lies. To the points a finite number of values of the parameters 
to, t1, ... , tL correspond. I will get a little bit ahead and say that the number 
of points L + 1 is to be odd and equal to 2h + 1 for me to find the best point by 
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a+ t1 ·~a a+ tz ·~a 
a a+ t1 ·~a 

a 

Figure 5.13 A half-line mapped to an 
abscissa. 

Figure 5.14 Another mapping of a half-line 
onto abscissa. 

dividing the sequence into two parts having the same number of points. If it 
lay in a previously determined interval T then I would not bother much about 
the selection of the values to, ... , t L. I would simply divide the interval into L 
equal segments. But we know only that 0 < t < oo in our task. The sequence 
to, t1, ... , t L can thus be selected in several different ways which seem nearly 
the same to me. The basic motivation for the selection is due to the property 
that for the function f the relation f(a) = f(k ·a) for an arbitrary positive 
k E IR is valid. Therefore, instead in the points a+ t ·~a, 0 < t < oo, I can 
examine this function in the points 

-1
1 ·a+ _t_ ·~a, or, which is the san1e, in the points a· (1- r) +~a· T, 
+ t 1 + t 

where T already lies in the finite interval 0 < T ~ 1. The finite sequence of 
points can be selected in a natural way by dividing the interval into L segments 
of equal length. 

Tl1e abovementioned way means mapping a set of points of the form a+t·~a, 
0 < t < oo, on a set of points of the form a· (1- r) +~a· r. The half-line 
is mapped on the finite abscissa which connects the points a and ~a, as it is 
shown in Fig. 5.13. 

The half-line can be mapped on a finite set in a lot of reasonable ways. 
In addition to the matching already given, even later matching seems to be 
natural. In Fig. 5.14, a mapping of a half-line is shown on an abscissa, which 
connects the points aflal and ~a/l~al. They seem to be better than the 
previous ones because the vectors a and ~a are becoming 'of equal rights'. A 
natural way of matching is the matching of a half-line on a set of points of the 
form 

lal·~a . 
a· coscp + l~al · smcp, 

i.e., on a quarter-circle as can be seen in Fig. 5.15, or on the sides of a square 
as shown in Fig. 5.16. I do not think that it would be of much importance to 
explore which of these ways, and perhaps of other ways too, is the best. The 
ma.tter is that they are nearly the same. In any of the ways a finite number 
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Figure 5.15 Mapping of a half-line on a 
quarter-circle. 

o: + tz . ~o: 

Figure 5.16 Mapping of a half-line on two 
sides of a square. 

of L + 1 points is to be selected, which are in a sense uniformly spaced on the 
straight line, in the circle, or the square. From these points we have to find 
the best. Since we know that our function has one single extreme, the best 
point can be found in log2 L steps, because a method of gradual division of 
the sequence into two equal parts can be applied (usually referred to as the 
method of interval halving, or the bisection method). That is, in fact, all I find 
interesting with this task. 

You have omitted a number of interesting items since you took some trends 
in solving the task for granted and for the only possible ones. From the very 
beginning you have decided that you must inevitably match the half-line to 
a finite number of points and so replace the maximisation of the function of 
one real variable by searching for the greatest number from the finite set of 
numbers. Even though you noticed that there were many possibilities of such 
a replacement and none of them seemed convincing enough to you, it did not 
occur to you that such a replacement could be avoided. 

Is something like that possible? 

In the general case not, but in our particular case it is. But we will leave it to 
some later time. But now let us have a more profound look at the procedure 
which you have, rather carelessly, denoted as a method of interval halving, and 
even more so, in a strictly unimodal sequence. You said that by means of this 
method you would achieve the best point in log2 L steps. We suspect that you 
do not see clearly enough the difference between searching for the zero point in 
a strictly decreasing number sequence and searching for the greatest number 
in a strictly unimodal sequence. Understand this difference well, and then we 
will continue. 

They are two different tasks, indeed. I looked at either of them and saw that 
even when their respective calculations were similar they were still different. 
First, I will present the procedure for the simpler task of searching for zero, 
even when we evidently do not need it in our task. 
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Let f(l), l = 0, 1, ... , L, L = 2h, be a strictly decreasing series of numbers in 
which f(O) > 0, f(L) < 0, and let there be an index l* for which f(l*) = 0 holds. 
To find the index l* in the fastest way, the following procedure is to be used. It 
is based on the idea that the difference between certain indices zteg and l~nd is 
stepwise diminished, so that in each step t the inequality zteg < l* < l~nd. is 
fulfilled. At the beginning zgeg = 0 and l~nct = L is substituted. Let the values 
zteg and l~nct after the step t be known. The new values z~:: and Z!tJ will be 
found in the following way. For the index lmid = ~(lteg + l~nd) the number 
f(lmid) is determined and then 

1. if f(lmid) = 0 then l* = lmid and the algorithm stops; 

2. if f(lmid) > 0 then z~:: = lmid and t!tJ = l~nd; 
3. if f(lmict) < 0 then l~!: = zteg .and Z!tJ = lmid· 

This simple procedure is evidently to end when the difference l~nd , zteg is 2 
and it is decided that l* = ~ (lteg + l!.nd). Naturally, the procedure can end even 
sooner if the condition quoted in the first item is satisfied. The procedure ends 
no later than before the step number log2 L, because the difference l~nd - zgeg 
is L before the first step and is twice diminished with each step. 

If I now wanted to use this procedure for seeking the greatest number in 
a strictly unimodal sequence then I would immediately find out that it is not 
suitable for this new task. The difference is that on the basis of a mere number 
f(lmid) it can be stated whether the index l* sought lies to the right or to the 
left of the index lmid· In seeking the greatest number the knowledge of the 
number f(lmid) is not sufficient for a such a conclusion. The algorithm seeking 
the greatest number in a strictly unimodal sequence is based on successive 
changes of a triplet of indices, not of the pair of them, as was the case in the 
previous task. I will give the algorithm in a more concrete form. 

Let f(l), l = 0, 1, ... , L, L = 2h, be a series of numbers, which I call unimodal 
in the sense that there is such an index l* that for any index l < l* the inequality 
f(l) < f(l + 1) is valid; and for any index l > l* the inequality f(l) < f(l -
1) is valid. The index l* is sought in such a way that a triplet of indices 
Ut1 , l~id• l~nd), is changed stepwise so as to satisfy the inequalities J(lteg) < 
f(lmid) and f(l~id) > Z!nd at every step. 

This triplet of indices has to be zgeg = 0, l:!,ict = ~L, l~nct = L at the 
beginning. Let the triplet of indices zteg, l~id and l~nd be obtained after the 
step t. Then the new triplet z~::, l~~ and t!;J is created in the following 
manner. 

1. An index l' is determined that divides the greater of the two intervals 
(Zteg' l~id) and (l~id• Z!nct) into two subintervals of the same lengths. In 
concrete terms, if (l~id - zteg) < (l~nd - l~id) then l' = ~(l~id + l~nd). 
IE (l~id - zteg) ~ U!nct - z~id) holds then l' = ~(t~id + zteg). 

2. The quadruplet zteg, l', l~id and l!nct obtained is ordered in an ascendant 
way as h,l2,h,l4. This means that l1 = zteg' l2 = min(l',l~id), l3 = 
max(l',l~id), l4 = l~nd' 
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3. In the quadruplet h, lz, l3 , l4 an index is found which corresponds to the 
greatest of the four values f(h), j(l2), j(l3), j(l4). It can be only an index 
l2 orl3. 

4. If f(l2) < f(l3) then z~;~ = l2, l~,~~ = l3 and t!~J = l4 = l~nd" 
5. If j(l2) > j(l3) then lbeg = h = li,eg' l~~~ = l2 and l!~J = l3. 
6. The algorithm ends when l~,id - li,eg = l!nd - l~id = 1 and decides that 

the index l* sought is l~id. 

From the above algorithm there follows that at least at every two steps the 
length of the longer of the two intervals (lmid - lbeg) and (lend - lmid) is 
shortened twice. Since prior to the first step the length was ~L, the length 
becomes unitary prior to the step 2log L at the latest, and the algorithm ends. 
Thus I have arrived at the main conclusion that searching for the greatest 
number in a strictly unimodal sequence takes about twice as much time than 
searching for a known number in a strictly unimodal sequence. They are, as 
a matter of fact, two different tasks which are solved by applying different 
procedures. 

We thank you for your rather transparent explanation. But tell us now why 
you stated, without any further thought, that the length of the longer of the 
two intervals should be divided in every step into two equal parts. Why should 
an interval not be divided in another ratio. 

Well, this is quite clear! Only in such a way can the greatest number in a 
unimodal sequence be found at the smallest number of queries for the value of 
a number. I do not know how to account for it except for saying that everybody 
does so. 

We do not think that everybody does so. Perhaps all your acquaintances do 
so, and even that is doubtful. We would prefer you not to do so any longer 
and use the method that was proposed in the early 13th century by the Italian 
mathematician Leonardo Fibonacci. Fibonacci may have learned about the 
method in Central Asia, where science, including mathematics, was flourishing 
at that time. Fibonacci himself got to that part of the world as a merchant 
commissioned by his father. He surely, as you and we do, devoted his time also 
to interests not at all connected with his main commercial duties. 

Let l(i), i = 1, 2, ... , be a series of numbers for which l(l) = l(2) = 1 holds, 
and for each i > 2 the equality l(i) = l(i- 1) + l(i- 2) holds. The numbers 
of this series are called Fibonacci numbers. Every Fibonacci number can be 
expressed as a sum of two other Fibonacci numbers and it can only be done in 
an unique way. 

Two intervals are changed in each step in the procedure you created to find 
the greatest number. The lengths of intervals are lmid - lbeg and lend - lmid. 
The lengths are either equal, and in that case they are 2h for the integer h, 
or they are different, and in that case they are 2h and 2h-l_ Create a new 
algorithm which differs from what you proposed earlier. The length lend -lbeg 
must be one of Fibonacci numbers in each step, say l(i). The index lmid is to 
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be such that the lengths lend - lmid and lmid - lbeg are Fibonacci numbers as 
well. Thus, one length is l(i - 1) and the other is l(i - 2). We will call this 
modification the Fibonacci algorithm. Do you see it? 

Yes, I do. 

Then try both algorithms at the same strictly unimodal sequence and verify 
that the greatest number can be sought by means of the Fibonacci algorithm 
faster than by means of the algorithm you proposed before and which you 
without any reason claimed to be the fastest. 

Well, this is surprising! The method of halving an interval is really not the 
fastest. The Fibonacci algorithm works faster, but only a little bit. 

We have not expected anything else. 

Why then does everybody say that the method of halving an interval is the 
fastest? 

We are repeating once more that it is not said by everybody. Fibonacci did not 
say it. 

But now a question arises. I know now that the method of halving an interval 
is not optimal because the Fibonacci method is better. But I cannot so far 
say that the Fibonacci method is an optimal one. What is, then, the ratio 
for halving an interval that allows to achieve the highest speed in finding the 
greatest number? 

We are sure that this is not a difficult question for you. It would be the worst 
for you to think that you had already known the optimal algorithm and would 
not ask such questions. Now, when you have come across that question you 
will quickly find the right answer. 

It was not very quick, but I have found an answer. Though I have not formu
lated the optimisation task very precisely, I understand it like this. 

I have a certain class of algorithms the two representatives of which are 
already known to me. One is the algorithm seeking the greatest number in 
a strictly unimodal sequence, which I quoted before and which is based on 
halving the longer of two intervals. The latter algorithm for the same purpose 
has the same form as the former except that the longer interval is divided into 
unequal parts corresponding to Fibonacci numbers. .4. general algorithm is 
formulated by me as an algorithm in which the longer interval is divided into 
parts proportional to the values a and 1- a, where 0 < a < 1. The number 
a is not known and it is necessary to determine it in a certain sense optimally. 
I am not going to formulate the criterion of optimality precisely now. I will 
make a not very complex analysis of an algorithm for the fixed value a and the 
analysis will show in what sense the value should be optimal. 
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I assume that, before some of the iterations of the algorithm, I had numbers 
lbeg, lrnid and lend at my disposal. Without loss of generality I can assume that 
they are the numbers lbeg = 0, lrnid = 1 -a and lend = 1 and I accept that they 
are no longer integers. Furthermore, I assume that a ~0.5. In accordance with 
the algorithm I am expected to divide the greater interval, i.e., lbeg, lmid into 
two parts that will be, thanks to their fixed value a of the lengths (1- a)2 and 
(1 -a) ·a. This means that the index l' will be (1 - a) 2 • I am again ignoring 
that it will be not an integer. 

The new values of the numbers lbeg and lend will be either 0 and (1 -a) or 
(1- a)2 and 1 depending on the values f(l') and f(lmid)· The lengths of the 
new interval lend - lbeg will then be either 1 - a or 1 - (1 - a)2 • Only now 
I can formulate the requirement that the parameter of the algorithm a is to 
be chosen so that the length of the longer of the two intervals should be the 
shortest possible one, 

a* = argmin ma..x (1- (1- a) 2 , 1- a) . 
(} 

The solution of this simple optimisation task is the number 

3- J5 a*----- 2 . 

With the computed value of the parameter a, the sequence of the lengths of 
the intervallbeg - lend is during the algorithm upper bound by a decreasing 
geometrical series with the quotient ( J5- 1)/2 which is approximately 0.618. 
The optimality of that particular value of the parameter a lies in that at another 
arbitrary value of the parameter a the sequence of the lengths of the intervals 
will be bound by a geometrical series that is decreasing at a slower rate. For 
example, in the algorithm I proposed before only one thing was guaranteed, 
i.e., that in every pair of steps the lengths of the interval is shortened twice. 
This means, roughly speaking, that the sequence of the lengths is decreasing 
with the rate of the geometrical series with the quotient V2/2"' 0.707. 

I was greatly pleased that I have managed to solve the task up to such a 
concrete results, up to a number, as the mathematicians say. 

You are not the first to have been pleased by this task. Since several thou
sands of years, since the time of ancient Greece, the ratio ( J5 - 1) /2 has been 
attracting attention and is referred to as the golden cut. 

The number did remind me of something. The analysis was very interesting, 
but from a pragmatic standpoint it does not offer very much. You said in 
your lecture that a carelessly written program for this optimisation worked 100 
times slower than one which was well thought out. Did you not have in mind 
anything else than the analysis just completed? 

You are right. We had in mind something quite different, but we are glad that 
you have dragged us into the problem already dealt with. 



5.6 Discussion 191 

Let us go back to our task in which for a given group of vectors Jl.j and 
matrices ai, j E J, and for given vectors a and .6.a the parameter t is to be 
found which maximises the function f(t), 

f( ) . (a+ t.6.a, Jl.J) 
t == mln . 

jEJ V( a+ t.6.a, ai ·(a+ t.6.a)) 
(5.89) 

It is maximisation of a function of one single variable t. The proposed algorithm 
looks for a maximum so that it calculates the set of values of function (5.89) for 
some finite set of values of parameter t. As we can see, you have proposed to 
calculate the values of the vector a+ t .6.a for the chosen set of values oft. You 
are then going to calculate values of f(t) using the formula (5.89). This means 
you go to Paris via a neighbouring village. Throw away everything redundant 
from the proposed procedure. 

I hope I have understood your idea. I will denote by f(j, a) the function 
(a, Jl.i) / J (a, ai ·a). For the given sequence of numbers to, h, ... , tL, the index 

l* == argmax min J(j,a · (1- t1) + .6.a · tt) 
I jEJ 

is to be calculated. The following numbers will be calculated 

s1 == (a, Jl.J), 

s!J == (.6.a, Jl.i) ' 

.6.sJ == s' 1 - si , 

a1 == (a ai · a) 
(} ' ' 

(J~ == (.6.a, (Jj • .6.a) ' 

a~t. == (.6.a, a1 . a) . 

(5.90) 

Having done that, the numbers f (j, a( 1 - tt) + .6.a · t1) can be calculated as 

( 5.91) 

Looking at it, we can see that all multi-dimensional operations are performed 
only in the calculation of 6I.JI numbers according to the formula (5.90). This 
calculation does not depend on the index l, and thus it is performed outside the 
cycle in which different indices l are tested. In testing the indices l everything 
is calculated according to the formula (5.91) which does not contain any multi
dimensional operations any longer. 

Where the hundred fold acceleration is achieved? 

It is so, for example, when the calculation of a quadratic function 
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where aJ is a matrix of dimension 32 x 32. The equivalent calculation of the 
quadratic function 

is used in which a~, a~6 and a~ are numbers. 

At the very beginning of our discussion you stated that a function of one variable 
could be numerically maximised without substituting an infinite straight line 
by a finite number of values. But I do not know the way in which it could be 
done. 

Once we have become so deeply absorbed in the analysis of a one-dimensional 
task we would like you to add one more method to the methods you have 
already mastered. It is different from those we have studied so far. So far we 
have assumed without any doubt that the domain of a maximised function must 
be substituted by a finite set of points, i.e., simply speaking, that the argument 
of a maximised function is to be made discrete. Quite often, however, it is not 
easy to find a reasonable degree of discretisation. 

In fact, you had already come across these difficulties at the beginning of our 
discussion, when you suggested even several ways of discretisation you thought 
to be equally reasonable. We will also find out that all discretisations you have 
suggested are also equally unsubstantiated. They are based only on intuitive 
understanding of the nature of a function and on the belief that if an interval 
from 0 to 1 is substituted, e.g., by 1025 uniformly placed points, then the value 
in one of the points will be sure to differ only by a bit from the maximal value 
in the whole interval from 0 to 1. In the general case, there is no such certainty 
because the set of unimodal, but non-concave functions is too diverse. For 
example, it also contains a function that in the whole interval from 0 to 0.9999 
assumes only inadmissible values, and all acceptable values are concentrated 
only in an extremely narrow interval from from 0.9999 to 1.0. For such cases, 
in which the maximum cannot be obtained by discrete samples, involve in the 
arsenal of the methods you mastered also the following method, which is, in a 
sense, dual to the methods we have already studied and which will be called 
direct methods by us. 

Dual methods have in common that it is not the domain of a function that is 
made discrete, but the set of its values. Let us introduce the basic idea of dual 
methods. Assume that we have found two values Udown and Uup with such a 
feature that there exists a value t E T with which f(t) ~ Udown, and that there 
is no value t E T for which f(t) ~ Uup holds. In this case it is necessary to check 
if a value t E T exists for which f ( t) ~ Umid = ~ ( Udown + Uup) holds. If it exists 
then the pair (udown, Uup) is changed to become the pair (umid, Uup). If not 
then the pair ( Udown, Uup) is changed to become the pair ( Udown, Umid). When 
during the running of the algorithm the difference Uup - Udown is decreased 
below the predetermined value c then the algorithm stops with the certainty 
that the maximum sought was determined with an error which is not greater 
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than c:. The advantage of dual methods compared to the direct methods lies in 
that the maximum is estimated with a given accuracy. The advantage of direct 
methods is that it is the position of the maximum that is estimated with a given 
accuracy. The most important question in applying dual methods certainly is 
how easily one can find out if the inequality f(t) ~ u has a solution. 

The function we would intend to maximise is quite well known for us to solve 
the inequality f(t) ~ u rather easily. Let us ask if the inequality 

. (o:·(1-t)+t·~O:,Jlj) 
mm >c 
jEJ J(a · (1- t) + t · ~a,ai · (o: · (1- t) + t · ~o:)) 

(5.92) 

has its solution in the interval from 0 to 1, and if it is so then an interval of 
the values of the quantity t is to be found for which the inequality (5.92) is 
satisfied. If we make use of the expression (5.90) then the inequality (5.92) can 
be rewritten as a system of inequalities 

si + t · ~si 
~ c, j E J, e :::; t:::; 1, (5.93) 

;(1 - t) 2 . 0'~ + 2t. (1 - t) . O'~t:,. + t2 . 0'~ 

where si ~ 0, ~si, 0'~, a~t:., a~ are known numbers. We are interested in the 
system of inequalities (5.93) only for positive c, i.e., for such values t, only at 
which the inequalities 

(5.94) 

are valid for all j E J. The inequalities from the system (5.94) for which 
~si ~ 0 need not be taken into consideration because on the interval 0 :::; t :::; 1 
they are always satisfied. Let us denote by J0 a set of indices j for which 
~si < 0 holds. The system (5.94) is equivalent to the system 

si + t · ~si ~ 0 , j E J0 , 

or, written in another way, 

or, at last, 

We will denote 

-si 
t <min~. 

- jEJ0 usJ 

( -si) T = min 1, min ~ 
jEJ0 usJ 

We will take into consideration that now on the condition 0 :::; t :::; T in the 
inequalities (5.93) no numerator is negative and rewrite (5.93) into the form 

( (1- t? ·a~+ 2t · (1- t) · a~t:. + t2 • a~) , } 
(5.95) 

jEJ, e:::;t:::;T. 
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In this way the question whether the inequality (5.92) has a solution has been 
reduced to the solvability of the system (5.95), which contains quadratic in
equalities of one variable t only on a sufficiently simple condition 0 ~ t ~ T. 
The solvability of (5.95) can be easily verified. Each inequality in the first line 
of the system (5.95) can be rewritten into the form 

AJ · t 2 + BJ · t + cJ 2:: 0 , 

where the coefficients AJ, BJ, CJ are calculated from numbers sJ, ~sJ, c, a~, 
a~il, a~ which are already known. The system (5.95) will assume the form 

AJ · tz + BJ · t + cJ 2:: 0 , j E J , (} ~ t ~ T . (5.96) 

According to whether the quadratic equation AJ · t2 + BJ · t + CJ = 0 has its 
solution (this can be easily verified), and according to the sign of the coefficient 
AJ the set of values t satisfying the j-th inequality in the system (5.96) will 
be either empty or will be expressed by one interval or by a pair of intervals 
open from one side. The intersection of the set of values t with the interval 
0 ~ t ~ T will be either empty or will be expressed by one interval. If this 
intersection consisted of two intervals then it would be contradictory to the 
proved fact that the set t satisfying (5.92) is convex for positive c. The set of 
values t satisfying the system (5.96), and thus also the inequality (5.92) is an 
intersection of intervals which are calculated for each j E J. The result is an 
interval again. 

Thus, we can see that in our case the maximal value of one variable with 
an arbitrary beforehand given accuracy can be estimated without making this 
variable discrete. 

And now it is the turn of another question inspired by the lecture. It was 
said that in modern applied mathematics the methods of optimisation of non
smooth or non-differentiable functions had been thoroughly examined and that 
the fundamental concept was that of the generalised gradient. I completely 
agree with you that these methods are not sufficiently known in the pattern 
recognition sphere. I would like to learn more, at least about the most funda
mental concepts, and see what the complete analysis of Anderson task would 
look like if the results of the non-smooth optimisation were applied. 

The main core of the theory of the non-differentiable optimisation can be rather 
briefly explained, as it is with any significant knowledge. But this brief expla
nation opens a wide space for thinking. 

Let X be a finite-dimensional linear space on which a concave function 
f: X -+ IR is defined. Let xo be a selected point and g(xo) such a vector 
that the function 

f(xo) + (y(xo), (x- xo)) 

dependent on the vector xis not less than f(x) for any arbitrary x EX. Then 
we can write 

f(xo) + (g(xo), (:z:- :z:o)) 2:: f(x) (5.97) 
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or, in another, form 

(g(xo), (x- xo)) ~ f(x)- f(xo). (5.98) 

The vector g(x0 ) is referred to as the generalised gradient of the function f in 
the point xo. 

Let us show why the generalised gradient is important: 

1. If the function f in the point x 0 can be differentiated then the gradient of 
function f satisfies the conditions (5.97) and (5.98). Therefore the gradient 
is, in a usual sense, a special case of the generalised gradient. 

2. The definition of the generalised gradient is by no means based on the 
concept of partial derivative, and therefore, it is not dependent on the dif
ferentiability of the function. 

3. Even if it is not evident at first glance, we will later make sure in an in
formal way that an arbitrary concave function has the generalised gradient 
(sometimes not a single one) in all points of its domain of definition. 

4. And last but not least, the validity of many gradient optimisation methods is 
not based on the knowledge that the gradient is a gradient, but on a weaker 
property stating that the gradient satisfies the conditions of (5.97), (5.98). 
This means that the properties of many gradient optimisation algorithms 
can be transferred also to the algorithms in which instead of a gradient the 
generalised gradient is used. This is stated in the following theorem. 

Theorem 5. 7 On gradient optimisation with the generalised gradient. Let 
f: X -7 1R be a concave function and '"Yi, i = 1, 2, ... , oo, be a sequence of 
positive number·s which converye to zero and the sum of which is infinite; f* is 

max f(x) 
xEX 

and Xo is a set of such points x E X, in which the maximum is reached; x0 is 
any point in the space X and ( ) 

9 Xi 
Xi= Xi-1 + '"'fi · -1 -(-)I, g Xi 

where g(xi) is the generalised gradient of the function f in the point x;. 
In this case 

lim f(x;) = j*, 
I -tOO 

lim min lx;- :1:1 = 0. 
a-toe :rEX a 

Proof. We will not prove Theorem 5.7 and refer to [Shor, 1979; Shor, 1998]. • 

Let us now try to work out, on an informal level, the generalised gradient and 
its properties. Imagine that the concave function y = f(x) is defined in an 
n-dimensional space X and represented by its graph in an (n + 1 )-dimensional 
space. In this (n +I)-dimensional space n coordinates are original coordinates 
ofthe space X and coordinate (n+l) corresponds to the value y. The function f 
is mapped in this space as a surface that contains all the points (x, y), for which 
y = f(x) holds. Such a surface will be referred to as the graph of the function 
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f and denoted by D; D = {(x,y) I y = f(x)}. Furthermore, let us take into 
consideration the set of points (y, x), which lie 'below the graph', call it the body 
of the function f and denote it by T. To be accurate, T = {(x, y) I y ~ f(x)}. 
Since the function f is concave, the body T is convex. 

Similarly as we represented the function f by the graph D, an arbitrary linear 
function can be represented. The graph of any linear function is a hyperplane. 
And vice versa, each hyperplane which is not orthogonal to the space X, is the 
graph of a linear function. Assume that a hyperplane passes through a point 
(x0 , f(x0 )) in the graph D in such a way that the whole body Tis below the 
hyperplane. For each point on the surface of the body T such a hyperplane 
can be constructed for the very reason that the body T is convex. An exact 
formulation of this property and its proof are included in Farkas' excellent 
lemma. The hyperplane will be referred to as a tangent to the body T in the 
point x0 , which lies on the graph D. By the symbol L a linear function will 
be denoted the graph of which is the hyperplane. From the abovementioned 
definition of the generalised gradient it follows that the generalised gradient is 
a gradient of a linear function that is represented as a tangent. In some points 
only one tangent exists. Informally speaking, it is in those points where the 
graph D is not 'broken', and is 'smooth'. In other points, where the graph D 
is 'broken', the tangents can be several different hyperplanes. If in the point 
x0 two different hyperplanes are tangents to the body T, then any hyperplane 
in between is also a tangent to the body T in the same point. It is expressed 
more exactly in the following theorem. 

Theorem 5.8 On tangents in between. The set of vectors that are generalised 
gradients of a certain function f in a point xo is convex. J. 

Proof. Let g1 and g2 be generalised gradients in the point Xo. For all points 
x E X there holds 

(g1, x- xo) ~ f(x) - f(xo) , 

(g2, x- xo) ~ f(x)- f(xo). 

Let us construct a convex combination with the numbers a 1 and a 2 = 1 - a 1 

(a1 · g1 + a2 · 92, x- xo) ~ f(x)- f(xo). 

This means that the vector a 1 · g1 + a 2 · g2 is also the generalised gradient of 
the function f in the point x 0 . • 

In an informal understanding of the generalised gradient as a vector parameter 
of a tangent hyperplane, the following fundamental theorem of non-smooth op
timisation, which states the necessary and sufficient condition for the existence 
of a maximum, seems to be evident. 

Theorem 5.9 Necessary and sufficient condition for the existence of a mini
mum in non-smooth optimisation. The point x0 maximises the concave func
tion if and only if the zero vector is its generalised gradient in the point x0 . J. 

Proof. Instead of the proof, let us give an informal interpretation of The
orem 5.9. It states that the point (y, x0 ) is the 'highest' point of the body T 
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then and only then when there exists a 'horizontal' tangent hyperplane in that 
point. Note that even the formal proof of the theorem is rather brief. • 

Let us now make use the acquired knowledge for an analysis of our task. 

Theorem 5.10 On the generalised gradient in a selected point. Let {Ji(x), 
j E J} be a set of concave differentiable functions, xo be a selected point, and 
gi(xo), j E J, be a gradient of the function Ji(x) in the point x0 . 

Let Jo be a set of indices j for which there holds 

(5.99) 

and 'Yj, j E Jo, are non-negative numbers the sum of which is 1. Then the 
convex combination go = I:jEJo 'Yi · gi (xo) is the generalised gradient of the 
function 

f(x) = minJi(x) 
jEJ 

in the point Xo. And vice versa, if any vector g0 is a generalised gradient of 
the function f(x) in the point xo then the vector g0 belongs to the convex hull 
of the vectors gi(x0 ), j E J0 . A 

Proof. First, let us prove the first statement of the theorem. The assertion 
that the vectors gi ( Xo), j E J0 , are gradients of the functions Ji means 

or in another form 

From that follows 

L 'Yj · (gi(xo),x- xo) ~ L "(, · f'(x)- mJ:Jfi(xo). 
jEJo <EJo J 

(5.100) 

Since there holds 

from (5.100) the following relations result 

( L 'Yi · gi (xo), x- xo) = L 'Yi · (gi (xo), x- xo) 
jEJo jEJ0 

~ minJi(x)- minJi(xo) = f(x)- f(xo), 
jEJ jEJ 
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which can be summed up in the inequality 

/ L ri · gi(xo), x- xo) ~ f(x)- f(xo), 
\ jEJO 

which is the proof of the first statement of Theorem 5.10. 

The second statement of the theorem will then be proved by a contradiction. 
Let the vector go satisfy the inequality go f; LjeJa 'Yi gi (xo) at arbitrary non
negative coefficients satisfying the condition LjEJo rJ = 1. Because the ~ector 
g0 does not belong to a convex polyhedron whose vertices are the vectors gJ (x0 ), 

j E Jo, the existence of a hyperplane follows that separates the vector g0 from 
all vectors gi ( Xo), j E Jo. More exactly, there exists a vector x1 and a threshold 
value () satisfying the inequalities 

(go, x') < (), 

(gi(xo),x')>B, jEJo. 

(5.101) 

(5.102) 

If we subtract the inequality (5.101) from every inequality of the system (5.102) 
we obtain 

(gi (xo), x') - (go, x') > 0, j E Jo . (5.103) 

The left-hand part in each j-th given inequality is a derivative of a continuous 
differentiable function Ji (x0 + tx') - (g0 , x0 + tx') with respect to the variable 
tin the point t = 0. Since the derivatives are, thanks to the inequality (5.103), 
positive the following inequality will be satisfied, at least at small positive values 
t for all j E Jo 

jJ (xo + tx') - (go, Xo + tx') > Ji (xo) - (go, xo) , 

from which there follows the inequality 

min (Ji(xo) + tx') - Ji(xo)) >(go, :ro + t:r')- (go,:ro). 
JEJo 

From the assumption (5.99) there follows that at j E .10 the value Ji (:r0 ) cloes 
not depend on j and is equal to f(xo). Thus 

~~~ Ji (xo + tx') - f(xo) > (!/!h :ro + t:t:') - (!Jo, :ro) . (5.104) 

All functions Ji(x), j E J0 , are eontinuous, tlwn.fon• for t.IH' iudPx j E .!, 
j ¢ Jo, for which the equality Ji(:Do) = minjE.I J1(.r0 ) is uot satisfiP<I. nPitlwr 
the equality Ji(xo + t:I:') = minjeJ ji(:1:0 + t:r') will IH' sat.isfi<•d, at }past at 
small values oft. Thus 

min Jl (x0 + t:r:') =min J.i (.r0 + /.r') 
JE.Io JE.I 

is valid and the inequality (5.104) assunws the' form 

f(:I.:o + t:1:')- f(:r:o) > (!Jo, :ro + l:r')- (!l!h .ro) 
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and g0 is not a generalised gradient of f(x). This proves the second statement 
of Theorem 5.10. • 

If we now shut our eyes to the contradiction that the above theorems express 
the properties of concave functions, and the maximised function in Anderson 
task is not concave, even when it is unimodal, we would see that Theorem 5.2 on 
necessary and sufficient conditions of the maximum in Andeson task, proved 
in the lecture, quite obviously follows from the theorems on the generalised 
gradients presented now. And indeed, Theorem 5.10 claims that any generalised 
gradient of the function 

min JJ ( x) has the shape 
jEJ 

L"fJ·gJ(x). 
jEJo 

Theorem 5.9 claims that it is necessary and sufficient for the maximisation that 
some of the generalised gradients should be zero. This means that such positive 
values '"Yj are to exist that 

L"fj·gj=O. 
jEJo 

In the lecture, the gradients gi were proved to be collinear with the positional 
vector of the contact point. Therefore the statement that the convex hull of 
the gradients gJ, j E J0 , includes the coordinate origin is equivalent to the 
statement that the convex hull of contact points contains the coordinate origin. 
The condition on the maximum, which we introduced at the lecture informally 
at first, and which was also proved there, could be derived as a consequence of 
Theorem 5. 7 known from the theory of non-smooth optimisation. 

Further on it can be easily seen that the actual proposal of maximisation 
presented at the lecture is one of the possible alternatives of the generalised 
gradient growth, which is stated in Theorem 5. 7. We require a direction to 
be sought in which the function f(x) =mini Ji(x) grows, i.e., in which each 
function r(x), j E J0 grows. This direction will be one of the possible gener
alised gradients. But not every generalised gradient has the property that the 
motion in its direction guarantees the growth of all functions jJ(x), j E J0 . 

And this is why the recommendation resulting from the lecture is stricter than 
the recommendation to move in the direction of the generalised gradient. The 
general theory of non-smooth optimisation claims that such a recommendation 
is extremely strict. The direction in which a point is to move in its next step 
when seeking the maximum can be given by any point from the convex hull 
of the gradients gJ, j E J, and not only by that which secures the growth 
of the function f(x) = minJEJ Ji(.r). Simply, it can be any of the gradients 
gJ, j E J0 . The algorithm for solving Anderson task could then have even the 
following very simple form. 

The algorithm creates the sequence of vectors a 1 , a 2 , ... , a 1 , ... If the vector 
a 1 has already been created then any (!!!) j is sought for which there holds 
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The contact point x~ is calculated as well as the new position nt+l of the vector 
a as 

xi 
0 

CXt+l = CXt + "(t · lx~l , 

where "'t, t = 1, 2, ... , oo, is a predetermined sequence of coefficients that satisfy 
the conditions 

L "'t = oo and 
t=O 

lim "'t = 0. 
t---too 

A.s far as general concepts and theorems were discussed, everything seemed to 
me to be natural and understandable. Up to the moment when it was stated 
how a simple algorithm for solving Anderson task resulted from the whole 
theory. This seems to me to be particularly incredible, including Theorem 5. 7, 
which certainly is of fundamental significance. 

I will show now why it seems incredible to me. Assume we want to maximise 
the function 

f(x) =min P (x) 
jEJ 

and we have reached the point where two functions, say f 1 and P, assume 
an equal value which is less than are the values of all other functions. It is 
to change x so that the function f(x) should be increased and this means 
increasing both the functions f 1 and P. The algorithm following from the 
general theory, instead of taking into consideration both functions, deals with 
one of them only trying to make it larger, and simply ignores the other. In such 
a case, however, the other function can even decrease, which means that the 
function f can decrease as well. It is not only possible for such a situation to 
occur, but it certainly will occur since in approaching the maximum the number 
of functions which the algorithm should take into consideration is growing. But 
it looks to be about one function only. 

You are right, but it is not because Theorem 5.7 may be wrong. You claim 
that the algorithm of maximisation does not secure a monotonic growth, but 
Theorem 5. 7 does not state so. It only says that the algorithm converges 
to a set of points in which the maximum is reached. For this convergence a 
monotonic growth is not necessary. We will examine, though not very strictly, 
the counterexample you quoted. When it has already happened that in one 
of the steps together with the growth of one function, say the function fr, the 
other function h has decreased (which can happen since the algorithm did 
not regard the function h at all) then certainly as soon as in the next step the 
function fr will be not taken into consideration, and it may be just the function 
h which will have the worst value and the algorithm will have to consider it. 

A precise proof of Theorem 5. 7 must be damned complicated! 

Yes, it really is complicatf~d! 
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Well, when you once have persuaded me that Theorem 5. 7 holds, I will dare 
to ask an impertinent question. Why did not the theorem become the basis of 
the lecture? Did not you explain the subject matter as if the theorem had not 
existed? 

We would like to remind you that only a while ago you said that you did not 
believe what Theorem 5.7 states. Now you may already believe it, but it does 
not make any difference. We would not intend to base our lecture on a theorem 
which we together did not completely understand. It would be a lecture based 
on a trust in a theorem the proof of which was not presented by us, and not 
based on knowledge. 

Furthermore, earlier we shut our eyes to the fact that our task deals with the 
maximisation of a function which is not concave. Now we can open our eyes 
again and see that Theorem 5. 7 by itself cannot be the basis for solving our 
task. The theorem may be worth generalising so that the sphere of its validity 
could cover even the functions which had occurred in our task. But that would 
be quite another lecture. 

In pattern recognition publications, in papers from journals and conferences, 
I frequently find results which are identical with the results known for long in 
other spheres of applied mathematics. I do not know what standpoint toward 
such results to take. Is it a repeated invention of the wheel or is it a normal 
thing for us to use better or less well known mathematical methods in a qual
ified way? It is rather a philosophical problem. When I am once engaged in 
pattern recognition I cannot help thinking from time to time of whether pattern 
recognition is a science or art, or a set of clever tricks, or a body of knowledge 
taken over from other fields. 

Not to go too far in looking for examples, I refer to an example from your 
lecture. It introduces and proves Theorem 5.3, which says that a hyperplane 
optimally separating two sets of points lies in the middle of the shortest distance 
between their convex hulls, and is perpendicular to it. This is, however, a known 
result in convex analysis and convex programming. In computational geometry 
similar procedures like this are common when seeking the shortest abscissa. 
Let us admit that I would know these results well. What new knowledge do I 
acquire when I see them once more in the pattern recognition context? 

You have already asked yourself several questions and some of them are fantas
tically extensive. Let us start from whether pattern recognition is art, science, 
or yet something else. This question is very extensive, and however seriously 
intended the answer might be it will inevitably not be precise. The easiest way 
might be to do away with the question by saying that pattern recognition is 
what we are just now, together with you, dealing with and will be dealing in 
our lectures, and not to go back to that question any longer. It is not a very 
clever answer, but as far as we know, other answers are not much cleverer. 

And now as to your second question. What attitude are we to take to the 
fact that the fundamentals of pattern recognition involve knowledge that has 
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been generally and for long known in other spheres of applied mathematics. We 
should be pleased at it. It is only a pity that there are still far fewer concepts 
and procedures taken over by and adopted in pattern recognition from other 
fields than we would have wished for. 

And now to your last question. Let us again go over the result of the lecture 
you refer to. Let X1 and X2 be two finite sets of points in a linear space. A 
hyperplane is sought which will separate the sets X1 and X2 and its distance 
from the nearest points of both the sets is will be the greatest. In searching 
for the hyperplane, two least distant points x1 and x2 are to be found, the 
former belonging to the convex hull of the set X1 and the latter belonging to 
the convex hull of the set X2 • The hyperplane found should be perpendicular to 
a straight line passing points x 1 and x2 and lie at the halfway distance between 
those points. 

This result is known in convex analysis as the divisibility theorem. It is 
important that the theorem, after being transferred to pattern recognition, 
answered questions which had their origin in pattern recognition and in their 
original reading had nothing in common with the theorem known on convex 
linear divisibility. Thus there were no convincing answers to these questions at 
a disposal either. 

The questions concern, e.g., recognition by virtue of the minimal distance 
from the exemplar. They will be stated in the way as they were originally 
brought forth in pattern recognition. 

Let X1 and X2 be two finite sets of points in a metric space X with Euclidean 
metric d: X -t Ilt Let the classifier operate in the following manner. It has 
in memory two exemplars (exemplar points) a 1 and a 2 which are points of 
the space X. The recognised point x is placed in the first class if the distance 
between x and a1 is less than the distance between x and a 2 . In the opposite 
case the point is placed in the second class. The question is what the exemplars 
Ql and Q2 are to be like to allow all objects from the set xl to be placed in 
the first class and all objects from the set X2 to be placed in the second class. 

Even now, when pattern recognition has reached a certain degree of advance
ment, you can find different and not very convincing recommendations how to 
choose the exemplars. For example, the exemplars a 1 and a 2 should be the 
'less damaged', or in a sense the best elements of the sets X 1 and X 2 . Another 
time, even artificial exemplars are designed that suit the designer's conception 
of ideal representatives of the sets X1 and X2 . Another inaccurate considera
tion leads to a requirement for the exemplar to lie in average in position that 
is the nearest to all elements of the set it represents. Therefore the exemplar is 
determined as the arithmetic average of the elements which corresponds to the 
centre of gravity of a set. We have seen several other unconvincing answers. 

The answer has become convincing only after a precise formulation of the 
task and by applying Theorem 5.3 on linear divisibility of sets. You may admit 
that the result is rather unexpected. For an exemplar neither the best nor 
an average representative of a set is to be chosen. Just the opposite, for an 
exemplar of one set such a point in the convex hull of the set is to be chosen 
that is the nearest to the convex hull of the second set. If, for example, we 
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wanted to recognise two letters A and B then such a specimen of the letter 
A that best resembles the letter B should become the exemplar. In a sense 
it is the worst specimen. It also holds vice versa, the worst representative of 
the letters B that best resembles the letter A is chosen for the exemplar of the 
letter B. 

This knowledge is new, from the point of view of pattern recognition it is 
nontrivial, and thus it was not revealed without applying the theorem on linear 
divisibility of sets. In convex analysis, which is the home of the theorem, this 
knowledge was not revealed because the concepts which express this knowledge 
are quite alien to convex analysis. And thus only after the meeting of one field 
with the other did the new knowledge originate. 

We would like you to notice that even in pattern recognition this accepted 
theorem borders on other questions, not only on those of linear divisibility 
of sets. Through being applied in pattern recognition, the theorem has been 
enriched and has contributed to another third field. In pattern recognition 
different non-linear transformations of space observation are continually used, 
which are known as straightening of the featur·e space. The task of decomposing 
sets by means of a straight line then stops being different from separating 
sets by means of circles, parabolas, ellipses, etc. Taking over the theorem on 
linear separability of sets, the pattern recognition has broaden the sphere of its 
possible applications. For example, there are the algorithms in computational 
geometry seeking distances between convex hulls as well as linear separation of 
points in a plane. At the same time you can relatively often notice that even an 
experienced programmer using computational geometry does not come at once 
across the algorithm for separating sets by means of circles. You can rarely 
see a programmer who would not be at a loss if he was expected to divide two 
sets of points by means of an ellipse. But you will be not at a loss because, as 
we hope, you do not see any substantial difference between those tasks. And 
you do not see the difference just thanks to your having used the theorem on 
separability in pattern recognition. And so the theorem on separability after 
being used in pattern recognition was enriched, and so enriched it returned to 
the scientific environment from where it had once come to pattern recognition. 

We still do not dare to seriously define whether pattern recognition is a 
science, art, or a collection of technical and mathematical tricks. But we dare 
to claim that hardly a field will be found in which the knowledge from different 
spheres of applied mathematics meets common application so frequently as 
it is in pattern recognition. And therefore pattern recognition could become 
attractive not only for young researchers who are engaged in it, as you yourself 
are, but for everybody who wants to learn all the 'charming features' necessary 
for work in applied informatics, quickly and from his or her own experience. 

The analysis of Anderson task is laborious. In such a case we should do a bit 
of thinking about the possibility of generalising the results beyond the frame 
of the particular case for which it was proved. Notably strict is the assumption 
that in Anderson task the multi-dimensional random variables are Gaussian 
variables. The user cannot rely on that assumption beforehand: and I also 
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doubt that it can be experimentally determined whether the multi-dimensional 
random variable is Gaussian. I am very interested in such formulations of the 
task that would not be based on the assumption of Gaussian distribution, but 
on a substantially weaker assumption that it concerns a random variable with 
an unknown multi-dimensional distribution (well, how could it be known?). But 
one would know that the random variable has the mathematical expectation JL 
and the covariance matrix a. I will try to state the task more precisely. 

Let X be, similarly as in Anderson task, a multi-dimensional space, {JLi, 
j E J} be a set of vectors, { ai, j E J} be a set of symmetrical positive-definite 
matrices. Let pi be a set of functions p: X -t JR, such that for each p E pi 
there holds 

X 

LP(X)·X=JLi, 
X 

LP(x)·x·xT=ai, 
X 

p(x) 2: 0, x E X. 

The (row) vector xT denotes the transposed (column) vector x. It is clear to 
me that in all the formulre of this system, as well as further on, I should write 
integrals instead of infinite sums. But this is not essential now. 

Let the vector a and the number B define the set X(a, B) = { x I (a, x) ~ B}. 
Furthermore, let us have the function p: X -t lR and the number 

c-(a, B,p) = L p(x), 
xEX(a:,O) 

which means the probability of the event that a random vector x with proba
bility distribution p(x) will satisfy the inequality (a, x) ~ B. 

The task according to my wish tries to avoid the assumption of the Gaussian 
character of the random vector. A vector a and the number B are to be found 
which minimise the value 

max max c( a, B, p) . 
jEJ pEPi 

The pair of parameters sought is thus 

(a, B)= argmin max max c-(a,B,p). 
a:,() jEJ pEPi 

(5.105) 

It occurred to me that this task was very similar to the task that had interested 
me after Lecture 3. Tlwre I tried to find a reasonable strategy that, despite 
a common procedure, is not based on the assumption of the independence of 
features. At the same time nothing was known about the form of the depen
dence. With your lwlp I saw at that time that tlw recognition strategy with the 
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unknown mutual dependence was different from the strategy which was correct 
on the condition of feature independence. After this lecture a similar question 
worries me: is the strategy solving the task (5.105) the same as the strategy of 
solving the same task on a stricter assumption that the corresponding random 
vectors are Gaussian? I am going to say it in different words: can I also use the 
solution of Anderson task in a situation when I am not sure that the random 
vectors are Gaussian, and, moreover, when I know hardly anything about their 
distribution besides their mathematical expectation and covariance matrix? 

Boy! We respect you for your asking from time to time such deeply thought 
out and precisely formulated questions. To your question we have found a 
convincing and unambiguous answer. Your question was so well thought out 
that it does not seem to us that you had not already had an answer to it. All 
right, you must examine the function maxpE"Pi c(a, O,p). When you see that 
the function is decreasing in a monotonic way when the ratio 

(a,J.Li)- (} 

J(a,ai ·a) 

increases then the solution of the task (5.105) is identical with the solution of 
Anderson task. When the function is not decreasing in a monotonic way then 
further examining is necessary. 

I see that, but I do not know the way and I have not made any progress in my 
research either. It seems to me to be too complicated. 

Do not worry and start analysing the question, for example, in the following 
formulation. Let the mathematical expectation of an n-dimensional random 
vector x = (x1 , x2, . .. , xn) be zero, i.e., 

LP(X) ·X =0. (5.106) 
:~·EX 

The previous expression is a shortened notation of the following n equations 

L p(:z:t,:L:2, ... ,xn)·:r·;=O, i =1,2, ... ,n. 
(:l'l·····~·,)EX 

Let the covariance matrix of the same random variable be a, i.e., 

L p(x) · x · xT = a, 
:tEX 

which is a brief expression of the following n x n equations 

LP(x)·x-i-Xj=aij, i=1,2, ... ,n, j=1,2, ... ,n. 
:cEX 

(5.107) 
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Let a be a vector, 0 < 0 be a number and x-(a,O), X 0 (a,O) and x+(a,O) be 
the sets 

x-(a,O) = {x EX I (a,x) ~ 0}' 

X 0 (a,O) = {x EX I (a,x) = 0}' 

x+(a,O) = {x EX I (a,x) > 0}. 

The probability c(a,O,p) is then 

c:(a, O,p) = L p(x) . 
xEX-(a,IJ) 

(5.108) 

You would like to know what the numbers p(x), x EX, are to be that satisfy 
the conditions (5.106), (5.107) and further the conditions 

L p(x) = 1 , p(x) ~ 0, x E X, 
xEX 

and maximise the number c(a,O,p) expressed by the equation (5.108). To get 
used to this task, look first at a one-dimensional case. What are the numbers 
p(x) which for a one-dimensional variable x maximise the number 

(5.109) 

and satisfy the conditions 

xEX 

L p(x) · x = 0, 
xEX 

xEX 

p(x) ~ 0, x EX. 

That is the linear programming task. Although the task has infinitely many 
variables, it is still solvable. It resembles the well known Chebyshev problem, 
which differs from the case you have in mind only in that instead of (5.109) the 
sum 

L p(x) (5.110) 
lxi~O 

is to be maximised on the same conditions as those in your task. The solution 
of Chebyshev task is so clever that we cannot but quote it, even if it is quite 
known. 

"" 2 1 "" 1 "" 2 ~ p(x) = 0 · 02 ~ p(x) = 02 ~ p(x) · 0 
lxi~O lxi~IJ lxi~IJ 

1 "" 2 1 "" 2 ~ 02 ~ p(x) ·x ~ 02 ~p(x) ·x 
lxi~IJ xEX 

a 
()2 . 
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Hence it follows further 

L p(x) ~;. 
lxi~O 

Let aj(P ~ 1 hold. Let us have a look at the following function p*(x), 

{ 
~ · ; , when lxl = 0 , 

p*(x)= 1-~ whenx=O, 
02 ' 

0, for all other values of x. 
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(5.111) 

For the function p*(x) the sum (5.110) is a/02, and for all other functions, 
thanks to (5.111), it is not greater. Therefore the maximal value of the sum 
(5.110) at constraints (5.111) corresponds to the value a/02 • You can see then 
that the task of maximising the functions (5.110) need not be difficult, even 
when it depends on an infinite number of arguments. Do you not think that 
Chebyshev perfectly mastered the task? Why could not you as well master first 
the maximisation (5.109) on the conditions (5.111), and then solve a multi
dimensional task? 

I mastered it! My objective is to solve the following linear programming prob
lem 

max 2: p(x) 
xEX(a,O) 

>.a 2: p(x) = 1, 
xEX 

AI 2: p(x) · x = 0, (5.112) 
xEX 

>.2 2: p(x) · x · xT =a, 
xEX 

p(x) ~ 0, X EX. 

In the first line of (5.112) the function to be maximised is written. The desig
nation X(a, 0) in this objective function of the above linear task formulation 
means x- (a, 0) U xa(a, 0). In the second line the constraint is stated to which 
the dual variable >.a corresponds. The third line briefly shows n constraints 
related to n dual variables which are denoted by the vector >.I. The fourth 
line yields n x n constraints and the corresponding ensemble of dual variable 
is represented by the matrix >.2. 

Tl1e variables in the task (5.112) are the numbers p(x), x EX. To each such 
variable a constraint corresponds which the dual variable >.a, the vector AI and 
the matrix >.2 must satisfy. To the variable p(x), x E X(a, 0), the following 
constraint corresponds 

(5.113) 
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and to the variable p(x), x E x+(a, 0), the following constraint corresponds 

(5.114) 

The constraints (5.113) and (5.114) are to be understood in such a way that the 
ensemble of dual variables defines on the space X a quadratic function which 
will be denoted by F, 

which must not be less than 1 on the set X (a, 0) and must not be negative on 
the set x+(a,O). As a whole, the function F(x) is positive-semidefinite. 

I will analyse the problem (5.112) only for the situations in which the math
ematical expectations of random variable x belongs to the set x+(a, 0). This 
means that 0 < 0. 

Let p* be the solution of the task. At least in one point x E x+(a,O) there 
must be p*(x) f:. 0, since in the opposite case 

(a, L p*(x) · x) 
xEX{o,O) 

L p*(x) ·(a, x) (5.115) 
xEX(a,O) 

< L p*(x)-0=8<0, 
xEX(a,9) 

would occur and thus 

would bold, which would contradict the constraint in the third line of (5.112). 
The point X E X+(a, 0) for which p*(x) f:. 0 holds will be denoted by Xo and 
the scalar product (a, xo) will be denoted by the symbol~-

Now I will prove that the scalar product (a, x 1 ) in an arbitrary point x1 E 
x+(a,O), for which p*(xt) f:. 0 holds, is also~- In other words, all points 
Xt E x+(a,O) for which p*(x) f:. 0 holds lie in a hyperplane parallel to the 
hyperplane (a, x) = 0 denoted X 0 (a, 0). I assume that it is wrong and consider 
a pair from the hitherto point xo and another point x1 so that for them there 
holds 

p*(xo) f:. 0, } 
p*(xt) f:. 0, 
(a, xo) f:. (a, Xt) . 

(5.116) 

I will examine how the function F(x) behaves on a straight line which passes 
through the points xo and x1 . This straight line is not parallel with the hyper
plane X 0 (a, 0). Therefore there certainly exists a point x2 which lies on that 
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straight line and at the same time it lies in the hyperplane X 0 (a,8). Thanks 
to the constraint (5.113) in this point there holds 

By the second duality theorem the first and the second inequalities in (5.116) 
imply correspondingly 

F(xo)=O, F(x1)=0. 

Any convex combination of the points xo and x1 belongs to the set x+(a, 8), 
and thus for each point of this abscissa 

F(x*) ~ 0 

holds by (5.114). Thus on the abscissa passing points x0 and x1 the quadratic 
function F must behave in the following way. On the abscissa between points 
Xo and x1 the function F must not be negative, in the extreme points x0 and 
x1 it must be zero, and in a certain point x 2 outside the abscissa it must not 
be less than 1. Since such a quadratic function does not exist the assumption 
(5.116) is not satisfied. Thus we have proved by contradiction that in all points 
x in the set x+(a, 0) for which p*(x) f; 0 holds the scalar product (a, x) is the 
same and equal to the number which I denoted by ~. 

[(x E x+(a,O)) 1\ (p*(x) f; 0)] =? [(a,x) = ~] . 

I will now prove the statement 

[(x E X(a,O))] 1\ (p*(x) f; 0) =? [(a,x) =OJ , (5.117) 

which is equivalent to the statement 

((a,x) <e)=} (p*(x) = o). (5.118) 

Let us assume that the statement (5.118) is wrong. Let for a point x1 hold 

(5.119) 

I will examine how the function F behaves on the straight line which passes 
through the points x1 and x0 . For the point x0 the existence of which has 
already been proved by me, there holds 

p*(xo)f;O, (a,xo)>O (5.120) 

This straight line must intersect the hyperplane X 0 (a, 0) in a point which will 
be denoted x*. Resulting from (5.113) there holds 

F(x*);:::l. 
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Thanks to the second theorem on duality (Theorem 2.2) from the first inequality 
in (5.119) 

F(xl) = 1 

holds and from the first inequality in (5.120) there holds 

F(xo) = 0. 

The function F must behave on the straight line examined as follows. In a 
selected point x1 the function F assumes the value 1, in another point xo it 
assumes the value 0 and in the interjacent point x* it assumes a value that is 
not less than 1. Since no positive-semidefinite quadratic form can behave in 
this way, the assumption (5.119) is not valid. Thus I have proved (5.117). 

A set of points x for which (a, x) = ~ holds is a. hyperplane X 0(a, ~). 
Furthermore, I will denote 

Po= I: p*(x)' 
xEX0 (o,9) 

p~ = I: p*(x)' 
xEX0 (o,~) 

where p* represents, as before, the function which solves the task (5.112). The 
function p*, therefore, must also satisfy the conditions of this task from which 
there follows 

Po + p~ = 1 } 
Po · () + p~ . ~ = o : 
Po· B2 + p~ · ~2 = (a, a· a). 

(5.121) 

I will show how (5.121) follows from the conditions (5.112). For the first con
dition from (5.121) it is quite evident because all points x with p(x) =f. 0 are 
either in X 0 (a, ~) or in X 0 (a, B). 

The equation L: p(x) · x = 0 in (5.112) is only a brief representa.tion of n 
xEX 

equations 
LP*(x)·x;=O, i =1,2, ... ,n. 
xEX 

From the previous n equations there follows that 

and further 

ai· LP*(x)·xi=O, i =1,2, ... ,n, 
xEX 

0 = Lai · L p*(x) ·Xi= L p*(x) · (l::ai ·xi) 
i xEX xEX i 

= L p*(x) · (a,x) = L p*(x) · () + L p*(x) · ~ 
xEX 

= Po · () + p~ · ~ . 
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The condition LxEX p*(x) · x · xT =a in (5.112) is also only a brief expression 
for n x n equations 

L p*(x) ·Xi· Xj = aij, 
xEX 

= l, ... ,n, j = 1,2, ... ,n. 

From the previous n x n equations there follows 

ai·ai·Lp*(x)·x;·Xj=ai·aij'aj, i =l, ... ,n, j=l, ... ,n, 
xEX 

and further 

(a, a· a) = L (ai · a;j · aJ) = L ai · aj · L p*(x) ·Xi· XJ 
i,j i,j xEX 

= L p*(x) ·La;· ai ·Xi· Xj 
xEX i,j 

= LP*(x)· (L::ai·x;) · (~aJ·XJ) 
xEX • J 

= LP*(x)· (L:ai·x;Y 
xEX • 

L p*(x). ()2 + L p*(x). ~2 
xEX0 (a,O) 

* ()2 * A 2 =Po · + Pt:;. · u · 

The system (5.121) consists of three scalar equations only in which the variables 
are the numbers p0, p~ and~. The system has one single solution for which 
the following equality holds 

* (a, a ·a) 
Po = ()2 + (a, a . a) . 

The number Po is just the value of the sum LxEX(a,O) p(x), after substituting 
the function p*(x) in it which maximises the sum in our task, and therefore is 
an explicit expression for solving the task (5.112). The result is the number 

(a, a ·a) 
02 + (a, a · a) 

which decreases monotonically when the quantity 

() 

J(a, a· a) 

grows. 
I then ask a half-hearted question. Have I enhanced Chebyshev inequality? 
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Of course, you have not. The Chebyshev inequality cannot be enhanced be
cause, as we have already seen, it defines the exact upper limit for a certain 
probability. This means that even such a random variable exists at which 
Chebyshev inequality becomes an equation. The Chebyshev inequality esti
mates the probability of a two-sided inequality lx - JLI ~ B, whereas your 
inequality estimates the probability of a one-sided inequality x- JL ~ -B. You 
have managed to prove that your estimate is also exact. You have not enhanced 
the Chebyshev inequality, but you have avoided its often wrong or inaccurate 
application. The first application of this kind is based on a correct estimate 

u 
P(x - JL ~ -B) ~ P(lx - Pi ~ B) ~ B2 

which is not exact and instead of which you can now use an exact estimate on 
the basis of the inequality of yours. The second common application is based 
on the following consideration 

1 u 
P(x- JL ~ -B)~ 2P(Ix- JLI ~B)~ 2B2 , 

which is not correct. The estimate which results from your considerations is 

u 
P(x - " < -B) < -- . 

r'- - B2 + u 
(5.122) 

Since you have proved that in the relation (5.122) the equality can be obtained, 
your estimate, as well as that of Chebyshev, cannot be enhanced. 

So we have together proved that all algorithms which were proved for An
derson task on the assumption that the random variables were Gaussian can 
be used even in a case where the Gaussian assumption is not satisfied. But 
be careful and use this recommendation only in the sense that has been stated 
here. Use it particularly when you are not sure that the random variables are 
Gaussian and when you doubt over other assumptions as well. If you know for 
certain that a random variable is not Gaussian and if, moreover, you are sure 
that it belongs to another class of random variables, and you know the class, 
even more effective algorithms can be created. 

I thank you for your important advice, but I must say that other different 
algorithms do not worry me much at the moment. I am interested in actual 
recommendations of what to do when I have two finite sets X1 and X2 and 
want to separate them by means of a hyperplane in a reasonable way. I see 
that here I can proceed in at least two directions. 

In the first case I can try to separate two sets by means of the Kozinec 
algorithm. If the number of points in the sets X1 , X2 is very large then I can 
even go in the other direction, i.e., calculate the vectors p 1, p 2 and matrices 
u 1 , u2 • For searching for the separating hyperplane I can use the algorithms 
for solving Anderson task. I can afford to do so because I have proved that for 
the correctness of such a procedure it is not necessary to assume the Gaussian 
character of random variables. Anderson task, which I use here for replacing 
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the original task, is quite simple because one operates with two classes only, 
IJI = 2. 

Here, in practice, we do not recommend you anything. We would like to remark 
only that your being at a loss that you know several approaches of how to solve 
an application task is of a quite different character now than as if you knew 
none. But the worst situation is when someone knows one approach only, and 
therefore he or she uses it without any hesitation or doubt. 

But here several approaches could be considered. I need not, for example, 
represent the whole set X1 by means of a single pair J.L1 , u 1 , but I can divide 
it, in some reasonable way, into subsets and so express X1 by means of more 
vectors and matrices. But I do not know how this division of a set into subsets 
can be done. 

You are already interfering with the subject matter of our next lecture, where 
these problems will be dealt with. We are sure that after the lecture you will 
again have interesting comments. 

July 1997. 

5. 7 Link to a toolbox 
The public domain Statistical Pattern Recognition Toolbox was written by V. 
Franc as a diploma thesis in Spring 2000. It can be downloaded from the 
website http: I I cmp. felk. cvut. czl cmpl cmp_software. html. The toolbox is 
built on top of Matlab version 5.3 and higher. The source code of algorithms 
is available. The development of the toolbox has been continued. 

The part of the toolbox which is related to this lecture implements lin
ear discriminant functions, e.g., separation of the finite point sets, perceptron 
learning rule, Kozinec algorithm, €-solution by the Kozinec algorithm, Sup
port Vector Machines (linearly separable case), Fisher classifier, modified Per
ceptron rule, modified Kozinec algorithm, generalized Anderson task, original 
Anderson-Bahadur solution, €-solution. The quadratic discriminant functions 
are implemented, too, through non-linear data mapping. 

5.8 Bibliographical notes 
The formulation and solution of the original Anderson-Bahadur task is in 
the paper [Anderson and Bahadur, 1962]. Schlesinger [Schlesinger, 1972a; 
Schlesinger, 1972b] proposed a solution for the case in which classes are not 
characterised by one Gaussian distribution but by several Gaussian distribu
tions. 

The algorithm of the linear decomposition of finite sets of points comes from 
Rosenblatt perceptron [Rosenblatt, 1962]. The climax of this research was 
Novikoff theorem [Novikoff, 1962]. In the lecture a proof of Novikoff theorem 
was taken over after [Vapnik and Chervonenkis, 1974]. 
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Another, but quite close, view of the decomposition of finite sets is repre
sented by potential functions [Ajzerman et al., 1970). The approach deals with 
decomposition of finite or infinite sets and uses nonlinear discriminant func
tions. Essentially the idea of feature space straightening is generalised. Note 
that space straightening has been introduced in Lecture 3. The main idea of 
the potential functions method states that the straightening can be used even 
if the feature space straightened has infinite dimension, and not only finite di
mension. The potential function method discovers that the main question asks 
if the scalar product can be constructively calculated in the space straightened, 
and not if the space straightened has finite or infinite dimension. The scalar 
product in space straightened is a function of two variables defined in original 
space, and it is just a potential function. In many applications the potential 
function can be implied directly from the content of the problem solved. The 
convergence of the potential function method is proved similarly to the proof 
of Novikoff theorem. Another algorithms separating finite and infinite sets of 
points were suggested by Kozinec [Kozinec, 1973) and Jakubovich [Jakubovich, 
1966; Jakubovich, 1969). 

The transformation of the task separating linearly and optimally a set of 
points to the quadratic programming task was explained in the lecture. The 
approach has roots in known results of Chervonenkis and Vapnik. Their method 
of generalised portraits was published in [Vapnik and Chervonenkis, 1974). 
The method is well known now in western publication as a Support Vector 
Machine [Boser et al., 1992), [Vapnik, 1995), [Vapnik, 1998). 

Class of Fisher strategies, synthesis of which can be reduced to synthesis of 
linear discriminant functions, were originally introduced in [Fisher, 1936]. 

A modification of the perceptron and Kozinec algorithms for dividing infinite 
sets and their use for c:-solution of tasks is in [Schlesinger et al., 1981). 

Let us note that Kozinec algorithm can be extended to non-separable data 
[Franc and Hlavac, 2001). 

The mathematical basis for non-smooth optimisation used in the discussion 
has been taken over from [Shor, 1979; Shor, 1998). Considerations on Fibbonaci 
numbers can be found in [Renyi, 1972). 



Lecture 6 

Unsupervised learning 

Messieurs, lorsqu'en vain notre sphere 
Du bonheur cherche le chemin, 
Honneur au fou qui ferait faire 
Un reve heureux au genre humain. 

Qui decouvrit un nouveau monde? 
Un fou qu'on raillait en tout lieu. 
Sur Ia croix, que son sang inonde, 
Un fou qui meurt nous legue un Dietl. 
Si demain, oubliant d'eclore, 
Le jour manquait, eh bien, demain, 
Quelque fou trouverait encore 
Un flambeau pour le genre humain. 

Part of the song Fools by Pierre-Jean de Branger, 18:13. 

6.1 Introductory comments 
on the specific structure of the lecture 

This lecture is devoted to unsupervised learning, which in the theory of recog
nition is sometimes referred to as self-learning, learning without a teacher, or 
is even given some other name. The nature of the lecture will be somewhat 
different from the previous explanation. The previous five lectures had the 
form of more or less convincing considerations which were based on the most 
possible unambiguous formulation of the task and led to its solution. If the 
centre of a lecture is the formulation of the task then the long term and exten
sive research which preceded the clear understanding of the task will remain 
behind the stage. This life cycle of scientific thought is typically imbued with 
an extraordinary emotional tension and drama. 

The previous explanation was devoted to those chapters of pattern recogni
tion theory which were inheritr_'d from other scientific disciplines. In them the 
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results assumed a completely accomplished form in which they assimilated into 
the pattern recognition theory. Therefore today we can only remain in the dark 
about why and how T. Bayes, for instance, discovered the excellent formulation 
of the statistical decision task. We can only imagine how he worked his way 
through dim ideas and doubts, which there certainly were a lot of, how he stood 
up to the notes of criticism by his colleagues, etc., etc .. 

Unlike the fundamental knowledge acquired in pattern recognition, but adop
ted from other scientific disciplines, the concept of unsupervised learning was 
created as late as in pattern recognition theory itself. Therefore unsupervised 
learning cannot pride itself upon such a respectable age as that enjoyed by the 
Bayesian and non-Bayesian approaches. However, a relatively young age does 
render to unsupervised learning one advantage. Unlike the case of established 
methods, the whole period of existence of the scientific field of unsupervised 
learning can be surveyed at one glance, from its birth till to the present day 
state of the art, and we can see all the pitfalls and valleys through which it 
had to pass to manage, at last, to express it in the form of unambiguously 
formulated task and its solution. 

The consistency and inevitability of the certain inconvenience which accom
panies the birth of new knowledge is really remarkable. The dramatic back
ground of scientific development is such an attractive topic for a discussion that 
we avoid only with difficulty the temptation to show a long series of well known 
cases which illustrate, in spite of the time and spacial remoteness, a much sim
ilar destiny for the new pieces of knowledge. Not quite seriously, but not as 
a joke either, one could say that the example of the discovery of America by 
Columbus joins together, in its core, the following features which characterise 
scientific discovering as well. 

• The discovery of America by Columbus was made possible only thanks to 
the powerful financial support of the whole project. 

• Columbus managed to gain resources for the project only after he had given 
a guarantee that he would find a new way from Europe to India. 

• Columbus' confidence that he would solve the practical task was based 
upon false premises. That is why the goal of the project was not reached. 
Conversly, during the project an unexpected and quite substantial obstacle 
appeared (a whole continent!) which spoiled reaching the practical goal of 
the project. 

• Columbus managed, despite all the apparently negative outcomes of the 
project, to convince his sponsors and customers that all that had been 
expected from the project had been successfully accomplished. 

• After the project was accomplished nobody including the author (of the 
project) noticed what a significant discovery had been actually made. More
over, if someone had drawn attention to the importance of the discovery, 
hardly anyone would have realised its actual significance: the investors in 
the project were interested not in the new (and up to that time unknown 
territories), but only in new ways to the territories already known. 
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• When the knowledge which Columbus had already discovered began to be 
needed nobody remembered it. To re-discover it a completely new project 
had to be started and a new grant obtained. 

• The continent discovered was not eventually named after Columbus but 
after someone else who just repeated that what Columbus found earlier. 

• Columbus himself did not learn until the end of his lifetime what he had 
actually discovered and remained convinced (or did he only pretend?) that 
he had discovered a new way to India. 

• Now it is generally known that Columbus was not the first European to have 
sailed to America. Its existence had already been known for centuries before 
Columbus, not just to individuals, but to entire nations of Scandinavia who 
made practical use of that knowledge. 

The form of this lecture has been influenced not only by the content presented, 
but also by the effort of the authors to show how stony is the path along which 
something new comes into existence, even if the new is rather imperceptible. 

6.2 Preliminary and informal definition of unsupervised 
learning in pattern recognition 

Let us make a brief survey of the subject matter of the previous lectures and 
on this basis we will classify pattern recognition algorithms into those which 

• function without learning, 

• learn, 

• are based on unsupervised learning. 

The classification of recognition algorithms presented depends on the degree of 
completeness of available knowledge about the statistical model of the recog
nised object or on the way in which to compensate for the lack of this knowledge. 

A complete description of the statistical model of an object is the function 
PxK: X x J( -+ IR, whose value PxK(x, k), x E X, k E K, denotes a joint 
probability that the object is in the state k and is characterised by the feature 
x. The probability distribution PXK is the basis for the formulation of some 
Bayesian task (according to the penalty function used). The solution of the 
Bayesian task is the strategy q: X -+ J( which a certain (non-learning) pattern 
recognition device implements. Here the task is formulated as a search for 
a strategy which is suited for one single statistical model PxK. The formal 
properties of Bayesian strategies have been described in Lecture 1. 

Incomplete knowledge of the statistical model is expressed in such a way that 
the function PxK is not known and only a certain set of models P is known 
which contains the function PxK. The incompleteness of the knowledge can be 
due to two reasons which fundamentally differ from each other. 

In the first case the lack of knowledge can be in no way compensated for since 
the function PxK is changeable and depends on a certain non-random, but also 
changeable intervention. The recognition strategy cannot, in this case, take 
into consideration one particular statistical model p XK, but requires the whole 
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group of models P. These tasks have been known as non-Bayesian recognition 
tasks and were the content of Lecture 2. 

In the second case the reason of the incomplete knowledge for the probability 
PXK appears not to matter so much. The function PXK can be unchanging, but 
unknown only because the recognised object has not yet been carefully enough 
investigated. It is now possible to get on with examining it. Lectures 4 and 5 
have demonstrated how to formalise additional investigation. The outcome 
of the formalisation is a procedure which is referred to as learning in pattern 
recognition and is based on the property that a training multi-set in the form 
(x1 , k1 ), (x2 , k2 ), ... , (xn, kn), which consists of mutually independent members 
(x;, k;), is at our disposal. Each member of the training multi-set is an instance 
of a random pair (x, k), given by the probability distribution PXK which is 
unknown. Let us remember that we use a more exact term-the training multi
set-instead of frequently used terms the training set (it is not a set because 
the same members can be repeated several times), or the training sequence (no 
fixed order is given here). 

The training multi-set is obtained from two different sources. The obser
vations x are acquired in a training phase from the same source which the 
observations x are aquired in the recognition phase. Therefore the observa
tions x can be obtained more easily than the hidden states k. In theoretical 
research the question from where the particular state is to be obtained is waved 
aside with an easy going answer that this type of information is provided by 
the teacher. In applications complex and frequently expensive provisions are 
necessary to obtain the states k. The state, as it is known, is a hidden param
eter of an object and is inaccessible for immediate measurements. Therefore 
the effort to find the state k at all costs can lead to an unusual intervention 
into the object at which its action is interrupted, or the object is completely 
destroyed. 

This difficulty leads to a number of questions. Are both the observations 
and corresponding states needed during learning to compensate for the deficient 
knowledge of the statistical model PXK? Is not the multi-set of observations 
sufficient? Is it possible to do without the information provided by the teacher 
during learning? Questions asked in this way brought about the situation in 
which some conjectural abilities of recognition devices had been called unsu
pervised learning even before it was well understood what should be meant 
by this term. It took some time to successfully express in the form of a con
crete mathematical task the vague wish concerning what were the required 
features of pattern recognition devices capable of unsupervised learning. The 
solution of this task should look like a strategy that improves according to how 
the device analyses more and more objects. The teacher's information is not 
used. 

We will demonstrate how present day ideas on such self-improvement grad
ually originated owing to the confluence of powerful streams which had existed 
independently of each other in different fields of science, to eventually meet in 
pattern recognition. There were three streams: perceptron, empirical Bayesian 
method, and cluster analysis. 
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6.3 Unsupervised learning in a perceptron 
The American mathematician Halmos [Halmos, 1971] seems to have been right, 
we are afraid, when saying that the best motivation towards a better perfor
mance of a demanding piece of work was a situation where this hard work had 
previously been done incorrectly by somebody else. There are fare more exam
ples supporting this rule than we would wish for. In pattern recognition too, 
there are more research projects that act more as a powerful stimulation for fur
ther research than as the results which would seem to be faultlessly complete. 
It can be even predicted that it will be so for some time. 

Among the research results stimulating further exploration the foremost po
sition is, beyond dispute, held by the perceptron and various neural networks. 
Among the positive features of the direction of neural networks in pattern 
recognition, which undoubtedly justify its existence, one feature is worth being 
extensively discussed, be it positive or negative, without arriving at any con
clusion. The problem is that by the aid of neural networks people often try to 
solve pattern recognition tasks which are really difficult. The results of their 
solutions gained with the aid of neural networks are, however, sometimes so 
bad that they immediately call for an effort to solve them in a better way. 

The dissension and mutual lack of understanding between the supporters of 
neural networks and the followers of other trends became apparent immediately 
after the first information by F. Rosenblatt about the perceptron in the late 
fifties [Rosenblatt, 1957]. Since the dissension already lasts more than 40 years 
it can be assumed not to be a result of a temporary misunderstanding, but based 
on more substantial ground. The reasons of the mutual misunderstanding were 
well expressed by the author of the perceptron himself, F. Rosenblatt, in his 
monograph Principles of Neurodynamics [Rosenblatt, 1962], which summarised 
many years' research of the perceptron. 

According to Rosenblatt there are two main research models in cybernetics 
which he called the monotype model and the genotype model. The objective 
of the research in both models is to find a mutual relation between a certain 
device, one would call it an algorithm now, and the task which is solved by 
means of this device. This objective, however, is achieved in the monotype and 
genotype research in substantially different ways. In the monotype model, the 
task to be solved is defined first, and only then the device that is to solve the 
task is created. It is a style we tried to adhere to in our previous lectures and 
we will continue in this trend even in further explanation. 

The genotype model is simply the other way round. At first a certain device 
is constructed, at least mentally, this is then examined in an effort to com
prehend for which task solution it is actually suited. From the point of view 
of usual engineering practice, the genotype model appears entirely absurd. In 
most cases an engineer, perhaps due to his/her long term education, simply 
does not begin to construct a machine before making clear the purpose for 
which the machine is to be used. Among physiologists and other natural scien
tists who examine living organisms. the genotype approach is a usual one. At 
first, certain ideas on information processing mechanisms in an already existing 
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device come into being, such as that in a living organism, and only then the 
researcher tries to understand the purpose of this processing. 

Rosenblatt accounts for the lack of understanding of the perceptron by stat
ing that every supporter of a certain model, be it of the genotype, or monotype 
kind, acts as if his/her model were the only possible one. After Rosenblatt, the 
perceptron is a significant example of the genotype research. The main reason 
for the lack of understanding for it is an effort to evaluate it from the monotype 
point of view. The perceptron is neither a device for image analysis nor is it a 
device for speech recognition. It is not even a device that could be defined in a 
way a monotypist would expect it. It is because the common feature of all per
ceptrons, we consider a class of neural networks, is not expressed by virtue of 
formulating the tasks being solved, but by describing its construction. We will 
give the description in the original form in which the perceptron was defined 
in early publications, with only such an amount of detail that is necessary for 
our lecture. 

The perceptmn is a device which consists of a certain set of elements re
ferred to as neurons. Each neuron can be in either of two states: in the 
excited state or in the inhibited state. The state of a neuron is unambigu
ously determined by the image which is at the input of the perceptron. Let 
the set of images which can occur at the input of the perceptron consist of 
l images. This set can be classified into two classes in 21 ways. The first 
class images will be called positive, and the second class images will be called 
negative. There exists an authority-the teacher-who selects from these 21 

classifications a single one which is then regarded as unchanging further on. 
This classification is called the teacher's classification, or the correct classifi
cation. In addition to the teacher's classification, there are also other input 
image classifications which in the general case need not be identical to the 
correct one. One of these classifications, which will be called perceptmn clas
sification, will be implemented in the following way. Each neuron is charac
terised by its numerical parameter which is called the weight of the neuron. 
The weight can be any real number. The image at the perceptron input is 
evaluated as negative or positive according to whether the sum of weights of 
the neurons that have been excited by the image are positive or negative, re
spectively. 

The classification by the perceptron depends on neuron weights. The weights 
vary by means of reinforcement and inhibition of a neuron, which represent the 
respective increase or decrease of a neuron weight by a certain constant quan
tity ~- In observing each image a particular neuron is reinforced or inhibited 
according to 

• whether the given neuron was excited by the observed image; 

• which class the image was classified by the teacher; 

• which class the image was classified by the perceptron itself. 

Different combinations of these conditions determines the following three algo
rithms for the alteration of neuron weights. 
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Algorithm 6.1 Learning after the teacher's classification 

1. If the teacher included the image in the positive class then all excited neurons are 
reinforced. 

2. If the teacher included the image in the negative class then all excited neurons 
are inhibited. 

Algorithm 6.2 Learning after the classification by both the teacher 
and the perceptron 

1. If the perceptron included the input. image in the same class as the teacher did 
then none of the neurons are either reinforced or inhibited. 

2. If the perceptron included the input image in the positive class and the teacher 
included it in the negative class then all excited neurons are inhibited. 

3. If the perceptron included the input image in the negative class and the teacher 
included it in the positive class then all excited neurons are reinforced. 

Algorithm 6.3 Unsupervised learning as classification by the perceptron 

1. If the perceptron included the input image in the positive class then all excited 
neurons are reinforced. 

2. If the perceptron included the input image in the negative class then all excited 
neurons are inhibited. 

It can be seen that Algorithm 6.3 differs from Algorithm 6.1 only in that the 
role of the teacher is performed by the perceptron itself. This difference is sub
stantial. To implement Algorithm 6.1 or Algorithm 6.2 the perceptron must 
have two inputs: one for observing the input image and the other for informa
tion from the teacher. Algorithm 6.3 can be implemented without any contact 
with the teacher. Therefore if the first two Algorithms 6.1 and 6.2 have been 
called perceptron learning then the third Algorithm 6.3 is named unsupervised 
learning. 

Rosenblatt's main premise was in that a perceptron controlled by any of 
the three presented algorithms reaches the state in which it classifies all input 
images in a correct way. 

It is hardly possible to describe the universal enthusiasm which was evoked by 
Rosenblatt's first publications concerning these premises. With the perceptron 
everything seemed to be marvellous: the charming simplicity of the algorithm, 
the application of terms unusual in computer technology of those times, such as 
'neuron', 'learning', and the word 'perceptron' itself. A romantic atmosphere 
was created as when one seems to stand in front of an unlocked, but still 
not open door. :VIoreover, one is convinced that behind the door something 
is waiting for him/her \\·hat has been long expected, even though one does 
not yet know, what particularly it will be. Should Rosenblatt's premise appear 



222 Lecture 6: Unsupervised learning 

correct it would mean that the painful and tedious work of constructing pattern 
recognition devices could be easily avoided. It would only suffice to build a 
perceptron and then show it some examples of how to operate, and it would 
proceed automatically. In addition, the assumed ability of the perceptron for 
unsupervised learning would make a correct performance possible even without 
showing certain examples to the perceptron: it would suffice for the perceptron 
to examine images which it should recognise and it would find out by itself, 
how to classify them. 

As nearly always happens, only an insubstantial part of the outlined beau
tiful fairy tale becomes true. The realisable part is expressed by Novikoff the
orem which was quoted and proved in the previous lecture. Novikoff theorem 
has confirmed Rosenblatt's assumption in Algorithm 6.2, controlled both by the 
teacher's and perceptron's classification. Let us note that the theorem holds 
under the condition that such an ensemble of neuron weights exists in which 
the correct classification is realised. 

For an algorithm controlled only according to the teacher's classification we 
can easily prove that Rosenblatt's assumption is erroneous. Though it is not 
the main purpose of this lecture, let us look over a simple counterexample which 
proves Rosenblatt's assumption wrong. 

Example 6.1 Rosenblatt Algorithm 6.1 need not converge to correct clas
sification. Let perceptron consist of three neurons. Each positive image will 
excite all three neurons, and each negative image will excite either the second 
or the third neuron only. This situation is favourable for the perceptron since 
there exists an ensemble of neuron weights w1 , w2 , w3 , with which the percep
tron faultlessly classifies all the input images. Such weights can be, for example, 
WI = 3, w2 = -1, w3 = -1. The sum of the weights of neurons excited by a 
positive image will be + 1, and that by the negative image will be -1. 

Assume that the perceptron learning starts with exactly those weight values 
with which the perceptmn can correctly recognise all input images. Let us see 
what happens when the weights are changed after learning on n positive and n 
negative images. During learning each neuron will be n times reinforced, whilst, 
the second neumn will be n 2 times, and the third neuron n 3 times inhibited, 
where n = n2 + n3. The neuron weights will be 

WI= 3+n~, 

w2 = -1 + ~ ( n - n2) , 

w3 = -1 + ~ (n- n3). 

The sum of the neuron weights that are excited by a positive image will be 
1 + 2n ~ which is a positive number for· any n. This means that the recognition 
of positive images does not deteriorate due to the correction.s of neuron weights. 
But the sum of neuron weights excited by a negative image is either -1 + ~ ( n
n2) or -1 + ~ (n- n3). The sum of these two numbers is -2 + n ~ which 
is a positive number at a sufficiently great n. From this it follows that at least 
one of the summands -1 + ~ (n- n2) or -1 + ~ (n- n3) is positive. We can 
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see that the perceptron after learning passed from the state in which it had been 
correctly recognising all the images, to a state in which it is not recognising all 
of the images correctly. A 

Rosenblatt's assumption on the convergence of the learning algorithm toward 
a correct classification appeared correct for perceptrons controlled by both the 
teacher's and the perceptron's classification, i.e., for Algorithm 6.2 only. The 
assumption is wrong for a perceptron controlled solely by the teacher's classi
fication. If we try to find out now, if Rosenblatt's assumption is also correct 
for a perceptron controlled only by the perceptron classification, we will be 
embarrassed since the assumption is neither correct nor wrong. 

We will explain it at an example. The statement 2 · 2 = 4 is correct, and the 
statement 2 · 2 = 5 is wrong. But the statement 2 · 2 = { is neither correct 
nor wrong. It is evident that the previous statement cannot be considered as 
correct. At the same time it cannot be considered wrong since if we considered 
the statement as a wrong one then we would immediately admit that the state
ment 2 · 2 f. \" is correct, but that would not be our intention. The statement 
2. 2 = { is ~imply nonsense and he/she who wrote it did not add anything 
important to it, and therefore it is an improper statement. 

Rossenblatt's assumption on unsupervised learning in a perceptron is ex
plained ambiguously because it does not say which of the 21 classifications of 
input images is regarded as correct. According to how this classification is 
defined one can already consider the feasibility or infeasibility of unsupervised 
learning by means of the perceptron. 

It is evident that if the teacher's classification is regarded as correct then the 
assumption on unsupervised learning is wrong. The classification attained by 
the perceptron by means of unsupervised learning depends on the set of input 
images only. But the teacher can classify this set in different ways. What is 
constant cannot be identical to what is varying. 

If the classification attained by the perceptron is regarded as correct then the 
statement on unsupervised learning becomes valid. It is, however, a statement 
of the form: The perceptron attains correct classification, and that classification 
is correct which is attained by the perceptron. This validity has an empty 
content as does a statement of the kind 2 · 2 = 2 · 2. 

Therefore some understandable properties of the classification attained by 
the perceptron during unsupervised learning need to be formulated. In other 
words, a task is to be formulated that is solved in unsupervised learning by 
means of the perceptron. Even such a retrospective analysis of an algorithm 
might evoke an understandable aversion by specialists of technological orienta
tion, we are not afraid of it since such a research strategy is usual in disciplines 
of natural sciences. 

Rosenblatt made a number of experiments with the aim of understanding the 
features of the classification which is reached by the perceptron in unsupervised 
learning. The outcome of the experiments was unexpected. From any state, the 
perceptron stubbornly passed to a state in which all the images were included 
in one class, be it positive or negative. Such a classification is really good for 
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(a) Varying classifier. (b) Learning as an estimate of parameter A. 

R 

(c) Learning classifier. (d) Classifier based on unsupervised learning. 

Figure 6.1 Different classifier configurations. 

uothing. And as it frequently happens, only when the experiments had led to 
that negative result, it was clear that the result could not have been different. 
When the perceptron has reached the state in which it includes all the images 
in one class, to be specific let it be the positive class, then no subsequent 
unsupervised learning can alter the situation. After processing a new image, 
the weights of the excited neurons are only rising, and thus the sum of weights 
of the excited neurons is rising as well. The image so far evaluated as positive 
can be classified as positive henceforth. 

That was the first part of our discourse on how the procedure known as 
unsupervised learning in pattern recognition had been gradually created and 
then ended with such disillusionment. In spite this ideas had been present there 
which have become an important constituent of the present day understanding 
of unsupervised learning. These ideas, however, were unnecessarily encumbered 
with neural, physiological, or rather pseudo-physiological considerations. From 
the present day point of view it may seem to have been purposely done to 
hopelessly block the way to reasonable outcomes. We will clear away from the 
idea all that seems to be useless in the context of this lecture and present the 
definition of a certain class of algorithms which is not very strict. We will 
call the class Rosenblatt algorithms owing to deep respect to the author of the 
perceptron. 

Let X and K be two sets members of which are the observations x and 
recognition results k. The function q: X --+ K is considered as the recognition 
strategy. Further let Q be a set of strategies. Let a device (see Fig 6.la) be 
assigned to implement each strategy from the set Q. The particular strategy, 
the device is performing at that moment, is given by the value of a parameter A 
which leads to the input assigned to it. ThP observations lead to another input. 
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The sequence of observations (x1 , x2, ... , Xn), x; E X, which will be denoted X 
is transformed by the device to a sequence ofrecognition results (k1, k2, ... , kn), 
k; E K, which will be denoted K. The choice of the concrete transformation 
which will be performed by the pattern recognition device depends on the value 
of the parameter A. The device, which will be called a varying cl~sifier and 
denoted by the symbol R, implements the fu~ction o( two variables X, A. Thus 
the varying classifier p~rfonns the decision K = R (X, A). 

Let another machine transform each pair 5f, K to the value of the parameter 
A (see Fig. 6.1b). The function that is implemeEtej by this machine will be 
denoted L, and we will call it learning, A = L(X, K). We will connect both 
the devices as can be seen in Fig. 6.lc, and create a device which we will call 
a learning classifier. The inputs to the learning classifier are three sequences 
5f, 5f' and K', and they are transformed to the output sequence K. The 
transformation is determined by two algorithms, the learning algorithm L and 
the algorithm of varying classification R. First, the value of the parameter A 
is calculated on the basis of the sequences 5f' and K' by the algorithm L. The 
value of A obtained is then led to the input of the classifier R. By virtue of 
the parameter A the concre!e decision rule is c!_etermined. Then the classifier 
R transforms the sequence X to the sequence K. 

This rather general description is by no means a strict definition of the 
learning classifier. It only states of what parts the learning classifier should 
consist, what the mutual relations between the parts account to, and what the 
data handled by the classifier means. As the learning classifier is concerned it is 
necessary for the algorithms Rand L to be well set up, in a certain sense. The 
classification K of the sequence X should not be very much different (again in 
a certain sense) from the teacher's classification K' of the sequence 5f'. These 
rather important requirements were made concrete in Lecture 4. 

Now, Rosenblatt's idea on unsupervised learning which was nearly buried 
in the impenetrable thicket of neural networks can be expressed even without 
this concretisation. Let us have a learning classifier which is given in Fig. 6.lc 
and assume that the algorithms R and L are correctly built up. Unsupervised 
learning can be defined as an algorithm which consists of the same algorithms 
Rand L, but which are connected in a different way than in the case of learning, 
see Fig. 6.ld. The new configuration is to be understood as follows. 

At any initial value Ao of the parameter A. the input sequence X is to be 
classified, i.e., the sequence Ko is to be obtained. This sequence is processed 
together with the sequence X as if it were information from the teacher. The 
value A1 = L(i, Ko) is to be calculated. For this new value A1 = L(.¥, K0 ) of 
the para~ter A the input sequence.¥ is to be classified again, i.e., the sequence 
K1 = R(X, AI) is to be calculated. This procedure is repeated so that at the 
base of the classification Kt-1 the classification K1 = R(.¥,L(.¥,K1_I)) is 
obtained, or similarly at the base of the value A.1_ 1 of the parameter A. the new 
value At= L(.Y, R(.Y, A.1_1)) is calc:ulated. 

The algorithm formulated in this way is defined up to recognition algorithm 
R and learning algorithm L. To each pair R, L a particular unsupervised 
learning algorithm corresponds. The given definition covers an extent class 
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of algorithms to which the term unsupervised learning applies, since the data 
which comes from the teacher in the process of learning is created by the clas
sifier itself. Rosenblatt's contribution to the theory of unsupervised learning 
could be evaluated from the present point of view as a design of an algorithm 
class which, according to his opinion, solves some intuitively considered tasks. 
These tasks have not been precisely formulated so far. 

In the meantime in the scientific disriplines neighbouring pattern recognition, 
tasks were formulated that had remained without solution for a long time. Only 
when these tasks were adopted by the pattern recognition theory, a solution 
was hatched in its framework in the form of algorithms that are quite close to 
Rosenblatt's algorithms. But let us postpone this until Section 6.6. 

6.4 Empirical Bayesian approach after H. Robbins 
Another powerful stream which was infused into pattern recognition and within 
its framework resulted in modern ideas on unsupervised learning is the so called 
empirical Bayesian approach by H. Robbins. It originated as an effort to fill 
in a gap between Bayesian and non-Bayesian methods in the theory of statis
tical decision making to which we devoted space in Lectures 1 and 2. After 
Robbins, the statistical methods of decision making should not be divided into 
two classes, the Bayesian and non-Bayesian ones, but into the following three 
classes. 

Bayesian classes. The domain of Bayesian decision making methods consists 
of situations in which the state k as well as the observation x are random 
variables, for which a priori probabilities of the state PK(k) and conditional 
probabilities PxJK(x I k) of the observation x under the condition that the 
object is in the state k are known. 

Non-Bayesian classes. The domain of non-Bayesian decision making meth
ods consists of situations in which only conditional probabilities PXJK(x I k) 
are known. The state k is varying, it is true, but it is not random, and 
therefore the a priori probabilities PK(k) are not only unknown, but they 
simply do not exist. In Lecture 2 we showed a variety of non-Bayesian tasks. 
In spite of this we will further consider a special case of the non-Bayesian 
tasks in its minimax formulation in the same way as Robbins did. 

Robbins' classes. Finally, the domain of the newly proposed methods by 
Robbins are cases in which both the states k and the observations x are 
random quantities. Similarly those in a Bayesian task have a certain proba
bility distribution, but only conditional probabilities PXJK(x I k) are known. 
The a priori probabilities of the state PK(k) are unknown even if they ex
ist and have a value. Here Robbins recommends applying special methods 
which are to fill in the gap between the Bayesian and non-Bayesian ap
proaches. 

The main idea of the proposed methods is explained by Robbins in the following 
simple example. 

Let X be a set of real numbers. Let the set [( consist of two states, K = 
{ 1, 2} and the feature x be a one-dimensional random variable with normal 
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(Gaussian) distribution, with variance a 2 = 1, and mathematical expectation 
which depends on the state k. If the object is in the first state then the 
mathematical expectation is 1. If it is in the second state then the mathematical 
expectation is -1. Let q: X --+ { 1, 2} be any strategy and a be the a priori 
probability of the object being in the first state. Let R(q, a) be the probability 
of a wrong decision for the state k. This probability depends on the probability 
of the first state a and on the strategy q used. Thus the probability R(q, a) is 

I 1 1 (· 1)2 I 1 1 ( +1)2 R(q,a) =a v"Fffe-2 x- dx + (1- a) v"Fffe-2 x dx. 

{xlq(x)=2} {xJq(x)=1} 

By the symbol q(a) a Bayesian strategy will be denoted which could be created 
if the probability a was known and the probability of the wrong decision was 
minimised. This means that 

q(a) = argmin R(q', a) , 
q'EQ 

where Q is the set of all possible strategies. Let q* denote the strategy which 
decides that the object is in the first state if x ~ 0, and in the opposite case it 
decides for the second state. Even though it is rather obvious that the strategy 
q* is a minimax one, and in this sense an optimal one, we will briefly prove this 
statement. 

The probability of the wrong decision R( q*, a) is 

0 00 

R(q*, a) =a I _1_e-~(x-1)2 dx + (1- a) I _1_e-~(x+1)2 dx 
v'2ir v'2ir 

-00 0 

-1 00 

=a I -1-e-~.r2 dx + (1- a) I -1-e-~x2 dx. 
v"Fff v"Fff 

-oo l 

Since the integrals 

and 

-oo 

are the same (they are approximately equal to 0.16), the number R(q*, a) does 
not depend on the probability a, and thus it holds 

R(q*,a) = rnaxR(q*,o) ~ 0.16. 
Q 

(6.1) 

On the other hand the strategy q* is identical with the Bayesian strategy q(0.5) 
which is based on the assumption that a pr·iori probabilities of states are the 
same. This means that for any strategy q which is not identical with the 
strategy q* the following inequality holds 

R(q, 0.5) > R(q*, 0.5) (6.2) 
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which is strictly satisfied in the case examined. By joining the equality (6.1) 
and the inequality (6.2) together 

max R(q, o:) ~ R(q, 0.5) > R(q*, 0.5) = max R(q*, o:) 
Q Q 

we obtain 
maxR(q,o:) > maxR(q*,o:) ~ 0.16 

Q Q 

which means that the strategy q* has the following two features. 

1. The strategy q* makes a wrong decision about the state k with the prob
ability 0.16 independently of what the a priori probabilities of the states 
are. 

2. Any other strategy does not have this property any longer, and moreover, 
for every other strategy there exist such a priori probabilities of the states 
in which the probability of the wrong decision is greater than 0.16. 

In the above sense the strategy q* is optimal in a situation in which the a priori 
probabilities of the object states are arbitrary. However, if the a priori prob
abilities were known, i.e., the probability o: was known then the strategy q(o:) 
could be built in the following form. The strategy decides for the first state 
when 

0: _l(x-l)2 1-0: _l(x+1)2 --e 2 >--e 2 /2-ff - /2-ff ' 
or (which is the same) 

1 1-o: x> -ln--. 
-2 0: 

(6.3) 

In the opposite case the strategy makes a decision that the object is in the 
second state. 

The probability of a wrong decision R ( q( o:), 0.16+-R---=---=--R_.:(:..::.q_.:* ·~o:) 
o:) provided by this strategy is 0.16 only at 
o: = 0.5 and at any other value o: it is smaller. 
Fig. 6.2 shows how the probabilities R(q(o:), o:) 
and R(q*, o:) depend on the a priori probabil
ity o:. The strategy q(o:) applies knowledge 
about the probability o:. The strategy q* is 
a minimax strategy built up without know
ing this probability. Fig. 6.2 once more illus
trates that the quality of recognition through 
the strategy q* does not depend on o: and con
stantly remains on the level 0.16. It is a level, 
however, that is reached through the Bayesian 
strategy only in the worst case. 

0 1o: 
Figure 6.2 The dependence of a 
probability of a wrong decision R 
on the a priori probability a for the 
Bayesian and minimax strategy. 

The facts described evoke a feeling of sharp dissatisfaction. Why actually, 
when the facts are not known, the strategy should be oriented particularly 
to the worst case? Well, the reality need not always be the worst one. The 
strategy q* described behaves as if no reality existed other than the worst one 
all the time. Is it possible to find such a way of classifying the observation 
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x, that would not use the explicit knowledge about a priori probabilities, but 
yield wrong answers with the probability 0.16 only in the case in which the a 
priori probabilities are the worst ones? Is it possible to attain better quality 
recognition in the case in which the reality is better than the worst one? Or, 
asked in a quite sharp form now: is there a possible strategy which would not 
be worse than the Bayesian strategy, but would not be based on the complete 
knowledge about the a priori probabilities of states? 

The answer to this question be it in one or another form is indubitably neg
ative. The Bayesian strategy q(a) substantially depends on a priori probabili
ties (it is evident, e.g., from the expression (6.3)). Therefore a strategy which 
is independent of a priori probabilities cannot be identical with all Bayesian 
strategies which do depend on a priori probabilities. 

Notice that the reasoning by virtue of which we arrived at the negative 
answer is nearly the same as the reasoning used in proving that the perceptron 
by itself was not able to get at a correct classification. In both cases the 
negative answer is based on an evident fact that a constant object cannot ever 
be identical with some other object that is varying. The significance of Robbins' 
approach which Neyman [Neyman, 1962] ardently valued as a breakthrough in 
the Bayesian front is in that he did not try to reply with a positive answer to 
a question for which a negative answer was nearly evident. Instead of that he 
changed the question, from the practical point of view rather slightly, but in 
such a way that the reply to the modified question ceased to be so obviously 
negative. 

Imagine that the task of estimating the state of an object is not to be solved 
only once, but many times in some n moments i = 1, 2, ... , n. Assume as 
well that the state of the object is random at these moments. The sequence 
k1, k2, ... , kn consists of mutually independent. random elements ki. The prob
ability of the event ki = 1 is equal to the probability a which we do not know. 
But the a priori probability a is known to be the same for all moments of 
observation. Let us also imagine that the classifier need not decide about the 
state k1 at once at the first moment in which only the first observation x1 is 
known. The decision can be delayed, and the decision made only when the 
entire sequence x1, x2, ... , Xn is available. In this case the state k1 is evaluated 
not only on the basis of one single observation x1 , but on the basis of the entire 
sequence x1, x2, ... , Xn. In the same way if the entire observation sequence is 
known then a decision can be made about the state k2 at the second moment, 
and then that about the states k3 , k4 , etc .. In this case strategies of the form 
X -+ K need not be referred to, but it concerns strategies of a more general 
form xn -+ Kn. 

Let us repeat now the old question, but modified after H. Robbins: Is there 
a strategy of the form xn -+ {1, 2}n which does not use a priori probabilities 
of states, and is not worse than the Bayesian strategy of the form X -+ {1, 2} 
which uses such information? Now it is not quite evident that the answer to 
the question in such a formulation must be negative. 

Robbins proposed a specific strategy which proves that at least with large 
values of n the answer to this question is positive. The strategy decides for the 
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state 1 if 
1 1 n - I:7-1 x; 

x; 2': - n '"'" , 2 n + L-i=l x; 
(6.4) 

and in the opposite case, it decides for the state 2. As our case is concerned, 
for n -t oo the strategy (6.4) becomes arbitrarily close to the strategy (6.3) in 
the sense that the random quantity in the right-hand side of (6.4) converges to 
a constant given in the right-hand side of (6.3). Indeed, it holds that 

'"'" . 1 _ l '"'" . 1 - lim l I:"- x; . n - ui-1 x, · n ui=l x, n-too n '-1 (6.5) 
hm n = hm 1 n = . 1 '"'" n-+oo n + I;._1 X; n-+oo 1 +- I;._1 X; 1 + hm - L..,·- 1 Xi 

~- n z_ n4oo n 'Z-

With respect to lim ~ I:7=1 x; is the mathematical expectation E(x) of the 
random variable £1llci since this mathematical expectation in the first state is 1 
and in the second state it is -1, it holds that E(x) = a·1 + (1-a)( -1) = 2a-l. 
Thus we can resume deriving (6.5) which has been interrupted 

. n- I;'l_ x; 1- (2a- 1) 2 (1- a) 1- a 
hm ' 1 = = = --
n-+oon+I:~1x; 1+(2a-1) 2a a 

Robbins explains that the strategy (6.4) is the result of the double processing of 
the input observation sequence which yields information of two different types. 
On the one hand each observation x; is a random variable which depends on 
the state k; of the object at the i-th moment, and provides certain information 
on the state. On the other hand, the sequence x 1, x2, .. . , Xn on the whole is 
a sequence of random samples of the population. The probability distribution 
Px on this population depends on the a priori probabilities PK(1) = a and 
PK(2) = 1- a, since 

( ) _ PK(I) _l(x-1) 2 + PK(2) _l(x+1) 2 px x - -- e 2 -- e 2 

.j2; .j2; 
Therefore the sequencP x1 , x 2 , ... , Xn provides certain information on un

known a priori probabilities too. The sequence is to be processed in two passes: 

1. A priori probabilities are estimated that are not known in advance. 
2. The result of this more or less approximate estimate is used for the decision 

on the states k1, k2, ... , kn with the help of the Bayesian strategy as if the 
estimated values of the a priori probabilities are the true ones. 

The strategy (6.4) was formed on the basis of indirect evaluation of a priori 
probabilities. It starts from the fact that the mathematical expectation E(x) 
of the observation x uniquely determines unknown probabilities so that 

and that the number ~ 2::;~ 1 x; at sufficiently large n is an acceptable estimate 
of the mathematical expectation E(.T). 

Such an indirect procedure is not the best one. Robbins formulated the task 
seeking such values of a priori probabilities pj\ (k), k E K, which maximise the 
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probability of the multi-set x 1, X:.ll .•. , X 11 , i.e., they are 

n 

(Pi<(k), k E K) = argmax IT L PK(k) PXIK(xi I k) 
(PK(A:)ikEK) i=l kEK 

n 
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argmax L log L PK(k) PXIK(Xi I k). (6.6) 
(PK (k) lkEK) t=l kEK 

Robbins task (6.6) remained unsolved for rather a long time. Its exact solution 
was found only in pattern recognition by means of clever algorithms which 
rather strongly resemble Rosenblatt's algorithms, and which were proposed in 
pattern recognition as a model of unsupervised learning. 

Before introducing and proving algorithms which solve Robbins task in this 
lecture we would like to say that Robbins approach should not be considered 
in a limited manner in any case. Our explanation set forth just a recommenda
tion for a concrete situation with one-dimensional Gaussian random quantities 
which Robbins described only as an illustration of his approach. The formu
lation (6.6) itself is far more general. Robbins' approach understood in a far 
more general way can be used even in those situations which, formally speak
ing, do not belong to the framework of the formulation (6.6). We will present 
an example of this situation. For this purpose we will repeat all Robbins' con
siderations that led to the formulation (6.6), and then formulate the task which 
formalises Robbins' approach in its full generality. 

Let us go back to the example with one-dimensional Gaussian variables. This 
time let us assume that the a priori probability of each state is known and it 
has the value 0.5 for each state. On the other hand conditional mathematical 
expectations are not known under the condition that the object is in one or the 
other state. It is only known: 
• If the object is in the first state then the mathematical expectation lies in 

the interval from 1 to 10; 
• If the object is in the second state then the mathematical expectation is a 

number in the interval from -1 to -10. 

In this example as well as in the previous one, the best strategy in the minimax 
sense is the one which decides q*(x) = 1 if x ~ 0, and q*(x) = 2 in the opposite 
case. The strategy q* is oriented to the worst case, when the first mathemat
ical expectation is 1 and the second is -1. The actual situation, however, can 
be better than the worst one. The first mathematical expectation can be, for 
example, 1 and the second -10. For this case a far better strategy than q* can 
be thought of. This possibility can be used if we do not start recognising the 
observations x immediately, but wait for some time until a sufficient number 
of observations for recognition has been accumulated. The accumulated ob
servations x are first used for the more exact estimation of the mathematical 
expectations, and only then are the observations classified all at once. 

It is possible to create further more complex examples since the 'break
through in the Bayesian front' has already set in. The tasks that occur in all 
situations of this kind are expressed in the following generalised form. 
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Let X and K be two sets. Their Cartesian product forms a set of values of 
a random pair (x, k). The probability of the pair (x, k) is determined by the 
function PXK: X x K-+ !It The function PXK is not known, but a set P which 
contains the function PXK is known. In addition, the sequence X1, x2, ... , Xn 

of random, mutually independent observations x is known. Its probability 
distribution is 

L PxK(x, k). 
kEK 

The objective is to find such a distribution PxK which belongs to the set 
P and for which the occurrence probability of the abovementioned multi-set 
x1 , x2, ... , x 11 is the greatest. Therefore 

11 

p~l(K = argmax I: log L PxK(x;,k). (6.7) 
PxK EP i=l kEK 

The solution of the formulated task allows construction of pattern recogni
tion devices which are capable of enhancing their strategy of recognition only 
through the analysis of patterns submitted for recognition, without any addi
tional teacher's information on the states the object was in during the obser
vations. The task formally expresses intuitive ideas on unsupervised learning 
which were already described in examining the perceptron. We will see in 
Section 6.6 that even the algorithms solving this task resemble those by Rosen
blatt. Prior to the long expected liaison between Rosenblatt's algorithms and 
Robbins tasks, Rosenblatt's algorithms lived their own life, and they met the 
long known clustering tasks. In the following section, we will show the fruitful 
outcomes of this meeting. 

6.5 Quadratic clustering and formulation 
of a general clustering task 

At the end of Section 6.3 we presented a class of algorithms which we called 
Rosenblatt's unsupervised learning algorithms. We did not formulate the al
gorithms in a sufficiently accurate way, but did it by means of four schematic 
diagrams in Fig 6.1. The unsupervised learning algorithms consist, as do the 
supervised learning algorithms, of two parts: learning and classification. But 
these two parts are in the cases of supervised learning and unsupervised learn
ing connected in a different way. In the case of supervised learning the input of 
the learning algorithm obtains information from the teacher on a certain cor
rect classification of an input observation. In the case of unsupervised learning 
the teacher's information is replaced by the results of the classification itself. 
Due to Rosenblatt's research a hypothesis arose that by feeding the results of 
intrinsic classification to the input of the learning algorithm some reasonable 
data processing tasks could be solved. 

This hypothesis was so strong that it could hardly be shaken by a disas
ter caused by the undoubtedly negative results of experiments with perceptron 
learning. The negative results could also have been accounted for by the as
sumption that the perceptron algorithms applied for classification and learning 
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had not been well set up. Recall that a perceptron was not able to operate 
in the case in which the two mentioned algorithms were applied in supervised 
learning. Classification and learning algorithms of that sort continued to be 
objects of experiments until an applicable classifier was successfully created. 
As will be seen the experiments were worth making because they successfully 
resulted in creating a new algorithm for unsupervised learning which is known 
under the name of ISO DATA. 

Let us look at the following statistical model of an object, which is perhaps 
one of the simplest. Let the object be in one of two possible states with the same 
probabilities, i.e., K = {1, 2}, PK(1) = PK(2) = 0.5. Let x be ann-dimensional 
vector of features. As long as the object is in the first state, x is a random 
Gaussian vector with mathematical expectation /Ll· Components of the vector 
x are mutually independent, the variance of each component being 1. The 
vector x has the same properties under the condition that the object is in the 
second state, with one single difference that its mathematical expectation is J.t2 

in this case. 
The Bayesian strategy which on the basis of the observation x decides on 

the state k with the least probability of the wrong decision, selects the first 
state if 

(6.8) 

and in the opposite case it selects the second state. This strategy will be 
denoted by the symbol q. If the mathematical expectations /Ll and J.t2 are not 
known then the strategy is considered as a varying strategy q(J.t1 , J.t2 ). This is 
fully determined if the vectors JL1 and J.t2 are defined. 

The learning algorithm has to find the maximum likelihood estimate J.ti, 
JLi of mathematical expectations JL1 , JL2 on the basis of the multi-set (x1 , k1 ), 

(x2, k2), ... ,(xm, km) of random pairs (x, k) with the probability density 

PxK(X, k) = ]JK(k) 1 -~(x-ttd (J27rr e -

The most likely values are 

(J.t~,J.t;) = argmax flog (PK(ki) (~( e-!(x;-ttkY) 
(JLI,JL2) i=l 

= argrnax f: -(xi- JLk,) 2 = argrnin( L(x;- J.td 2 + L(xi- JL2) 2) 

(JLI,JL2) i=l (JLJ,J! 2 ) iEft iE/2 

= ( argmin L (xi - JLI)2 , argmin L (xi - JL2 )2) 

JLI iEft 1' 2 iEh 

(6.9) 

where h, k = 1, 2, denotes the sets of indices i for which k; = k holds. 
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Authors of the ISODATA algorithm, Hall and Ball [Ball and Hall, 1967], 
joined the strategy (6.8) and the learning algorithm (6.9) in such a way that 
they created the following unsupervised learning algorithm. The algorithm 
examines the multi-set of input observations x1, x2, ... , Xn many times. The 
parameters /-Ll and J.L2 change after each pass through the data in the general 
case, and thus the results of classification are also changed. 

The values 1-L? and 1-Lg can be nearly arbitrary before the first passage (the 
right-hand superscript denotes the number of iteration). Only the strategy 
q(J.L?, J.Lg) in the analysis of the input sequence is prohibited from placing all 
observations into one class. The initial values can, for example, be J.L? = x 1 and 
J.L~ = x2. If after the examination step number ( t - 1) the vectors /-Ll and J.L2 
were assuming the values Mit-lJ and 1-L~t-l) then in the step t of the analysis 
two procedures will be performed. 

1. Classification. The observation x;, i = 1, ... , n, is placed into the first 
class if 

( (1-1))2 ( (t-1))2 
X; - i-Ll ~ X; - i-L2 ' 

and into the second class in the opposite case. The result of the procedure 
is the decomposition of the set of indices i = 1, 2, ... , m into two subsets 
I (t) d I(tJ 

1 an ') . 
2. Learning. -New values Mit) and J.L~t) are calculated as the average of vectors 

included in the first and second classes which is 

(t) 1 """' 
f-lk = -(t-) L X; ' 

Ilk: I iEI~') 
k = 1,2. 

To create and experimentally examine this algorithm required courage since 
after unsuccessful experiments in the perceptron with unsupervised learning 
the problems of unsupervised learning seemed never to recover. Courage was 
rewarded at last by the following, experimentally attained, positive results. 
1. The algorithm converges after a finite number of steps, independently of the 

initial values J.L? and J.Lg, to the state in which the values /-Ll and f12 do not 
change. The values /-Ll and f.t2 and the result of the classification h and h 
are the solution of the system of equations 

(6.10) 

2. The system of equations (6.10) can have more than one solution. With 
one of them the classification 11 , 12 of the input sequence x 1 , x2 , . .. , Xn is 
rather close to the one which would he attained in supervised learning. We 
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will call it a good solution. Unfortunately the algorithm does not converge 
necessarily to the good solution. But if the length of the sequence n is large 
enough as well as the ratio of the distance [J.Ll - J.Lz[ to the variance then the 
convergence of the algorithm to the good solution becomes quite probable. 

The algorithm quoted finds, at least in the abovementioned particular case, the 
correct classification of the input observations only on the basis of an analysis 
of the input observations without any additional information from the teacher. 
Unfortunately, the algorithm could not be successfully enhanced or generalised 
to such an extent to yield similar desirable results in other cases. For exam
ple, when the a priori probabilities of the states are not equal, or when the 
variances are not the same, etc.. But it has been found that even without an 
enhancement, the system of equations (6.10) is usable. It expresses a certain 
understandable task which is, however, completely different from the recog
nition task concerning the unknown state k of the object on the basis of the 
observations x. The formulated task belongs to a class of tasks of the follow
ing form. 

Let x be a random object from the set of objects X with the probability 
distribution px: X -t JR. Let D he a set elements of which will be referred 
to as decisions, such that for each object x E X a certain decision d E D is 
assigned. Let W: X x D -t IR be a penalty function value W(x, d) of which 
represents losses in the case in which for the object x the decision d is chosen. 
Note that this penalty function is of a quite different form than the penalty 
function in Bayesian recognition tasks. With a firmly chosen decision d the 
penalty here depends on the known observation x and not on an unobservable 
state. The term unobservable state does not occur in this construction at all. 

Assume preliminarily that the aim of the task is to construct the strategy 
q: X -t D which minimises the value 

L p(x) W(x, q(x)) , 
xEX 

i.e., the mathematical expectation of losses. It can be seen that the task in this 
formulation is solved by the strategy 

q(x) = argmin W(x,d). 
dED 

The strategy q(x) does not depend on the probability distribution px and 
for some forms of the penalty function W it can be easily found. But the 
task becomes substantially more complicated if the strategy q must satisfy a 
constraint of the following form. The strategy is to assume only the assigned 
number of values on the set X which are, for example, only two values d1 

and d2 . But these are, unfortunately, not known beforehand, and are to be 
chosen in an optimal way. The strategy q should not, therefore, have the form 
q: X -t D, but it is given hy the representation q: X -t { d1 , d2 }. If the 
values d1 , dz were known then the strategy q* would decide for q* ( x) = d1 if 
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W(x,di) ::; W(x,d2), and for q*(x) = d2 in the opposite case. The penalty 
would be evidently equal to 

W(x,q*(x)) =min (W(x,di), W(x,d2)). 

If the values d1, d2 are not known then the aim is to find di and d2 which 
minimise the value 

LP(x) min(W(x,di),W(x,d2 )). (6.11) 
xEX 

The solution of this task does not lie in the found decisions di and d2, but also in 
the decomposition of the set X into the subsets X1 and X2. The decomposition 
means that afterwards objects of the same set Xi will be handled in the same 
way, and thus a certain diversity of objects can be ignored. Let us see two 
examples of such tasks. 

Example 6.2 Locating water tanks. Let us imagine a village in which the 
water supply was damaged and must be compensated for by several drinking
water tanks. Let x be the location of a house in the village, X be the set of 
points in which the houses are placed, and Px (x) be the number of inhabitants 
in a house placed at point x. Let W(x, d) evaluate the loss of an inhabitant 
from the house at point x who fetches water from the tank at point d. 

The strategy q: X --t D which should without additional constraints set down 
the position q(x) of the water tank for· the inhabitant from the house at point 
x would be simple. For each x the position of the tank q(x) would be identical 
with x. It is quite natural, since it would be best for each inhabitant to have the 
tank next to his/her hov.se. 

If however the constraint had to be taken into account that the whole locality 
could have only two water tanks at their disposal then a far more difficult task 
of the sort in (6.11) would be created. First a decision must be made in which 
points d1 and d2, the tanks, are to stand. Then an easier task is to be solved 
which will classify the locality into two subclasses so that each house could be 
assigned to either of the two tanks. & 

Example 6.3 Clustering of satellite images. Let X be a set of images of the 
Martian surface scanned by a satellite orbiting around the planet. Let x E X be 
a random image and let the probability px(x) of the occurrence of the image x 
in the set X be known for each image x. Imagine that the image x is evaluated 
by a device on board the satellite which is to pass the information over to a 
device on Earth. Assume that because of an insufficient transmission capacity 
within the communication channel it is not possible to transmit each image x to 
Earth. But if there is some knowledge about the purpose for which the images 
of Mars' surface are to serve, the demands on the transmission channel can be 
softer. 

In this situation a set of fewer images d1 , d2 , ••• , dm can be created which will 
be known to both the device on the satellite and the device on the ground. A loss 
function W(x, d) will be introduced indicating the damage caused by receiving 



6.5 Quadratic clustering and formulation of a general clustering task 237 

an image d instead of the actual desired image x. The information transmission 
would now look like this: in the satellite the observed image x is replaced by 
one of the images d1 , d2 , ... , dm. To the device on the Earth only the number 
i = 1, 2, ... , m defining the image will be passed over. The device on the Earth 
then acts as if the image was di instead of the actual observed image x. The 
loss W(x, di) is brought about. A task was created here with the aim to select 
a set { d1, d2, ... , dm} of images which can best replace the set X in the sense 
of the task (6.11). A 

In these examples as well as in the general formulation (6.11) we can see that 
the task is composed in such a way that its solution can lead to a useful and 
reasonable classification of the observation set x into subsets. In this respect 
the task resembles the tasks of statistical pattern recognition, where the final 
result is the classification of the observation set as well. But the nature of the 
mentioned tasks is substantially different. 

In the task of statistical pattern recognition the existence of a certain factor 
k is assumed which affects the observed parameters x. The factor is not, how
ever, immediately observable, but by means of a demanding provision one can, 
sooner or later, obtain some knowledge about it. The classification which is the 
solution of these kind of tasks can be regarded to be good or bad, according 
to what extent a correct estimate is obtained of what is not known, but what 
actually exists. 

In the task presented now in the form (6.11) and illustrated by the two 
examples no actually existing factor is assumed. The aim of the classification 
is completely different. For the user's convenience a rather large set of objects 
is classified into subsets so that afterwards the objects from the same subset 
are managed in the same way. It results in that the differences between some 
objects are ignored and quality of managing the objects becomes worse. The 
problem is to classify the objects so that the loss in quality will be as small as 
possible. 

Informally, the tasks of this form have been long known as clustering tasks, 
taxonomy tasks, classification tasks, etc .. The formulation (6.11) can be re
garded as a formal expression of such tasks. The ISODATA algorithm is an 
algorithm that solves a particular case of this task in which W(x, d) = (x- d) 2 . 

Experimentally discovered properties showing that the clustering algorithms 
approach the Bayesian classification of input observations on some conditions 
(e.g., in the case of Gaussian shapes of conditional probability distributions), is 
a mere coincidence. The situation would be the same if someone tried to create 
an algorithm for calculating the function log2 x, but by chance had an algorithm 
implementing the function y'x at his/her disposal. The first experiments in 
which the algorithm had been used for the values not much different from 
v'4 = 2 = log2 4, would encourage him/her. But later it would be found out 
that this algorithm could be regarded neither as an approximate calculation, 
nor as the calculation of the function log2 x, but that it was a precise algorithm 
for calculating a quite different function, even if the function was also necessary 
and perhaps beautiful. 
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We have seen that Rosenblatt's algorithms asserted themselves for solving 
certain clustering tasks which are something quite different from the unsuper
vised learning tasks as were formulated in Section 6.2. For solving unsupervised 
learning tasks Rosenblatt's tasks had to be somewhat modified. As will be seen 
in the following section this modification is very slight on the one hand, but 
rather substantial on the other. 

6.6 Unsupervised learning algorithms and their analysis 
Let X and K be two sets. The probability distribution PxK is defined on 
Cartesian product of X and K. To avoid certain theoretical complications 
which are not important here we will assume as before that the set X and the 
set K are finite. 

6.6.1 Formulation of a recognition task 
Let function PxK be known and a sequence of observations (x1 , x2 , ••. , xn) 
be submitted to recognition. The recognition of this sequence cannot be con
sidered as creating the sequence k1 , k2 , ... , kn because the observation x does 
not unambiguously determine the state k. In the general case each value x can 
occur at different states of the object, but with different probabilities. There
fore, if the penalty function is not determined, and if a Bayesian evaluation of 
the state k is not sought then the knowledge of the state can be expressed only 
by calculating the a posteriori probabilities a(i, k), k E K, that the observed 
object was in the state k at the moment at which x; was being observed, 

PK(k) PXIK(X; I k) 

I: PK(k) PXIK(x; I k) · 
kEK 

(6.12) 

The ensemble of quantities a(i, k), i = 1, 2, ... , n, k E K, will be regarded as 
the result of recognition. 

6.6.2 Formulation of a learning task 
The values PxK(x, k) of the function PXK: X x K --+ JR. mean a joint proba
bility of the observation x and the state k. The function PXK unambiguously 
determines a pair of functions PK: K --+ JR. and PXIK: X x K --+ JR. The for
mer means the distribution of a priori probabilities of the states k. The latter 
expresses the distribution of conditional probabilities of the observation x un
der the condition of the state k. For further explanation we will change the 
notation for these conditional probabilities in such a way that they will not be 
denoted by means of a single function PXIK: X x K --+ JR. of two variables x 
and k, but by means of IKI functions of the form PXIk: X--+ JR. of one variable 
x. Functions from this group will be indexed by k which uses values from the 
set K. The conditional probability PXIk(x) denotes the observation x under 
the condition the object is in the state k. 

Assume that a priori probabilities PK(k) are unknown and the conditional 
probabilities PXIk(x) for each k E K are known up to the value of a parameter 
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a E A, where A is a set of values for the unknown parameter. We will express 
this incomplete knowledge by means of the function p: X x A ~ lR of two 
variables x and a. This function represents the partial knowledge of a statistical 
model in the sense that for every k E K such a value ak exists (not known 
beforehand) that the conditional probability PXIk(x) is equal to p(x, ak)· The 
ensemble of all unknown statistical parameters of an object will be denoted by 
m and will be referred to as the statistical model of an object, or briefly the 
model; m = ((PK(k),ak), k E K). The model m unambiguously determines 
the probabilities PxK(x, k) which are necessary for recognition. 

Assume that a multi-set (x1, kl), (x2, k2), ... , (xn, kn) of random and mu
tually independent pairs (x, k) is at our disposal. Each pair has occurred in 
agreement with the probability distribution PXK which is unknown. However, it 
can be found how the probability of the multi-set (x1, kl), (x2, k2), ... , (xn, kn) 
depends on the model m, i.e on the a priori probabilities PK(k) and the values 
ak, k E K. This probability is 

n n n n n 

l(m) = ITPxK(Xi,ki) = ITPK(ki) ITPxlk,(xi) = ITPK(ki) ITp(xi,ak,). 
i=l i=l i=l i=l i=l 

If we denote by the symbol L(m) the logarithm of the number l(m), we will 
obtain 

n n 

L(m) = L)ogpK(ki) + Llogp(xi,ak;). 
i=l i=l 

The information on the states k1, k2, ... , kn received from the teacher can be 
expressed by an ensemble of numbers a(i, k), i=1, ... ,n, k E K. Here a(i, k) 
is equal to 1, if k = ki and it is equal to 0 in any other case. Applying the 
denotation introduced here, the function L(m) assumes the form 

n n 

L(m) = L L a(i, k) logpK(k) + L L a(i, k) logp(xi, ak). (6.13) 
i=l kEK i=l kEK 

Through the learning task the search for such a model m = ( (p K ( k), ak), k E K) 
is understood in which the maximum of the logarithm of probability L(m) is 
achieved. The values PK(k), k E K, must of course satisfy the condition that 
their sum LkEK PK(k) is 1. It is not difficult to concede (we will return to it, 
anyhow) that the best estimate of the probability PK(k) is 

(k) 2::~ 1 a(i, k) 
PK = , 

n 
kEK, (6.14) 

and the task concerning the maximisation of L(m) with respect to the ensemble 
(ak, k E K) is reduced to IKI independent tasks. The following value is to be 
maximised in each of them 

n 

L a(i, k) logp(xi, ak) 
i=l 
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with respect to the value ak. Thus, we can write 

ak = argmaxL::C~(i,k)logp(xi,a). (6.15) 
a 

Note that the learning task formulated in this way is defined not only for a case 
of a fully informed teacher (supervisor) who at each observation Xi correctly 
indicates the actual state of the object. The values a(i, k) need not always 
be ones or zeroes, but they can be any real numbers within the interval 0 ~ 
a(i, k) ~ 1 sum I;kEK a(i, k) of which is 1 for each i. In this manner the 
information from an incompletely informed teacher (supervisor) who does not 
precisely know the actual state of the object, but who knows, from some source, 
the probabilities of each state, can be expressed. And this is information of 
the same form as that provided by a recognition device as was defined in the 
previous paragraph. 

6.6.3 Formulation of an unsupervised learning task 
Let PxK(x, k) = PK(k) PXIk(x), x EX, k E K, be a joint probability of the ob
servation x and the state k. A priori probabilities PK(k) of states are unknown, 
and conditional probabilities Px1dx) are known up to the value of a certain 
parameter ak. This means that a certain function p: X x A -+ lR is known 
such that at a certain value ak of the parameter a, the conditional probability 
PXIk(x) is equal to the number p(x,ak)· Let x1,x2,····xn be a multi-set of 
mutually independent observations whose probability distribution is 

Px(x) = LPxK(x,k) = LPK(k)p(x,ak). 
kEK kEK 

The probability of this multi-set is 

n 

l(m) =IT L PK(k) p(xi, ak). (6.16) 
i=l kEK 

The probability l(m) is thus dependent on a priori probabilities PK(k), k E K, 
and on the ensemble of values ak, k E K. The logarithm of this probability is 

n 

L(m) = :Llog LPK(k)p(xi,ak). (6.17) 
i=l kEK 

The unsupervised learning task is formulated as a search for such an ensemble 
of values of a priori probabilities and unknown parameters 

m* = (Pi<(k), ak IkE K) 

which maximises the expression (6.17). This means that the probability of 
occurrence of the observed multi-set x1 , x2 , ••• , Xn is maximised. 

In a particular case in which only maximum likelihood estimates of a priori 
probabilities PK(k) are to be found, the task bein~; formulated becomes Robbins 
task. 
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6.6.4 Unsupervised learning algorithm 
Let m0 = (P~·(k),a~ IkE K) be an initial ensemble of unknown parameters. 
The unsupervised learning algorithm is an algorithm which stepwise builds a 
sequence of models m 1 , m 2 , ... , m 1, m t+ 1 , ... according to the following rules. 

Let m1 = (Pk(k),at IkE K) be an ensemble which is obtained at step t 
of the unsupervised learning algorithm. The next model m1+1 is calculated in 
two stages. The following numbers are calculated in the first stage 

1(. k) _ Pk(k)p(x;,at) 
a ~, - """ t ( ') ( t ) i..J PK k p x;, ak, 

(6.18) 

k'EK 

for each i = 1, 2, ... , nand each k E K. These are the numbers which should be 
calculated in recognition stage, provided the values Pk(k) and at were actual 
values. The numbers a 1 ( i, k) resemble the a posteriori probabilities of the state 
k under the condition of observing the signal x; from the presented multi-set. 
However, they are not the a posteriori probabilities because one cannot claim 
with certainty that the values Pk(k) and aL are actual a priori probabilities 
and values of the parameter a. Nevertheless, in the second stage of the t + 1-
th algorithm iteration a new model m1+ 1 is to be calculated by means of the 
already quoted learning algorithm (6.14) and (6.15) in such a way as if the 
numbers were actual probabilities a(i, k) provided by the teacher, i.e., 

t+l(k)- L~-1 at(i,k) 
PK - """ """n i(' k') i..J l..Ji=1 a ~, 

k E K, (6.19) 

k'EK 

n 

k E K. (6.20) 

It can be easily seen that the described algorithm is very similar to Rosenblatt's 
algorithms, though it also markedly differs from them. Both Rosenblatt's algo
rithms and the algorithms described here are arranged as a multiple repetition 
of recognition and learning. For learning, the data obtained from the teacher 
is not used, but the results of one's own recognition. The difference lies in 
that in the described algorithm both recognition and learning are considered 
in a somewhat wider sense than in Rosenblatt's algorithms. Recognition is not 
strictly considered as a unique inclusion of the observation into just one class. 
The algorithm behaves so as if it breaks each observation into parts propor
tional to the numbers a(i, k) and then includes the observation :r; partly into 
one class and partly into another. In a similar way, the concept of learning, i.e .. 
the maximum likelihood estimation of unknown parameters of a random vari
able is modified. Unlike learning in Rosenblatt's algorithms, it is not necessary 
to know in which state exactly the object was during the observation :r;. It is 
sufficient to know only the probability of this or that state. ThesP diffen•nces 
are substantial for the success of the unsupervised lPaming algorithm (kscribed 
and will be presented in the following explanation. 
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We think it necessary to point out the immense generality of both the for
mulation of a task and the algorithm for its solution. We will see that even the 
properties of the algorithm are proved either at not very restraining premises, or 

even without any additional premises. This concerns the basic relation between 

three extensive classes of tasks: the recognition itself, the supervised learning 

and unsupervised learning. Thanks to the fact that this relation is expressed 

in an illustrative form, which becomes easily fixed in one's memory, its discov
ery belongs to the most significant outcomes not only in pattern recognition, 
but also in the modern analysis of statistical data. The theory of pattern 

recognition thus shows a certain amount of maturity when it no longer merely 

absorbs the outcomes of the neighbouring scientific fields, but is able to enrich 

its neighbouring disciplines with the results of its own. 

6.6.5 Analysis of the unsupervised learning algorithm 

Let us deal with the most important property of the unsupervised learning algo

rithm which is valid in the most general case without any additional premises. 

This property is that in the sequence of models m0 , m 1 , ...... , m1, m1+1 , ... , 

which is created in unsupervised learning, every succeeding model m 1 is better 

than the preceding one, if of course the extreme possible situation did not oc
cur, i.e., that the equality m 1 = m 1- 1 was satisfied. This means that during 

unsupervised learning it cannot happen in any case that the once achieved level 
could deteriorate. To prove this feature we will first introduce a lemma and 
then a theorem which formulates the desired feature exactly. 

Lemma 6.1 Shannon. Let a;, i = 1, ... , n, be positive constants and x;, 

i = 1, ... , n, positive var-iables for which it holds 2:::~, x; = 1. In this case the 
inequality holds 

(6.21) 

and the equality comes only when x; =a;/ 2::~1= 1 aj for all i. • 

Proof. We will denote F(x1 , .1: 2 , ... , xn) = 2::;~, a; log x; and find for which 
values x; the function F reaches its maximum under the condition L; x; = 1. 
Since the function F is a concave one, the point x 1 , x 2 , . .. , Xn in which the 
maximum is reached is the solution of the system of equations 

8<I>(x,, x2, ... , :r11 ) 

OX; 

where <I> is Lagrange function 

n 
'\"' 'l". f...., "'l 

i=l 

0, i~l, ... ,n,} 
1 

H n 

<I>(x,,x2, ... ,J:") = L:n; logJ:;+ALJ:;. 
i=l i=l 

(6.22) 
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The system of equations (6.22) can be expressed in the form 

Di A 0, i=1, ... ,n, 

} 
-+ 
Xi 

n 

I:Xi 1 
i=1 

which means that 
n ~n n 

-Oi 
Xi=T, L - L...j=1 Oj 

Xj = 
A 

j=1 

A=- LDJ. 
j=1 

The result is 
(6.23) 

It can be seen that the system of equations (6.22) has only one solution. The 
resulting point Xi given by the equation (6.23) is one single point in the hyper
plane 2::::~ 1 Xi = 1 where the maximum is reached. • 

Theorem 6.1 On monotonous nature of unsupervised learning. Let mt = 
(Pk(k), at IkE K) and m1+1 = (p~ 1 (k), at+ 1 lk E K) be two models computed 
after step t and step ( t + 1) of the unsupervised learning algorithm. Let the 
following inequality be satisfied at least for one i and one k 

Pk(k)p(xi,at) 'I p~1 (k)p(xi,at+ 1 ) (6.24) 

L Pk(k')p(xi,aU L p~1 (k')p(xi,at: 1 ) · 
k'EK kEK 

Then also the inequality 
n n 

Llog L Pk(k')p(xi,aL,) < l:log L p~1 (k')p(xi,at: 1 ) (6.25) 
i=1 k'EK i=1 k'EK 

is satisfied. & 

Proof. Let o(i, k), i = 1, ... , n, k E K, be any non-negative numbers which 
for each i satisfy the equality 

'2: o(i,k) = 1. (6.26) 
kEK 

In this case for the function L(m) the following holds 

n n 

L(m) = Llog L PK(k')p(xi,ak') = L '2: o(i,k)log '2: PK(k')p(xi,ak') 
i=1 k'EK i=1 kEK k'EK 

n 11 

= L L o(i, k) logpK(k) + L L o(i, k) logp(xi, ak) 
i=1 kEK i=1 kEK 

-t L o(i, k) log PK(k) p(x;, ak) . 
i=1 kEK Lk'EK PK(k) p(xi, ak') 

(6.27) 
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The decomposition (6.27) of the function L(m) into three summands is valid 
for any numbers a(i, k) which satisfy the constraint (6.26), and thus also for 
the numbers a 1(i, k). We write this decomposition for the numbers L(m1) and 
L(m1+1 ). In both cases the same coefficients a 1(i, k) will be used. We change 
the order of addition L:~=l and L:kEK in the first and second summands and 
obtain 

n n 

L(m1) = L L a 1(i, k) log Pk(k) + L L a 1(i, k) log p(xi, a~) 
kEK i=l kEK i=l 

- ~" t(· k) 1 Pk(k)p(xi,aU . (6.28) 
~ ~ a z, og "' t ( ') ( t ) ' 
i=lkEK L..k'EKPK k PXi,ak, 

n n 

L(m1+1) = L :La1(i,k) log p~ 1 (k) + L :La1(i,k) log p(xi,a~+l) 
kEK i=l kEK i=l 

(6.29) 

Because the values of a priori probabilities p~1 (k), k E K, are chosen according 
to the definition (6.19), 

and by virtue of Lemma 6.1 we obtain 

n n 

L L a 1(i, k) log Pk(k) ~ L L a 1(i, k) log p~1 (k). (6.30) 
kEK i=l kEK i=l 

This means that the first summand on the right-hand side of (6.28) is not 
greater than the first summand on the right-hand side of (6.29). 

According to definition (6.20) there holds that 

n n 

:Ln1(i,k) logp(xi,aD ~ :La1(i,k) logp(xi,a~+ 1 ), kEK. 
i=l i=l 

If we sum up these inequalities over all values k E K we obtain 

n n 

L La1(i,k) Iogp(xi,aU ~ L l:a1(i,k) Iogp(xi,a~+ 1 ) (6.31) 
kEK i=l kEK i=l 

which means that the second summand on the right-hand side of (6.28) is not 
greater than the second summand on the right-hand side of (6.29). 
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Owing to definition (6.18) we can write 

Because I: a1(i, k) = 1 and owing to Lemma 6.1 the following inequality holds 
kEK 

t (k) ( t t+ltk) ( t+l) '"' t(· k)l PK P Xi,ak) '"' t(· k)l PK \ P Xi,ak ~a~, og-" t (k') (. t )~~at, og" t+l(k') (. t+l) kEK L... PK P x,, ak, kEK L... PK p x,, ak' 
k'EK k'EK 

(6.32) 
which is satisfied for all i = 1, 2, ... , n. At the same time owing to assumption 
(6.24) the inequality 

is satisfied at least at some i and k. So the inequality (6.32) can be rewritten 
in a strict form, 

> 
n t+l(k) ( t+l) 

'"''"' t(· k)l PK P Xi,ak ~ ~ a ~, og t+l t+l . 
·=1 kE ,_. I: PK (k') p(xi, ak' ) 
1 

" k'EK 

(6.33) 

This means that the negatively given summand on the right-hand side of (6.28) 
is greater than the corresponding element on the right-hand side of (6.29). 

The inequality L(m1) < L(m1+1 ) is a quite evident consequence of inequali
ties (6.30), (6.31) and (6.33). • 
We can see that during unsupervised learning the logarithm of probability L(m) 
is growing in a monotonic way. The consequence is that repeated recognition 
accompanied by unsupervised learning on the basis of the same recognition 
will not deteriorate the knowledge expressed by the initial model m0 . Just the 
opposite, the knowledge is enhanced in a sense and leads to the enhancement 
of recognition. It follows from the chain L(m0 ) < L(m1) < ... < L(m1) < 
L(m1+1 ) while m1+1 -:f. m1+2 that the sequence L(m1) converges at t-+ oo since 
L(m) cannot take positive values. But this does not imply that the sequence 
of models m1 converges as t -+ oo. Moreover, at the level of generality of our 
analysis, the statement itself that the sequence of models m 1 converges is not 
sufficiently understandable. 

Until now no metric properties of the parametric set of models have been 
assumed. Therefore it has not been defined yet what convergence of models 
means. A parameter of the model can be, for example, a graph, and thus it 
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is not clear what the convergence of a sequence of graphs to a fixed graph 
means. We call attention to this fact not only because the next analysis will be 
necessarily supported by some assumptions. It also means that the outcome of 
this analysis will also be less general. We would simply like to draw attention 
to the generality of Theorem 6.1 which is valid without any of such additional 
assumptions. 

We will show that the unsupervised learning algorithm has certain asymp
totic properties which can be considered similarly to convergence. In spite of 
it, we will avoid setting the form of the parameters according to which the 
asymptotic behaviour of the algorithm is to be evaluated. We will attain it by 
examining the behaviour of the numbers (i ( i, k), not the model m 1. For such 
examination some assumptions will be needed, which on one side will narrow 
the scope of the results proved further on, but not so strongly as it would happen 
if we attempted to prove the convergence of the sequence mt. From a certain 
point of view the numbers a(i, k) are more important than the model m, since 
particularly the numbers a(i,k) indicate how the observations Xt,X2, ... ,Xn 

will be eventually recognised. The model m plays only an auxiliary role in 
achieving this goal. 

For further explanation we will need new denotations. The ensemble of 
numbers a(i, k), i = 1, 2, ... , n, k E K, will be denoted a without brackets. 
The symbol a 1 denotes the ensemble of numbers at(i, k) obtained in the step 
t in the unsupervised learning algorithm. The assigned ensemble a can be fed 
to the input of the learning algorithm which is defined by expressions (6.19) 
and (6.20). Based on the ensemble a the algorithm will calculate a new model 
m. We will denote this transformation by the symbol U (update) so that 
m 1+1 = U(a1). 

On the basis of model m a new ensemble a can be computed by means of 
the expression (6.18). We will denote this transformation by R (recognition) so 
that a 1 = R(mt). The symbol S will mean the application of transformation 
R to the result of transformation U, so that at+l = S(at) = R(U(at)). The 
transformation S is performed during one iteration of an unsupervised learning 
algorithm, the later being now formulated in a somewhat different way than 
that in the formulations (6.18), (6.19) and (6.20). Each iteration now begins 
and ends with certain newly obtained ensembles a. Before, we thought that 
the result of each iteration was a new model m. It is evident that this tiny 
change does not change the unsupervised algorithm in any way. 

The ensemble a will be considered as a point in a normed linear space with 
a naturally assigned norm lal as 

Ia I= L L (a(i, k)) 2
• 

k 

The following analysis is supported by the main premise on the continuous 
character of the functionS, i.e., for small changes of a, S(a) should also undergo 
a small change. Let us express this assumption more exactly. Let ai, i = 
1, 2, ... oo, be any convergent sequence, not only the sequence obtained with 
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the unsupervised learning. Let n* be a limit point of this sequence. Then the 
sequence S(ni), i = 1, 2, ... oo, also converges, namely towards S(n*). 

The ensemble a which satisfies the condition a = S(n) will be referred to 
as the fixed point of unsupervised learning. The validity of further analysis is 
constrained by another important premise on the finite number of the fixed 
points of unsupervised learning. These two premises suffice for the sequence of 
n 1 , n2 , ... , at, ... to converge towards a fixed point during unsupervised learn
ing. To prove this statement we will need a number of auxiliary statements. 

Lemma 6.2 Kullback. Let a; and x;, i = 1, 2, ... , n, be positive numbers for 
which there hold :L7=1 n; = :L;~ 1 X; = 1. In this case 

n n 

""' n; 1 ""'( )2 ~ n; ln -;- ~ 2 ~ ni - x; . 

i=1 z i=1 
(6.34) 

• 
Proof. Let 15; = x; - n;, i = 1, ... , n. Let us define two functions c.p and '¢ 
dependent on the variable 'Y which assumes the values 0 ~ 'Y ~ 1, 

n 

c.p('Y) = L a; ln ni o ' 
i=1 Q; + 'Y i 

1 n 

'1/Jb) = 2 I:boY. 
i=1 

It is obvious that c.p(O) = '1/!(0) = 0. For all i and 'Y the inequalities 0 < 
n; +'YO; < 1 hold, except for the case n = 1, which is, however, trivial. Let us 
state derivatives of the functions c.p and '¢ with respect to the variable "f, 

Since :L;~ 1 0; = 0, the following relations are valid for the derivative dc.p/d"f, 

dc.p('Y) = - f: a; o; + f: o; = f: 'Y of ~ f: 'Y of = d'I/Jb) . 
d"f i=1 Q; +'YO; i=1 i=1 Qi +'YO; i=1 d"f 

The correctness of the inequality in this derivation results, as we stated before, 
from the property that the number n; +"(O; is less than 1 for any values i and 'Y· 
The number c.p(1) is :L7=1 n; log(n;/x;). The number '¢(1) is~ :L~= 1 (ni- x;)2 . 

The relationship between these two numbers is determined by the relations 

1 1 1 

c.p(l) = c.p(O) +I~~ dt = '1/!(0) +I~~ dt ~ '¢(0) +I~~ dt = '¢(1)' 
0 0 0 

from which the inequality (6.34) follows. • 
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In Kullback's Lemma 6.3 a logarithm with natural base was used because the 
proof is more concise. Further on, we will use logarithms of other bases which 
will not bring about difficulties, since at an arbitrary logarithm base there hold 

The chosen base of the logarithm affects only the constant c. In this sense we 
will refer to Kullback's lemma in proving the following lemma. 
Lemma 6.3 Let (i and aH1 be two ensembles obtained in the steps t and 
(t + 1) of the unsupervised learning algorithm, respectively. In this case the 
number 

(6.35) 
k 

converges towards zero at t -t oo. & 

Proof. The sequence L(mt) monotonically rises and does not assume posi
tive values. Therefore it is sure to converge, which means that the difference 
L(mt+1) - L(mt) converges towards zero, 

lim (L(mt+l)- L(mt)) = 0. (6.36) 
t-+oc 

Let us write the expression for L(mt+l) - L(mt) in more detail using some
w4at modified decompositions (6.28) and (6.29) to which we have substituted 
from (6.18). 

L(mt+l)- L(mt) 

= 2: L at(i, k) logp~ 1 (k) p(xi, at+l)- L L at(i, k) logat+1(i, k) 
k i i k 

- LLat(i,k) logpk(k)p(xi,a~) + LLat(i,k) logat(i,k) 
k i i k 

~ ( ~ ~ a'(i, k) logp}t'(k) p(x;, ai+')-~ ~ a'(i, k) logp}.,(k) p(x;, a:J) 

( """" t(· k) 1 at(i,k)) + 77a z, ogat+l(i,k) . 

We can see that the difference L(mt+l )-L(mt) consists of two summands closed 
by large brackets in the last step of the preceding derivation. Both summands 
are non-negative. The non-negativeness of the former follows immediately from 
the definitions (6.19) and (6.20) and the non-negativeness of the latter is proved 
by Lemma 6.2. Since the sum of two non-negative summands converges towards 
zero, there also holds that either of these two summands converges towards 
zero as well. It is important from our point of view that the second summand 
converges towards zero, 

r "" "" t ( 0 k) l at ( i, k) 0 
t~~ 7 7 a z, og at+l ( i, k) = . 
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Thanks to Kullback's Lemma 6.2 

• 
Lemma 6.4 Let function S(a) be a continuous function of the ensemble 

a= (a(i,k), i=1,2, ... ,n, kEK); 

a 1, a 2 , ... , a 1, ... be an infinite sequence of ensembles a which are the result of 
unsupervised learning, i.e., at= S(at-l ). 

Then the limit of each convergent infinite subsequence 

at(lJ, a 1(2l, ... , at(jJ, ... , with t(j) > t(j- 1), 

is a fixed point in unsupervised learning. 

Proof. The sequence a 1, a 2 , ... , a 1, ... is an infinite sequence of points in a 
limited and closed subset of a linear space. Therefore, as it is known from the 
mathematical analysis, this sequence is sure to contain the convergent subse
quence at(lJ, at( 2 l, ... , a 1Ul, .... We will denote its limit as a* 

lim at(j) = a* . 
j-+oo 

Let S(a1(1l),S(a1(2l), ... ,S(a1Ul), ... be set up from those points that in the 
sequence a 1, a 2 , ... ,at, ... immediately follow after the elements at(l), a 1l2 l, ... 

tUl Th I' . f h I d S( t(il) . - 1 2 . I ... , a , . . . e 1m1t o t e se ecte sequence a , J - , , ... , 1s a so . . a , 1.e., 
lim S(at(j)) =a*, 

J-+00 
(6.37) 

since Lemma 6.3 claims that limt-too la1 - S(a1)1 = 0. The premise of the 
lemma being proved is the continuity of the mapping S, and thus it follows 
from (6.37) that S(a*) =a*. • 

Lemma 6.5 Let !1 be a set of fixed points for the algorithm; min a• Ell Ia- a*l 2 

be the distance of the point a to the set !1. If the function S (a) is continuous 
then 

lim min la1 - a*l 2 = 0. 
t-+oo a* Ell 

(6.38) 

• 
Proof. Assume that the relation (6.38) is not correct. Let us write the formal 
meaning of the relation (6.38) and then the meaning of its negation and what 
results from it. The relation (6.38) is a concisely written statement 

Vc > 0 , 3T , Vt > T : min la1 - a*l 2 < E 
a* Ell 

and its negation corresponds to the statement 

3c > 0 , VT, 3t > T : min la1 - a*l 2 ~ E . 
a* Ell 

(6.39) 
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The statement (6.39) means that there exists such c > 0 and such an infinite 
subsequence 

0Nl, at( 2l, ... , at(j), ... , where t(j) > t(j- 1) 

for which an inequality 
(6.40) 

holds for each element t(j). Since this subsequence is an infinite sequence on a 
closed and limited set, it also contains a convergent subsequence. The limit of 
this new sequence owing to (6.40) will not belong to 0, and thus it will not be 
a fixed point of unsupervised learning. We have arrived at a result which is in 
contradiction with Lemma 6.4. Thus the assumption (6.39) is wrong. • 

Theorem 6.2 On convergence of unsupervised learning. If the function S 
which denotes one iteration of the unsupervised learning algorithm is continu
ous, and the set of fixed points is finite then the sequence 

a 1 ,a2 , ... ,at, ... , with at= S(at-1 ), 

converges and its limit is a fixed point of the algorithm. A 

Proof. We will denote by the symbol ~ as the distance between two nearest 
points. The number ~ is not zero since a finite number of fixed points is 
assumed. We will prove that in the sequence a 1 , a 2 , ... , at, ... it can occur 
only a finite number of times that 

argmin lat-a* I :I argmin latH- a* I· 
<>*EO a•EO 

Let us admit that it would happen an infinite number of times that the distance 
at from the nearest fixed point a* would be less than a certain c5, and the 
distance at+1 from the nearest, but now from another fixed point, would also 
be less than c5. Thanks to Lemma 6.5 this situation would occur at any positive 
value c5, thus even at a rather small one. As a result this would mean it would 
occur an infinite number of times that the distance between at and at+1 would 
be greater than ~- 26. But this is not possible because Lemma 6.3 states that 
the distance between at and at+l converges towards zero. 

We have proved that after some finite t the fixed point 

argmin lat-a* I 
<>*EO 

which is the closest to the point at ceases to change. Such a fixed point will 
be denoted a** and the proved relation (6.38) assumes the form limt-+oo lat -
a** 12 = 0, or similarly limt-->oo at = a**. • 

With some additional assumptions it could be shown that the fixed points 
of unsupervised learning have certain properties from the standpoint of the 
logarithm likelihood 

L:Iogi>K(k)p(xi lak). 
i k 
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In some cases it could be proved that the values PK(k), ak, k E K, through 
which a fixed point is characterised, are in a sense the best values in their 
neighbourhood. A general account of these properties for a rather extensive 
class of models is not difficult, but is not very interesting either. Therefore 
we recommend analysing, in each particular case, the properties of the fixed 
points using all specific features of a particular case. As an example of such an 
analysis of a particular case of an unsupervised learning task a situation will 
be discussed in which the conditional probabilities PXIK(x I k) are completely 
known, and only the a priori probabilities PK(k) of states are unknown. This 
example is valuable in itself. It corresponds, indeed, to Robbins task in its 
complete generality as well as in its original formulation. We will prove that for 
quite self-evident assumptions the unsupervised learning algorithm converges 
towards the globally most likely estimates of a priori probabilities PK(k). 

6.6.6 Algorithm solving Robbins task and its analysis 
The algorithm for solving Robbins task has the following form. Let p~(k), 
k E K, be initial estimates of a priori probabilities and Pk ( k) be the values after 
the iteration t of the algorithm. In agreement with the general unsupervised 
learning algorithm, the numbers at(i,k), i = 1,2, ... ,n, k E K, are to be 
calculated first, 

(6.41) 

and then new estimates p~1 (k), k E K, 

(6.42) 

We can see that the algorithm for solving Robbins task is expressed quite explic
itly. This is the difference compared with the unsupervised learning algorithm 
in the general case. There the learning task in its optimising formulation (6.20) 
has to be solved in every particular case of its construction. We can also see 
that the algorithm itself, described by the relations (6.41), (6.42), is incredibly 
simple. The calculation of the values PXIK(x; I k) is anyway expected to be al
gorithmically supported because it is necessary for recognition even if learning 
or unsupervised learning is not used. 

It seems to be plausible that the algorithm given by the relations (6.41), 
(6.42) converges towards the point in which the global maximum of likelihood 
function 

L log L:>K(k) PXIK(x; I k) 
i k 

has been attained since this function is a concave one. The algorithm that con
verges towards the local maximum of a concave function provides its maximi
sation also in the global sense, since a concave function has (roughly speaking) 
only one local maximum. These considerations are, of course, only preliminary 
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and cannot replace the following exact formulation and the proof with which 
we will end this lecture. 

Theorem 6.3 On solving Robbins task for the general case. Let values 
Pi<(k), k E K, be parameters of the fixed point of the algorithm (6.41), {6.42). 
Furthermore let none of these values be 0, i.e., Pi<(k) f:. 0 for all k E K. Then 
the following inequality is satisfied, 

n n 

2: log 2: Pi<(k) PXIK(x; l k) > 2: log 2: PK(k) PXIK(x; I k) 
i=l kEK i=l kEK 

for any a priori probabilities PK(k), k E K. A 

Proof. We will use the relations (6.41), (6.42) and exclude the auxiliary 
variables o:t ( i, k). So we express how the probabilities p~ 1 ( k), k E K, depend 
on the probabilities Pk(k), k E K, . 

Let the ensemble (Pi<(k), k E K) represent the fixed point of the algorithm 
and so Pi<(k) = p~1 (k) = Pk(k), k E K. With respect to the property that 
no probability Pi<(k) is zero, we obtain 

" PXIK(X; l k) 
n = 7 E Pi<(k) PXIK(x; I k) ' k E K · 

kEK 

(6.43) 

Let PK(k), k E K, be any positive numbers the sum of which is 1. We will 
multiply each equality from the system (6.43) by the number PK(k) - Pi<(k), 
sum up all the equations and obtain the relation 

n L PK(k) PXIK(x; I k)- L Pi<(k) PXIK(X; I k) 

n 2: (PK(k)- Pi<(k)) = L kEK I: • (k) kE( ·I k) 
kEK i=l PK PXIK x, 

kEK 

which is equivalent to the relation 

n E PK(k) PXIK(X; I k)- L Pi<(k) PXIK(X; I k) 2: kEK kEK 
i=l E Pi<(k) PXIK(x; I k) 

kEK 

0, (6.44) 

since both the sum LkEK PK(k) and the sum LkEK Pi<(k) are 1. 
To be brief we will denote the ensemble (PK(k), k E K) by the symbol PK 

and introduce the denotation f;(PK ), 

h(PK) = 2: PK(k) PXIK(X; I k) . (6.45) 
kEK 
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The relation (6.44) can be expressed in a simpler way 

(6.46) 

We will create the following function dependent on the scalar variable 'Y 

(6.47) 

It is clear that Q(O) is the left-hand part of the expression (6.46), and thus 

Q(O) = 0. (6.48) 

It is also evident that at any value"( the derivative dQ{'Y)/d"f is not positive 
since 

dQ('Y) = t- ( (f;(PK) -fi(p'K))2 2) ::; 0 

d"f i=1 (fi(p'K)+'Y(fi(PK)-fi(p'K))) 

which with respect to (6.48) means that 

Q('Y) ::; 0 

at any non-negative value "( ~ 0. From that it follows further that the integral 
f0

1 Q('Y)d"f is not positive. Let us write it in greater detail, see (6.47), 

1 11 1 

j Q('Y) d"f = L log(fi(pjJ + 'Y {f;(PK)- fi(P'K )) ) 
0 t=1 1=0 

11 11 

= L log /;(PK) - L log j;(P'K) ::; 0. 
i=1 i=1 

We will write the inequality in even greater detail using the definition (6.45) 

n n 

L log L PK(k) PX\K(x; I k) ::; L log L P'K(k) PX\K(x; I k). 
i=1 kEK i=1 kEK 

Theorem 6.3 has been proved. • 

6.7 Discussion 
It seems to me that something is missing in this lecture, something that would 
sound like the final chord in a composition; what would evoke the impression of 
completed work, and a clear feeling what tile 'net weight' is. I belong to those 
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who are interested more in the outcomes than in the historical pathways along 
which one had to go to attain the outcomes. It seems to me that the important 
subject matter that I will need in future is constrained by the formulation of the 
unsupervised learning task in Subsection 6.6.3, by the unsupervised learning 
algorithm in Subsection 6.6.4 and by Theorem 6.1 in Subsection 6.6.5. It is 
a relatively small part of the lecture, and that is why I dare to ask directly 
and plainly what more from the lecture should be, according to your opinion, 
necessary for me, and whether such an extended introduction to these essential 
results is not simply valueless. 

We are answering your question directly and plainly. In this course we will 
still use the unsupervised learning algorithm in the form it was presented in 
Subsection 6.6.4. It will be of benefit to you when you understand it well 
enough and not forget about its existence, at least until when we develop on 
the basis of it new algorithms for solving certain specific tasks. Regardless of 
whether you will need these results, you should know them. They are the kind 
of results which, because of their generality, belong to the gamut of fundamental 
knowledge in random data processing. Therefore everyone who claims to be 
professionally active in this field should know them. It is, simply, a part of 
one's education. Naturally, from the demand that everyone should know these 
results it does not follow that you in particular should know them. There are 
quite enough people who do not know the most necessary things. 

As to the rest of the lecture, we agree with you that it is a rather long 
introduction to the main results. But we are not so resolute and we would 
not like to completely agree that a detailed introduction is useless. Every
thing depends on from which side you intend to view the results that both 
you and we regard as necessary. You know that any product can be evaluated 
from two sides: from the standpoint of him who will use the product, and 
from the standpoint of him who makes the product. Even a simple product, 
such as beef steak, looks from the eater's standpoint completely different than 
it does from the standpoint of a cook. You must decide yourself where you 
stand in the kitchen called pattern recognition, whether amongst the eaters or 
the cooks. In the former case it is quite needless for you to know the entire 
pathway that unsupervised learning had gone through before it was formed 
into its present day shape. In the latter case you will realise sooner or later, 
how very low the efficiency of scientific research can be. You will also realise 
a small ratio of results which manage to get established in science for some 
time to the erroneous or little significant results, which a researcher must rum
mage through before he/she gets across a result worth anything. Furthermore, 
you will see that it needs the patience of Job to rear an idea, powerless at 
its birth, liable to being hurt or destroyed by anybody, from its swaddling 
clothes, and to lead it to maturity, when it starts living a life of its own. The 
sooner you also realise the diversity of negative sides of scientific research, the 
better for you, even though the process of realising it is no pleasant thing 
in itself. We have used this lecture to warn you what is definitely in store 
for you. 
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Try to imagine clearly that you will be attracted by a vague supposition, 
of which you do not have the least idea where to start the process of proving 
it. And moreover, you do not know any means of how to express it. There 
will be a lot of colleagues around you, but you have none to approach with 
your problem, since every good colleague of yours quickly makes your vague 
suppositions concrete so that they result in complete nonsense. An so you will 
remain alone, facing the problem till your perseverance is rewarded and you 
come across a precise formulation of what you actually want. But the most 
probable situation to occur will be that your problem will appear incapable of 
being solved. Your pains will end with the poor consolation that a negative 
result is also a kind of result. But you are lucky, as ever is your case, and 
so quite quickly after the formulation of your problem you will find out its 
solution. 

But now the second stage of your calvary comes. Before you found the 
formulation and solution of your task, you had scrutinised your problem in a 
criss-cross way and had found its fantastic complexity. Therefore you naturally 
consider its solution as quite simple. But your colleagues did not go along this 
path and thus the entire construction built up seems to them clumsy, shapeless, 
requiring efficient computers your laboratory does not own yet, or demanding 
high-tech hardware. And unless everything is substantially simplified it will 
be difficult to obtain an order from a customer and it will not be industrially 
realisable. Until you, by chance, come across a reasonable partner who himself 
has been dealing with similar problems but was not engaged in inventing any 
new methods. Say, the entire task has been known since about the beginning 
of the 20th century, when it was solved up by a certain Dutchman or Mora
vian, nobody now knows the author. Since that time these methods have been 
applied in crystallography, in medical care, etc.. Though you are not so much 
interested in it, you will plunge into back publications and find out that the 
actually new ideas you have invented during your research are hardly 5 per cent 
of what you have done, and not more than 0.5 per cent of the whole problem. 

Several years will yet elapse, computer efficiency continues rising, the sci
entific level in pattern recognition is rising too. Slowly at first, but then in
creasingly often, particularly your solution of the task will be used, and not 
the procedure designed in the early years of the century, since just the 0.5 per 
cent you brought to the research have influenced the viability of the whole con
struct. It will be your victory in a sense. But let us now bet that you will not 
be delighted at all, and rather urgently need some support. Only then read 
this lecture again from that passage where we not very seriously, but not quite 
by way of a joke either, wrote about Columbus, and his discovery of America, 
up to these lines. 

I did not wait so long; I read the passage about Columbus once more straight
away. Now I am absolutely sure that the whole historical introduction is useless 
for me, because I will somehow avoid a development like this. And moreover, 
for some persons this topic is not only useless but simply detrimental. A pic
ture drawn b:v you, which I begin to understand only now, has an unnecessarily 
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dramatic character. When I was reading your comments on the discovering 
of America for the first time, they seemed to me rather as a joke, which is at
tained by arranging the known events deliberately in such an order so that they 
sound jocular. But when I should enter into the outlined scenario as a dramatis 
persona of those events, I am really seized by horror. Are you not afraid that 
someone will understand the lecture exactly in the way you would like him or 
her to, and will lose all the zest to be engaged in scientific research? I can 
vividly imagine a gourmand who lost appetite for beefsteak when he learnt all 
what had preceded before the steak appeared on his plate. 

We are not afraid of that. First, if it happened so, we would be pleased for 
his/her sake that he/she had quickly learned that he/she liked something else 
more than science. Second, many people do not take very seriously that the 
career of a scientist is so harsh and are convinced that they will be able to 
avoid all unpleasant circumstances in a way. Third, and this is the saddest 
of all, that an actual dramatic situation occurs only in the cases when really 
significant scientific discoveries are at stake, and this happens rather rarely. 
Thus, the majority of us is rather safely protected from the worst unpleasant 
cases of this kind. 

I would like to look at the positive outcomes of the lecture from the eater's view. 
The algorithm for solving Robbins task is expressed quite unambiguously. It 
is, therefore, a product that is prepared for practical application. But I would 
not say so about the general unsupervised learning algorithm. I would rather 
say that the general unsupervised learning algorithm is more a semi-finished 
product than a product ready for use. It is an algorithm that is expressed up 
to some other algorithm, and this represents immense ambiguity. An algorithm 
that is to be constructed for a certain optimisation task will be unambiguously 
expressed only when there is another algorithm for a further optimisation task 
at our disposal. This auxiliar.Y algorithm is to be inserted into the algorithm 
that is being constructed. I cannot clearly see what I will practically gain from 
such a recommendation when there is nothing to account for the statement 
that the auxiliary task is simpler than the original one. 

The best thing for you will be to thoroughly analyse several quite simple ex
amples. 

Assume that k is either 1 or 2, PK(k) are a priori probabilities, x is a one
dimensional Gaussian random variable the conditional probability distribution 
PXJk(x), k = 1, 2, of which is 

Assume that the values PK(k) and Jl.k, k = 1, 2, are unknown and it is necessary 
to estimate these values on the basis of a sequence x1 , ... , x,1 , where each 
Xi is an instance of a random variable x, having a probability distribution 
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PK(1) PXIl (x) + PK(2) Px12(x). This means that numbers PK(1),PK(2), 1-lr and 
p,2 are to be found for which the value 

(6.49) 

is maximal. 

In order to maximise the function (6.49) I must solve rather simple auxiliary 
maximisation task 

I-lk= argmax t n(i, k) log ~e-~(x;-1-') 2 (6.50) 
~-' i=l v2n 

~ a<g;:'ax (- t. o( ;, k) (x; - ~ )2 ) ~ arg;:'in t. o(;, k) (x; - ~)2 . 

Since the function 2::::~ 1 n(i, k) (x;- p,) 2 is convex with respect top,, the min
imising position 1-l'k is obtained by solving the equation in three steps: 

d (2:::7=1 n(i, k) (x;- /-lk) 2) 

dp,k 

n 

= 0, 

-2 L n(i, k) (xi - p,'k) = 0, 
i=l 

Thus the algorithm for maximising the function (6.49) is to have the following 
form: Let the initial values be, for example, p~(l) = p~(2) = 0.5, 1-l? = x1 , 

p,g = x 2 . The algorithm is to iteratively enhance the above four numbers. 
Assume that after the iteration t the numbers Pk(1), Pk(2), I-lL p,~ have been 
attained. The new values p~ 1 (1), p~ 1 (2), p,~+I, p,~+l are to be calculated on 
the basis of the following explicit formula=: 

n( i, 1) 

2:::;~ 1 n(i, 1) . 
' n 

I:~=I a(i, 1) x; . 
2:::7= 1 n(i, 1) ' 

i = 1, 2, ... , n; 

(6.51) 
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I have not written the superscripts t with the variables a(i, k). I believe that 
it is obvious that they vary at every iteration of the algorithm. 

So you can see that you have mastered the optimisation task (6.50) quite 
quickly. You needed just several lines of formulre, whereas the original task 
(6.49) may have scared you. 

The optimisation function (6.49) is really not a very pleasant function, but I 
believe that with a certain effort I would also manage its optimisation. 

We do not doubt it. But with the aid of general recommendations you have 
written the algorithm (6.51) without any effort, and this is one of the outcomes 
of the lecture, if we wanted to view it from the eater's standpoint. We think 
that in a similar manner you would master even algorithms for more general 
cases. For example, for cases in which also the conditional variances of random 
variables were unknown or for multi-dimensional cases, and the like. But in all 
these cases, as well as in many others, you will clearly notice that the auxiliary 
task is substantially simpler than the original one. 

Go once more through another rather easy example which is profuse because 
of its consequences. Let the state k be a random variable again which assumes 
two values: k = 1 with the probability PK(1) and k = 2 with the probability 
PK(2). Let x be a random variable which assumes values from the set X with 
the probabilities Px1 1(x), provided the object is in the first state; and with 
the probabilities Px1 2 (x), provided the object is in the second state. Let y 
be another random variable which assumes values from the set Y with the 
probabilities py 11 (y), provided the object is in the first state; and with the 
probabilities py12 (y) in the opposite case. The numbers PK(1), PK(2), PXIl (x), 
Px12(x), x EX, and the numbers Pvj 1 (y), PY1 2 (y), y E Y, are unknown. This 
means that there is no knowledge about the dependence of any of these features 
on the state k. But it is known that under the condition the object is in the 
first state, as well as under the condition it is in the second state, the features 
x and y do not depend on one another, i.e., the equality 

is valid for any triplet x,y,k, x EX, y E Y, k = 1,2. The denotation 
PXYidx, y) expresses the joint conditional probability of the features x and 
y under the condition the object is in the state k. 

Assume that due to the observations of the object a sequence of features 
(x1, yl), (x2, Y2), ... , (x 11 , Yn) has been obtained. On its basis a statistical model 
of the object is to be evaluated, i.e., the numbers PK(k), PXik(x), PYik(y), are 
to be found that maximise the probability 

n 2 

L log(LPK(k) Pxidx;) PYidYd) . 
i=l k=l 
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The auxiliary task consists in that the numbers Pxlk(x), x EX, p~lk(y), y E Y, 
k = 1, 2, are to be found which maximise the function 

n 

L a(i, k) log (Px1dx;) PYidY;)) (6.52) 
i=l 

at the known numbers a(i, k), i = 1, ... , n, k = 1, 2, and the assigned sequence 
(x 1 ,yi), (x2,y2), . .. , (.r 11 ,y11 ). This auxiliary task can be solved quite simply 

n 

(Px 1 k,P~'Ik·) = argrnax. L a(i, k) logpxlk(x;) PYidY;) 
(PXik•PY;k) i=l 

~ ,:~~:::: 1 ( t a( i, k) log PX!k(xi) + t a( i, k) log PY(k (y;)) 

(a<~~;"' t o(i, k) logpXII(x;), "'ff:::ax t o(i, k) logp,-l,(y;)) 

( argmax L L a(i, k) logpx1dx), argmax L L a(i, k) logpylk(Y)) 
PXik xEX PYik yEY 

iElx(•l iEiy{YI 

( a'fx':,"" ~ ( J;,, o(i, k)) logpXIk(x), 

argrnax L ( L a(i, k)) logpyll!(y)) . 
PYik yEY iE/y (y) 

The first equality in the preceding derivation merely repeats the formulation 
(6.52) of the auxiliary task. The second equality takes advantage of the rule 
that the logarithm of a product is the sum of the logarithms. The third equa
tion is valid because a sum of two summands is to be maximised, where each 
summand is dependent on the group of variables of its own, and therefore the 
sum can be maximised as the independent maximisations of each particular 
summand separately. The fourth equation uses the denotation Ix ( x) for the 
set of those indices i, for which it holds that x; has assumed the values x. A 
similar denotation is used for the set /y (y). The summands a(i, k) logpx 1dx;) 
can thus be grouped in such a way that the addition is first done over the 
indices i, at which the observed feature :r; assumed a certain value, and then 
it is done over all values x. The sum z::::;~ 1 can be changed to 

or to 2: 2: 
xEX iE/x(:r) yEY iE/y(y) 

And finally, in the last equality advantage was taken of the property that in 
the sums 

L a(i, k) logpXIk(x) and 
iE/x (:c) 

L a(i, k) logpyidY) 
iE/y (~) 
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the values Px1dx) and Pl-'lk(Y) do not depend 011 the index i according to which 
the addition is done, and thus they can be factored out behind the summation 
symbol I:i· 

We will find that as a consequence of Lemma 6.1 the numbers Pxlk(x) and 
p~lk(y), which maximise the sums 

L ( L a(i,k)\ log PXIk(x) and L ( L a(i,k)\ log PYik(Y), 
xEX iE/x (x) ') yEY iEfy {y) ') 

and thus also the sum (6.52), are the probabilities 

• I:iEJ.dx) a(i, k) 
Pxjk(x) = "' "' (' k) ' 

• L.JxEX L.JiElx{x) Q t, 

• I:iE/y{yJa(i,k) 
PYik(x) = "' "' (' ) · 

L.JyEY L.JiE/y (y) Q t, k 

The algorithm for solving the original maximisation task has the following 
explicit expression. Let Pk(k),p~XIk(x), p;.1k(y), k = 1, 2, x EX, y E Y, be the 
values of unknown probabilities after the iteration t of unsupervised learning. 
The new values of these probabilities are to be calculated according to the 
formulm 

P~ 1 ( 1) = 2::~= 1 a(i, 1) ; 
n 

t+1( ) _ L::iE/x{x) a(i, 1) 
Px11 x - "'n (' 1) L.Ji=l Q t, 

t+l( ) - I:iE/y(yJ a(i, 1) 
p}'j1 X - "'~l (: 1) L.J1=1 Q t, 

t+I (2) - L::~-1 a(i, 2) . 
PK - ' n 

t+l ( ) - L::iE/x (x) a(i, 2) 
Px12 X - "'n (' 2) L.Ji=l Q t, 

t+I ( ) - L:iE/y(y) a(i, 2) 
Pyl:z X - "'n (' 2) L.Ji=l Q z, 

In a similar way as in the previous case (6.51) I have omitted superscripts t 
with the variables a(i, k), even when in the iterations they are changed. 

I do not seem to have made a mistake anywhere, the more so that I used 
only the simplest mathematical tools for the derivation. Except for Lemma 
6.1, which does not exhibit anything much complicated either, no astonisl1ing 
mathematical tricks were used. I was surprised that tl1e most difficult part of 
the algorithm was connected with the calculation of the 'a posteriori' probabili
ties a(i, k), i.e., in the part which cannot be avoided and which must be present 
even in the recognition itself The hyperstructure, which adds the capability 
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of unsupervised learning to plain recognition, is so simple that it is not worth 
mentioning. This simplicity makes me think that I may not understand every
thing in a proper manner. I do not know well how to express what worries me, 
but I have a feeling that something important has slipped away and the very 
algorithm is not unsupervised learning, but a self-delusion. I cannot manage 
to set up a question you could answer to me because I do not know what has 
remained hidden from me. Is it not an incredible trick? Well now, on the basis 
of the general recommendations I have quite formally created an algorithm, 
which appeared to be absurdly simple. In spite of being simple, the algorithm 
claims to solve up very ambitious tasks. 

Primarily, the matter is to analyse the behaviour of a parameter, i.e., the 
behaviour of the state k, to find which state occurs more often and which 
less often, namely in a situation in which this state has never been openly 
observed. Certainly, it could be found if some other parameter was observed 
the dependence of which on the unobservable parameter is known. There are 
special methods of indirect measurement for this purpose. But here we have 
a fundamentally different situation. We have two features, x andy, which are 
known to depend in a way on the unobservable state, but nothing is known 
about kind of this dependence. And now you say that on the basis of observing 
only these two features one can find how the features depend on something 
what has never been observed. Moreover, the behaviour of that unobserved 
entity can be revealed. Is it not, by chance, the very nonsense about which 
Robbins said with self-criticising humour (I read it in {Robbins, 1951}) that it 
was an effort to pull oneself by one's own hair. In any case, I think that this 
problem deserves being more thoroughly discussed by us. 

You see, it actually seems to be nonsense, but only at first and second glance. 
But at third and fourth glance, after scrutinising the problem with great at
tention, which it justly deserves, even here certain intrinsic regularities can be 
revealed. You are not quite right when saying that nothing is a priori known 
about the dependence of the features x and y on the state k. Although noth
ing is known about how either of the features x and y depends on the state 
k, we still know something very substantial about their joint dependence on 
the state. It is namely known that the features x and y depend on the state 
k independently of each other. In other words, if the object is in one fixed 
state k then the features themselves cease to depend on each other. If you are 
interested in it then we can discuss it later in greater detail. 

Now we will only roughly answer your question. You and we altogether 
should not see such a great nonsense in that one can learn about something 
which has never been observed. The entire intellectual activity of individuals, 
as well as that of large human communities, has for long been turned to those 
parameters which are inaccessible to safe observation. We will not be speaking 
about such grandiose parameters as good and evil. We will choose something 
much simpler at first glance, for example the temperature of a body which is 
regarded as an average rate of motion of the body's molecules. Even though the 
average rate of motion of molecules has not ever been observed, it is now quite 
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precisely known how the volume of a body, its state of aggregation, radiation 
depend on the average rate of molecule motion. It is also known how the 
temperature of the body itself depends on the temperature of surrounding 
bodies, which is, by the way, also unobservable. Many other properties of 
the body temperature are well known though they never have been directly 
observed. 

The path leading to knowledge about directly unobservable phenomena is 
nothing else than an analysis of parameters which can be observed, and a search 
for a mechanism (model) explaining the relations between the parameters. This 
means an effort of exploring the relations between the observed parameters and 
the impossibility to explain them in another way (or more simply) than as an 
existence of a certain unobservable factor that affects all the visible parameters 
and thus is the cause of their mutual dependence. Recall astronomers who 
have been predicting a still unobservable planet by encountering discrepancies 
in observations from assumed elliptical orbits of observable planets since Kepler 
laws have been known. Such an approach is a normal procedure for analysing 
unknown phenomena. The capability of doing such exploring has since long 
ago been considered to be a measure of intelligence. 

Could it be understood as a certain decorrelation of features? 

The word decorrelation could be well matched to the purpose if it had not been 
already used for tasks of quite a different sort, i.e., in which the eigenvectors 
of covariance matrices had served as a new orthogonal base of a linear space. 
The method is also referred to as Karhunen-Loeve expansion. By this method, 
random quantities can be transformed to a form where their correlation is equal 
to zero. 

If the decorrelation is meant as searching for an invisible influence of a phe
nomenon, the presence of which causes a dependence of visible parameters 
which would be independent if the invisible parameter did not change, then 
the case we can see in our example would be that very decorrelation. 

Your reference to all that a human can manage cannot be any argument in 
judging whether the formulated task is, or is not a nonsense. I am afraid I have 
not yet got the answer to my question. Now, at least, I am able to formulate 
my question more precisely. 

Let x, y, k = 1, 2, be three random variables the probability distribution 
p x y K ( x, y, k) of which has the form of the product 

PK(k) PXJK(x I k) PYJK(Y I k). 

Let the sequence of observations of a random pair ( x, y) be of such a length 
that for each pair of values (x,y) the probability pxy(x,y) can be estimated 
precisely enough. These data obtained empirically are in a certain mutual 
relation 

2 

Pxy(x, y) = :L:>K(k) PXJK(x I k) PYJK(Y I k) (6.53) 
k=l 
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with unknown probabilities pg(k), PXIK(x), PYIK(Y) which are of interest for 
us, but cannot be directly stated because the parameter k is not observable. As
sume we have chosen appropriate values p'g(k), P:xw(x I k), p~IK(y I k), which 
satisfy the condition 

2 

P.n(x,y) = LP~\(k) P:xiK(x I k) P~·IK(Y I k), (6.54) 
k=l 

and thus they explain the empirically obtained data that are expressed by 
means of the numbers P.n·(x, y). And now it is the turn of my question. Can 
I be sure that a wilful explanation p'g, P:x IK, p~'ll\, which satisfies the relation 
(6.54), will be identical with the reality PK,PXIK,PYIK? Or, if I use a milder 
question: In what relation will be the explanation and the reality? 

Your fears are sufficiently justified. They appear in literature in a general form 
referred to as the 'problem of compound mixture identifiability'. In our case the 
equation (6.53) is, in fact, not always sufficient for the numbers pxy(x, y) to 
unambiguously define the functions PXIK and PYIK and the numbers PK (1) and 
pg(2). Everything depends on what these functions and a priori probabilities 
are actually like. In some cases hardly anything can be said about them based 
only on the knowledge of the statistics pxy(x, y). These cases, as can be seen 
later, are so exotic that we need not take them into consideration. Even if we 
somehow managed to obtain the functions necessary for us, we could see that 
nothing can be recognised on the basis of them. In other situations, which occur 
more frequently, the necessary statistical dependencies can be found, except for 
some ambiguity, which does not make any difference in the practical solution of 
some problems. And finally, on certain, but not so much restricting conditions 
either, the statistical model of an object can be uniquely determined. 

Let us describe one method for determining the function p'g(k), P:xiK' p~.IK 
on the assumption that the probabilities pxy(x,y) are known. You must not 
think in any case that it is a method to be applied in practice. The purpose of 
this method is only to understand to what extent the relation (6.53) defines the 
functions sought. For practical application, the most appropriate algorithm is 
the one you have already developed. 

On the basis of numbers pxy(x,y), x E X, y E Y, the following numbers 
can be calculated 

pxy(x, y) 
2:: Pxy(x, y) ' 

xE X, y E y' 

xEX 

which are nothing else than conditional probabilities PxjY(x I y) that the value 
x of the first feature occurred in the experiment under the condition that the 
second feature assumed the value y. As before, we will express the function 
PXIY of two variables x andy as an ensemble of several functions of one variable 
PX!y,y E 1'. If we regard each function PX!y of this ensemble as a point in 
an IXI-dimensional linear space then we can immediately notice that all the 
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functions PXIY' y E Y, lie on one straight line passing through the points 
corresponding to unknown functions Px1 1, Px1 2 . It is so because 

(6.55) 

where PKiy(k) is the a posteriori probability of the state kat the observation y. 
Let us denote this straight line by the symbol r. The straight line r represents 
the shape of the dependence between the visible parameters x and y, which is 
affected by an invisible parameter k. Think its meaning over well, and then we 
will proceed further. 

In certain cases the straight line r can be uniquely determined without the 
functions PXIl and Px1 2 being known, namely on the basis of empirical data 
pxy(x, y). If the set {PXiy I y E Y} contains more than one function then any 
pair of non-equal functions uniquely determines the straight line f. But it can 
happen that the set {PXiy /y E Y} contains only one single function. It happens 
when all functions PXIY' y E Y, are the same. In this case, the straight liner is 
not determined in a unique way, and that is the insoluble case mentioned above. 
It concerns the first of the abovementioned situations in which a reconstruction 
of the statistical model of an object based on empirical data P.n·(x,y) is not 
feasible. Let us look at this situation in greater detail. 

The function PXiy is the same for all values yin three cases (cf. (6.55)): 

1. The functions Px1 1 and Px1 2 are the same; in this case the function PXiy does 
not depend on probabilities PKiy(2) and consequently, the set {PXiy /y E Y} 
consists of only one single function. 

2. The functions PYil and PY1 2 are the same; in this case a posteriori proba
bilities PKiy(k) do not depend on y and the set {PXiy I y E Y} contain again 
only one single function. 

3. One of the a priori probabilities PK(l) or PK(2) is zero; in this case the 
probabilities PKiy(k) do not depend on y and moreover, one of them is 
always zero. 

All three cases are degenerate. From an observation no information on the state 
can be extracted, nor in a case if the statistical model of the object was known. 
It is clear that no great harm is done when the function PK,PXIK, PYIK cannot 
be reconstructed in such case. Even if they could be reconstructed, they would 
not be helpful for recognition. 

Let us now discuss a normal situation, in which the function PXiy depends 
on the value y, which means that the set {PXiy I y E Y} includes more than one 
function. The straight line r can be thus uniquely determined and the unknown 
functions Px11 and Px1 2 can no longer be of an arbitrary character. Functions 
must correspond to the points lying on the straight line r. Assume for a while 
that the position of these points on the straight line r is known. We will intro
duce a coordinate system on the straight line (one single coordinate) so that 
the unit coordinate is represented by the coordinate of the point in which the 
function Px1 1 is located, and zero coordinate is represented by tlH' coordiuatP 
of the point which corresponds to the function Px1 2 . If tlw coonlinatP of tlH' 
point corresponding to the function PXIy is denoted e(y) then on til<' basis of 
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the relation ( 6.55) we can claim that the coordinate e(y) is the a posteriori 
probability PKiy(l) of the first state on the condition of the observation y. 

In this way we have made sure that the set Y of the observations y can be 
naturally ordered in agreement with the position of the function PXIy on the 
straight liner. At the same time this order is identical with the order according 
to the the a posteriori probability PKiy(l) of the first state. From this it then 
follows that. any Bayesian strategy (according to the penalty fum:tion) will 
have just one single parameter, which will be the coordinate of a point. e on 
the straight line r. All points on one side with respect to the point 8 are to 
be included in one class, and all points on the other side are to be included 
in the other class. And the most important of all is that for this ordering the 
functions Pxp and Px1:2 need not be known. The order which is made only on 
the basis of how the functions PXIy are placed on the straight line, i.e., on the 
knowledge of empirical data pxy(x,y), is sure to be identical either with the 
order according to the a posteriori probability PKiy(l) of the first state, or with 
the order according to the a posteriori probability of the second state. 

Now we are able to quantitatively express the information on the classifi
cation of the set. 1' which can be extracted from mere empirical data. Let n 
be the number of values of the variable y. The set Y can be separated into 
two classes in 2" ways. To express the correct classification it is necessary to 
have n bits. These n bits can be considered as n binary replies of a certain 
teacher to the question in which of the two classes each of n observations is to 
be included. 

After appropriate examination of the empirical data the overwhelming 
amount of these 2" classifications can be rejected, since the correct classifi
cation is one of the 2n classifications which are already known. To obtain a 
correct classification only 1 + log2 n bits are needed. This additional piece of 
information can be considered as a reply of a certain teacher to the question in 
which class not all but only properly selected observations are to be included. 

Note that even in the case in which the functions PYII' PYI£ and the numbers 
PK(l), PK(2) are completely known, the classification of the set Y into two 
classes will not be uniquely determined. Only a group of 2n classifications 
would be determined, where each of them, according to the penalty function, 
can c:lairn that it is just the very function to be corn~ct. Even though we can 
see that on the basis of empirical data the statistical model of an object is not 
always capable of being uniquely determined, the empirical data contain the 
same information about the required classification as the complete knowledge 
of a statistical model. 

Now, let us assume that the statistical model of an object has to be deter
mined not because of the succeeding classification but for other purposes when 
it is necessary to determine just the actual model. When is such a unique 
determination possible? We will find out on what additional conditions the 
system of equations 

2 

Pxdx, y) = LPK(k) fix1dx) PYidY), x EX, y E 1', 
k==l 
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has only one solution with respect to thP functions PK, PXIk> PYik· It is quite 
natural that two models which differ only with the name permutation of the 
states k, will be considered identical. More precisely speaking, the two models 
p K, p x 1 k> py 1 k and P'x, P\ 1 k, p~. 1 k will be considered identical even in the case 
in which 

px(l) = P'x(2), 
I 

PXII = PXI2' 
I 

PYII = PYI2' 

Px(2) = P'x (1) , 
I 

PXI2 = PXII' 
I 

PYI2 = PYII. 

Assume that under the conditions px(l) f- 0, Px(2) f- 0, PXII f- PXI2• which 
were assumed in the preceding analysis, another additional condition is satis
fied. Let it be called the condition of ideal representatives' existence. Such 
a value of y1 of the feature y is assumed to exist that can occur only when 
the object is in the first state. Further on, such a value y2 exists which has a 
non-zero probability only when the object is in the second state. This means 
that 

From the assumption (6.56) it follows that 

PKiYI (1) = 1 ' PKIYI (2) = 0' PKIY2 (1) = 0' PKIY2 (2) = 1 ' 

and thus on the basis of (6.55) there holds 

PXIYI = PXII ' PXIY2 = PXI2. 

(6.56) 

(6.57) 

The assumption about ideal representatives applies to their existence only, and 
not to the knowledge of what values are being the representatives at that time. 

If the assumption about ideal representatives satisfies the functions PXII and 
Px12 then the representatives can be reconstructed in the following quite simple 
way. They can be only the first and the last elements in the set {PXIy I y E Y} 
ordered according to the selected orientation of the straight line r. The func
tions PXII and Px12 are, therefore, uniquely determined (except for the name 
permutation of the states k, which was already mentioned above). Similarly, 
the functions PYIK and PK can be determined. 

I hope I have understood the main core of your considerations. It is that the 
set of functions {PXIy I y E Y} cannot be of any kind, but only such a set that 
lies on a one-dimensional straight line. I could simply generalise this property 
even for the case in which the number of states does not equal two but it can 
be any integer number. If the number of states is n then the set of functions 
{PXIy I y E Y} fits completely into an (n- !)-dimensional hyperplane where 
also all sought functions PXIA-> k E K, which are not known beforehand, are 
contained. 

You are right, there is the very rub! 
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One can still think a great deal about it. But I would not bother you with 
that. I hope I will be able to ferret out all possible consequences of this result 
myself. Now I would rather make use of the time I have at my disposal for a 
discussion with you to make clear for myself a more important question. 

I understand that any considerations about how to create the functions PK, 
PXIK• and PYIK by no means suit practical application, but serve only for ex
plaining how the information on these functions is hidden within the empirical 
data pxy(x, y), x EX, y E Y. In spite of that, I would still like to pass from 
these idealised thoughts to real situations. Therefore I am asking, and answer
ing myself, a key question: Why cannot these considerations be a foundation 
for solving a task in a real situation? It is certainly because of that in an 
ideal case the straight line r can be sought on the basis of an arbitrary pair 
of different points which lie on the straight line being sought, since at the end 
all the points lie on this straight line. But if the sequence of observations is 
finite, even though quite large then the probabilities PXIy(x) cannot be consid
ered as known. Only some other numbers p~IY(x) are known which state how 
many times the observation x occurred under the condition that observation 
y occurred. The set {p~ Y I y E Y} of functions formed in this way naturally 
need not lie on one straig~t line. Thus even the straight lines which pass across 
different pairs of functions need not be the same. The search for the straight 
line r and the very definition of this straight line in this case is already not 
very easy. It is necessary to find a straight line which would appropriately 
approach the set {p~IY I y E Y} and appropriately approximate it. Therefore 
the practical solution of the task should start from formulating the criterion 
which quantitatively determines the way how well the straight line r replaces 
the empirically observed set {p~IY I y E Y}. Afterwards that best straight line 
should be sought. 

The result you would like to attain has already actually been presented in the 
lecture when the unsupervised learning task was formulated as seeking a model 
which is in a certain sense the best approximation of empirical data, i.e., of the 
finite sequence of observations. The unsupervised learning algorithm is just the 
procedure for the best approximation of empirical data in a situation in which 
actual probabilities are not available, for whose calculation indefinitely many 
observations of the object would be needed. We have only a finite sequence at 
our disposal, at the basis of which these probabilities can be calculated with a 
certain inevitable error. We are not certain this time what else would you like 
to know because we seem to have already done what you desire for. 

I will try to describe my idea once more. On the one hand, we have a task 
to find such numbers PK(k), PXIK(x I k), PYIK(Y I k), where k = 1, 2, x E X, 
y E Y, which maximise the number 

n 2 

L log LPK(k) PXIK(xilk) PYIK(Yilk) 
i=l k=l 
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on the known sequence (xi, Yi), i = 1, 2, ... , n. The value 

n 2 

argmax L log LPK(k) PXIK(xilk) PYIK(Yi I k) 
(PI(,PX[K•PYjK) i=l k=l 

(6.58) 

has to be found. I wrote the algorithm for this calculation quite formally as 
a particular case of a more general algorithm which was presented and proved 
(formally as well) in the lecture. In the labyrinth of formalism I have com
pletely lost clear understanding of how it can happen that one finds statistical 
parameters of a variable which has never been observed. Thanks to you, things 
have cleared up for me, but only for the ideal case in which the observation 
sequence is indefinitely long. This elucidation is supported by the property 
that a system of equations 

2 

Pxy(x,y) = LPK(k)PXIK(xlk)PYIK(Yik), x EX, y E Y, (6.59) 
k=l 

cannot have too diverse solutions with respect to the functions PK,PXIK• PYIK 
at the known numbers pxy(x, y). The main factor of this elucidation is the 
straight line r which is built up in a certain manner. But a straight line cannot 
be seen at all in the formulation (6.58). Therefore I am not able to transfer 
my way of tl1inking, attained with your help for the ideal case (6.59), to the 
real case expressed by the requirement (6.58). And now I would like to beat 
a path from the ideal requirement (6.59), which I well understand, to the real 
task which I understand only formally. In working my way from the task (6.59) 
to the task (6.58), I would not like to lose the straight liner out of my view. 
It is for me the single clue in the problem. 

I seem to see the first step in this working out of the way. In a real case 
the system of equations (6.59) has no solution. The straight line r, which is 
uniquely expressed in the ideal case, simply does not exist here. The task (6.59) 
is to be re-formulated in such a way that the straight line r should be defined 
even in the case in which the ensemble of functions PXIY• y E Y, does not lie 
on one straight line. Could you, please, help me make this step, but in such a 
way that I should not lose the straight line r from my considerations? 

We think we could. The preliminary formulation of the task can be, for exam
ple, as follows. Let (p~X"Iy I y E Y) be an ensemble of points which do not lie on 
one straight line. Another ensemble of points (Pxly I y E Y) which lies on one 
straight line and rather strongly resembles the ensemble (p~IY I y E Y) is to be 
found. It would be natural to define the resemblance of the ensemble as a sum 
of a somehow defined resemblance of its elements, i.e., by means of a function 
which has the following form 

L PHY) L(p~ly•PXIy)' (6.60) 
yEY 
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where L(p~'<)y'Px fy) is the 'similarity' of the functions p~IY and PXIY' and the 
number p~ (Y) states how often the value y occurred in the finite sequence 
(x;, y;), i = 1, ... , n, i.e., 

P~·(Y) = I: P:n·(x, y) · 
xEX 

The number p:yy(x, y) states how often the pair (x, y) has occurred in the 
sequence of observations. Let us still recall that recall holds 

, ( ) _ P:xy(x, y) 
PXfy X - p~(y) . 

Now, let us consider what could be regarded as the similarity L of the functions 
p~'<IY and PXfy· The function p:'<fy is the result of a finite observation of the 
object and PXfy is a function assumed to be the result of an infinite observation. 
It seems to be natural that the resemblance measure of the result of a finite 
experiment should be the logarithm of probability of this result, therefore 

L(p:'<lu'PXIy) = "2:: p:'<ly(x) logpXfy(x) . (6.61) 
xEX 

The straight liner, which you would not like to lose from your considerations, 
can be expressed through the following formulation of the task. 

Functions PXIY' y E Y, are to be found to lying on one (not known before
hand) straight line and at the same time to maximise the number (6.60), which 
is, with respect to the definition (6.61), the value 

"2:: p; .. (y) "2:: p:'<ly(x) logpXfy(x), (6.62) 
yE F :rEX 

where p~. and p:'<lu are empirical data obtained from the finite observation 
sequence. The straight liner, on which the best functions PXfy in the sense of 
(6.62), are expected to lie, is exactly that straight line you like so much. 

You can see that the number (6.62) resembles in a way the number (6.58) to 
which we intend to work our way. We will make another step in this direction. 
The straight liner will be determined by means of two functions PXIl and PXI2> 
which are assumed to lie on this straight line. The position of the function PXIY' 
y E Y, which is expected also to lie on the straight liner, will be denoted by 
means of two numbers PKfy(1) and PKfy(2). Using these two numbers we can 
replace the expression PXfy(x) in (6.62) by equivalent expression 

2 

PXIy = PK1y(1) PXfl + PKfy(2) PXI2 = l:::PKfy(k) PXfk(x) · 
k=l 

The number (6.62) which is to be maximised is thus 

(6.63) 
yEY .rEX k=l 
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The selection of the best ensemble (PXIy• y E Y) is to be understood in such 
a way that the position of the straight line r (determined by the numbers 
PXIK(x I k), x EX, k = 1, 2) and the position of the point PX!y for each y E Y 
on the straight line (which is given by the pair of numbers PK!y(1) and PKiy(2)) 
is sought. You can see, therefore, that the maximisation (6.63) according to 
the numbers PKiy(k),PXIK(x I k), where x E X, y E Y, k = 1, 2, is nothing 
else than searching for the straight line r which in a sense well approximates 
empirical data (p~IY' y E Y). Note also that in the task (6.63) the straight line 
r has not got lost. It is expressed by the pair offunctions PXII and Px1 2 . 

We will demonstrate now that the original task (6.58) incorporates also the 
task (6.63). The number to be maximised according to the requirement (6.58), 
can be transformed in the following manner. 

n 2 

L log LPK(k) PXIK(xi I k)PYIK(Yi I k) 
i=l k=l 

2 

= n L L p~y(x, y) log LPK(k) PXIK(x I k) PYIK(Y I k) 
xEX yEY k=l 

""' ""' I ( ~ PK(k) PYIK(Y I k) ) = n L..- L..- Pxy(x, y)log py(y) L..- ( ) PXIK(x I k) 
xEX yEY k=l py y 

= n L L Py(y) P~IY(x) log (py(y) tPKiy(k) PXIK(x I k)) 
xEX yEY k=l 

2 

= n L py(y) logpy(y) + n L Py(y) L P~Yiy(x) log LPK!y(k) PXIK(x I k). 
yEY yEY xEX k=l 

We can see that maximisation (6.58) with respect to the functions PK, PXIK• 
PY!K is equivalent to the maximisation of the number 

2 

L Py(y) logpy(y)+ L Py(y) L P~!Y(x) log LPK!y(k)Px!K(x I k), (6.64) 
yEY yEY xEX k=l 

according to the functions py, PK!Y• PX!K· Since either of the two summands 
in the expression (6.64) depends on its group of variables, the maximisation of 
their sum can be satisfied by maximisation of either of these two summands. 
The first summand is maximised according to py and the second according to 
PK!y and PX!K· We can also see that the second summand is identical with the 
number which is to be maximised in seeking the optimal straight line r. So 
we have beaten the path from the task (6.59) to the task (6.58). Are you now 
happy? 

Quite happy. Perhaps, except that when we had beaten the path to the task 
(6.58) transformed to the task (6.64), we saw that it incorporated, besides 
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seeking the straight line r in the task (6.58), even something more. What 
could that be? 

That is evident. Naturally, besides seeking the straight line that approximates 
the ensemble of functions {PXIY• y E Y}, another straight line must be sought 
which properly approximates the ensemble offunctions {PYix• x EX}. Without 
supplying this the whole procedure would use asymmetrically the information 
which either of the features x and y bears. 

Now at last I feel that I understand the tasks and algorithms presented as if I 
had found them out myself. I see that these tasks deserve that I think them 
over well and find the algorithm for their solutions. I am not sure that the 
algorithm I have designed is really the right one. It is only an adaptation of a 
general algorithm for a particular case. The general algorithm at the lecture 
was proved only to converge monotonically to some fixed point. Can I be sure 
that in our particular case the global maximum of the number (6.58) is reached 
in the fixed point, similarly as it was in Robbins task? 

You can be certain of that, but this certainty is based only on frequent experi
mental checking of this algorithm. In the theoretical way, the certainty has not 
yet been achieved. It might be a nice task for you. 

I would definitely not want to do that. I would rather formulate the task in 
such a way that it should be solvable with certainty, even if it did not appear 
so well reputed as the tasks based on the maximum likelihood estimate. What 
would you say to the following procedure? 

It transforms empirical data P'xy(x, y), x EX, y E Y, to the form 

2 

L.>K(k) PXIk(x) PYik(Y) 
k=l 

provided the system of equations 

2 

P'xy(x,y)=LPK(k)PXIk(x)pYik(y), xEX, yEY, 
k=l 

has no solution. What can be more natural in this case than seeking such 
numbers PK(k), Px1dx) and PYik(y), x EX, y E Y, k = 1, 2, which minimise 
the sum 

2: 2: (P:1(y(x,y)- tPK(k)PXIk(x)PYik(Y)y 
xEX yEY k=l 

(6.65) 

The task formulated like this is not based on any statistical considerations but 
its advantage is that it has been thoroughly examined and its solution is known. 
It is again a task about the Karhunen-Loeve decomposition. In my context, 
however, this sounds a bit unusual. 
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This idea is new, and therefore we do not intend to restrain it at its birth. Such a 
formulation does not seem to us to be very natural, since it is difficult to explain 
the meaning of the second power of differences of probabilities. Furthermore, 
in further formal manipulation with the expression (6.65) quantities appear 
such as 

'length' Lx (PXIk(x)) 2 , 

'scalar product' Lx PXIl (x) Px12(x), 

'matrix' lXI x IYI the elements of which are the probabilities P'xy (x, y), 

'covariance matrix' of the dimension lXI x lXI having elements 
Ly P'xy(x', y) P'xy(x", y), 

and other different mathematical objects that can be hard to interpret in terms 
of our original task. You will need a certain amount of patience to rear this 
idea and put it adrift to the world. 

I have exploited nearly all I could from this lecture. Now I would like to place 
the subject matter of this lecture in the total framework of statistical pattern 
recognition, to which the previous lectures were devoted. You pointed out 
that Robbins' methods the generalisation of which is the unsupervised learning 
presented, had originated as an effort to fill the gap between Bayesian and 
non-Bayesian methods. It seems to me that this effort has succeeded only 
to a small extent. Already from the formulations of the tasks, we can see 
the great difference between the Bayesian and non-Bayesian methods on one 
side, and the empirical Bayesian approach and unsupervised learning on the 
other side. In spite of all their distinctness, the Bayesian and non-Bayesian 
methods have a common property. The purpose of either of them is to seek 
a certain recognition strategy. Unsupervised learning tasks (and, in fact, even 
the supervised learning) in the formulation as was presented in the lecture do 
not lead to any recognition strategy, but require only the most likely evaluation 
of a priori unknown statistical parameters of an object. The mutual relation 
between supervised learning and unsupervised learning tasks, formulated in this 
way, and particularly the mutual relation between algorithms for their solution 
is undoubtedly elegant, so that I may never forget it. 

But (this unpleasant 'but' must ever occur) a quite visible gap remains be
tween the maximum likelihood estimate of unknown parameters and the search
ing for an optimal strategy. It does not follow from anywhere that in the case of 
an incompletely known statistical model of an object the recognition strategy 
is to be built exactly as a Bayesian strategy, to which instead of the actual 
values of unknown parameters their most likely values are substituted. Such 
a procedure has, therefore, the form of a postulate which is accepted without 
giving any reasons. But a postulate should have a far simpler formulation so 
that a question of the type 'why exactly in this way' might not arise. Here this 
question is justified. The reply to it is usually based only on rather general and 
imprecise considerations, for example, that at a quite extent training multi-set 
the most likely values differ only slightly from the actual ones. Then also the 
strategy which uses these values differs only slightly from the best one. 
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Let me make an observation based on intuition. If the training multi-set 
is rather small, say of the length 1 for clarity, then the Bayesian strategy, 
in which the most likely values of unknown parameters are included, can be 
worse than the non-Bayesian strategy, which is based on the statement that 
the parameter values are simply unknown. This means that in certain cases 
the use of supervised and unsupervised learning, in the form formulated in the 
lecture, can do greater harm than if they had not been used at all. It happens 
so because these methods start to be used not in the case for which they have 
been designed (i.e., for infinitely long sequences), but they are applied where 
a gap appears for the time being. In practice a user must decide, only on the 
basis of intuition, if his/her experimental data are so rich that they can be used 
as if they were infinite, or if they are so short that they can lead the way to the 
gap. If we are enough strict in evaluating then we will come to the conclusion 
that empirical Bayesian methods do not fill the gap between the Bayesian and 
non-Bayesian methods at all. They only occupy a point in the gap, when the 
training multi-set is infinite. 

I can see that the present day statistical pattern recognition theory is built up 
of three groups of methods: (1) Bayesian, (2) non-Bayesian, and (3) supervised 
and unsupervised learning methods. Between these three groups clearly visible 
gaps exist. In my view the classification of a theory to spheres having gaps is 
a sign of a certain incompleteness in the structure of the theory. The known 
methods have not yet become parts of a well elaborated hierarchical structure. 
I would like to build up such a theory of statistical pattern recognition that 
would not consist of isolated spheres at all, but which would closely cover, 
by methods elaborated, the whole spectrum of tasks from Bayesian to non
Bayesian ones so that they should approach the Bayesian methods in cases of 
the increasing length of learning; and the non-Bayesian methods in cases of 
shortening the length of learning. It should be something similar to the theme 
you presented at the end of Lecture 3. 

There are now three of us who have these ambitious desires. We may sometime 
manage to build up such a theory. We will now follow together the well known 
and wise advice that one has to seek for truth, even though sometimes one has 
to search for the truth nearly in the dark-but one should run away fast from 
those who have already found that truth. 

January 1998. 

6.8 Link to a toolbox 
The public domain Statistical Pattern Recognition Toolbox was written by Vo 
Franc as a diploma thesis in Spring 2000. It can be downloaded from the 
website http: I I cmp. felk o cvut o czl cmpl cmp_software 0 html. The toolbox is 
built on top of Matlab version 5.3 and higher. The source code of algorithms 
is available. The development of the toolbox has been continued. 

The part of the toolbox which is related to this lecture implements the 
unsupervised learning algorithm for normally distributed statistical models (the 
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Expectation Maximisation algorithm) and the minimax learning algorithm for 
normally distributed statistical models. 

6.9 Bibliographical notes 
The research into unsupervised learning was begun by Rosenblatt with his 
publications [Rosenblatt, 1957; Rosenblatt, 1959] and a general interest in this 
problem was encouraged. A view, sober in tone, of the unsupervised learning 
was presented in Rosenblatt's summarising monograph [Rosenblatt, 1962]. The 
interest in perceptron unsupervised learning was gradually becoming weaker. 
A sharp criticism of perceptron learning was furnished by Glushkov [Glushkov, 
1962b; Glushkov, 1962a]. In spite of that, the concept of perceptrons was 
further developing and was analytically examined [Minsky and Papert, 1969]. 

The first impulse for unsupervised learning came to pattern recognition from 
statistics by applying methods of clustering [Schlesinger, 1965; Ball and Hall, 
1967]. In the sphere of clustering many publications have come into existence 
since that time. 

The second impulse was the concept that unsupervised learning could be for
malised similarly as in statistics, where the statistical parameters of a mixture 
of probability distributions were estimated. The task of criterion maximisa
tion (6.17) is also known as the problem of a mixture parameter estimate. It 
was first formulated, perhaps by Pearson in 1894, for two normal densities and 
solved by applying the momentum method. The problems of mixture estimate 
was brought to pattern recognition by the publication [Cooper and Cooper, 
1964]. 

From another view the task was seen in the fundamental statistical publica
tions known as Robbins' empirical Bayesian approach [Robbins, 1951; Robbins, 
1956; Neyman, 1962]. 

For many years the task withstood the efforts of mathematical statisticians 
to find the most likely estimate of mixture parameters. Only in the sixties of 
the 20th century did different authors independently of one another propose an 
iteration scheme generally applicable in the multi-dimensional case of a normal 
mixture. Iteration relations were originally intuitively derived by modifying 
likelihood equations which will result from the necessary condition of criterion 
maximisation (6.17). An interesting and practically important feature of the 
resulting iteration scheme was a monotonous convergence to a local or global 
maximum, which was first proved by Schlesinger in the year 1968 in the publi
cation [Schlesinger, 1968] and later by others [Demster et al., 1977]. Today the 
procedure is known as EM (Expectation and Maximisation) algorithms. From 
further publications let us quote [Wu, 1983: Grim, 1986]. 



Lecture 7 

Mutual relationship of statistical and 
structural recognition 

7.1 Statistical recognition and its application areas 
The generality of the results explained in the previous lectures has its positive 
and negative aspects. We have pointed to it several times. Thanks to their 
generality, the results have the air of laws. This must be taken into account in 
solving any application tasks, be it a diagnosis of the human heart according to 
an electrocardiogram, an evaluation of a turner's tool according to the sound it 
produces, processing of microscopic images in analysing blood, or the study of 
natural resources from satellite images. We would like to stress that diversity 
is not only in the interpretation of the observed and hidden parameters in 
applications, but also in their abstract properties. The sets X and K, from 
which the observed and hidden parameters assume their values, can vary greatly 
even in the formal mathematical sense. We will call it, not very precisely, for 
the time being a varied structure of these sets. 

When we say, for example, that such a parameter as the weight of an object 
assumes the values from a well structured set we mean that the members of 
this set, i.e., real numbers, can be added, multiplied, inverted and many other 
operations of this kind can be performed with them. A set from which the mark 
of a pupil's school report assumes its value is to be understood in a completely 
different way. It is the set {1,2,3,4,5} (in some countries, at least). The 
members of this set, howeVf~r, are not numbers because two pupils, who were 
evaluated by 2 and 3 are in no sense equivalent to the one whose usual mark 
is 5. The set of possible values of school marks has a different structure from 
that of a set of natural numbers. For school marks the relations =, <, and 
> are defined, other operations which are meaningful with the set of numbers 
are not defined. In other words, school marks form a completely ordered set, 
and nothing more. An even weaker structure is that of tram route numbers. 
Unlike real numbers, a tram Nr 12 cannot be replaced by two trams numbered 
6. Unlike a completely ordered set, the tram Nr 2 is no better than the tram 
Nr 3, but, at the same time, nut a shred worse than the tram Nr 1. When 
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now speaking about the diversity of the statistical recognition theory, we mean 
mainly the diversity of formal properties of sets that play a part in this theory. 

In pattern recognition tasks there often occurs that an observation x does 
not consist of one, but several measurements x1 , x2 , •.• , Xn· We can speak not 
only about the structure of sets of values pertaining to individual features, but 
also about the structure of relations between the features, which is different 
with different applications. We will examine two cases which illustrate the 
different character of the structure of features (just of the set of features and 
not of the set of their values). 

In the first example, the features x 1 , x2 , ••• , Xn are answers in a medical 
questionnaire which is filled in at a patient's first visit at a doctor's surgery. 
It concerns data about the patient's body temperature, blood pressure, pulse, 
sex, say, n answers altogether. The second example is a case in which after 
the medical treatment one particular data about a patient, say the body tem
perature, is measured n-times at regular time intervals. The outcome of such 
an observation is again an ensemble of indexed values Xi, where the index i 
assumes values from the set {1, 2, ... , n} as it was in the first case. However, 
the dissimilarity between the structure of this ensemble and the structure in the 
previous case must be evident. It was not essential in the first case for, e.g., the 
age to be represented exactly by the third feature, because no essential change 
would occur in the task if the features were numbered in another way. This 
means that in the first case the set of features is simply void of any structure 
and its members 1, 2, ... , n are considered not as numbers, but only as symbols 
in an abstract alphabet. 

In the second case the matter is quite different. Here the feature index has 
just the meaning of a number. The ensemble of the measured values of the 
feature forms a sequence and the numbering of sequence elements cannot be 
arbitrary. The set of indices has now a clearly visible structure which the set 
of indices in the first case was empty of. 

We will go back to these problems more than once and speak about them 
in a more concrete way. At the moment, we only want a cursory taste from 
the immense diversity expressed in the words 'let the sets of observations X 
and states K be two finite sets' which used to be quoted refrain-like at the 
beginning of formal reasoning in previous lectures. The results obtained are 
not supported by any concretisation of the form of the sets X and K. A very 
positive consequence is that the results are valid even in the case in which, 
owing to a concrete context of an application, the mathematical form of the 
sets X and K must be expressed more precisely. The negative consequence 
follows from the mentioned generality too, because the sets X and K have to 
be expressed as specifically as possible when the statistical methods have to be 
used in a useful way. This means that from the vast set of potentials a case 
must be chosen that corresponds to the original application task. This is by no 
means easy to do. 

Fortunately, some applications can be expressed through formalism which 
has already been thoroughly examined in applied mathematical statistics. Its 
most developed part is the statistics of random numbers. The overwhelming 
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majority of applied statistics recommendations is based on concepts such as 
mathematical expectation, variance, correlation and covariance matrices, which 
are meaningful only when the random object is represented by a number. There 
are, however, lots of applications in which the result of a feature measurement 
cannot be expressed by a number. General recommendations of numerical 
statistics cannot be applied to practical problems of such a type. If somebody 
wants to squeeze at any price such applied problems into the framework of a 
random numbers statistics then he or she deforms their original properties and 
eventually solves quite a different problem, not the one which had to be solved. 

Perhaps, the most unlucky field of application in this respect was recognition 
of images (this means the recognition of two-dimensional brightness functions 
obtained, e.g., by a TV camera). An image is a rather unusual object for a for
mal analysis. Sets of images, important from one or another application aspect, 
do not belong to the class of sets which have been mathematically thoroughly 
examined outside of pattern recognition. They are not convex sets, subspaces, 
or something else which is well known. 

The specificity of images as objects of a formal analysis is quite consider
able. Substantial results in image recognition cannot be successfully achieved 
using merely general statistical recommendations without carefully taking into 
account peculiarities of images as an object of formal analysis. 

7.2 Why is structural recognition necessary for 
image recognition? 

7.2.1 Set of observations 
General pattern recognition theory does not rest upon the assumption of a 
concrete form of the observation set X. Despite this, many users assume as 
self-evident that the set X is a linear space and that such understanding of 
the set X suits every application. An illusory logic on the background of such 
consideration is quite simple. Recognition is to be carried out based on a 
number of measurements of the object. The outcome of every measurement 
is a number. Thus the input information for recognition is an ensemble of n 
numbers. It can be regarded as a point in an n-dimensional linear space the 
i-th coordinate of which is the number obtained in the i-th measurement. 

As far as recognition is understood as an estimation of a hidden parameter 
which assumes only two values, it could be described as a decomposition of 
the space X into two subsets X1 and X2. The boundary between these subsets 
could be interpreted as a surface in the space X defined by the equation f(x) = 
0, where f is a function of n variables x1 , x2 , ... , Xn and x; is the result of the 
i-th measurement. It seems to be natural to regard the value f(x) as positive 
or negative according to whether the point X belongs to the set X1 or X2, 
respectively. In this way the fundamental concepts of pattern recognition have 
been expre~ed in quite an illustrative manner from which a number of fruitful 
results follow. A part of them were presented in Lecture 5. 

Nothing wrong can be seen in such a formalisation of the set of observa
tions X, since every formalisation has the right to exist, as far as it does not 
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pretend to be the only possible and universally usable one for any applica
tion. Some researchers, and there were not few of them, could not avoid this 
temptation. 

For example, it was assumed that an image could also be represented by a 
point in a linear space in a natural way. An image was regarded as a function 
f(x, y), where x, yare coordinates of a point in the domain of definition of the 
function f which is a square with the dimensions D x D. The value of the 
function f(x, y) was the brightness (intensity) in the corresponding point. The 
square becomes covered by N 2 smaller squares of the dimensions ~ x ~' ~ = 
D / N. The observation of the image f corresponds to the measured value of the 
average brightness in each smaller square. The outcome of the observation is an 
ensemble of N 2 numbers considered as a point in N 2-dimensionallinear space. 

A long time and a lot of effort were needed to understand that such for
malisation of images is highly deceptive. This representation actually deceived 
the correct trend of analysis. The identification of an image with a point in a 
multi-dimensional linear space involuntarily invited one to use such sets, trans
formations and functions that are well examined and verified for linear spaces, 
i.e., convex sets, hyperplanes, half-spaces, linear transformations, linear func
tions, etc.. And it is these mathematical means that are least suitable for 
images. That is also why the concept of linear space in the processing and 
recognizing of images has not started such an avalanche of fruitful results as it 
was the case, for example, in linear programming. Pure geometrical relations, 
such as the possibility of passing along the edges of a polyhedron from an ar
bitrary vertex of the polyhedron to any other vertex of it, greatly supported 
the researcher's intuition, i.e., they made it possible to be certain that this or 
that statement is right before it was formally proved. In the case of image 
recognition it was just the opposite. An avalanche of results following from un
derstanding the image as a point in a linear space appeared destructive rather 
than becoming a contribution. This situation was evaluated quite sharply by 
M. Minsky and S. Papert [Minsky and Papert, 1969], when saying that nothing 
has brought about more damage to the machine analysis Qf images than the 
multi-dimensional geometrical analogies. 

Let us try to understand what the fundamental difference between an image 
and a point in a multi-dimensional space consists of. Therefore let us first 
formulate both concepts so as to see what they have in common. Both the 
vector and the image, can be considered as a function of the form T -+ V the 
domain of definition of which is a finite set T. The function itself assumes 
its values from the set V. If this function is an n-dimensional vector, the 
coordinates of which are the numbers x;, i = 1, 2, ... , n, then T is a set of 
indices, and V is a set of real numbers. If the function T -+ V is an image 
then the set Tis a rectangle in a two-dimensional integer lattice, i.e., T = { i, j I 
1 :S i :S n; 1 :S j :S n}, and ~r is a kind of a set of observations, as a rule a 
finite one. 

If we consider the function T -+ V as a multi-dimensional vector then we 

can see that it assumes its values from a well structured set for which addition 
and multiplication make sense, where special members 0 and 1 exist, and many 
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other things which provide a certain mathematical structure to the set. The 
domain of definition of this function, however, can be understood as an abstract 
alphabet only, without any structure or ordering. 

With the function T -t V representing an image, the case is just the oppo
site. There are, of course, also applications in which the domain of the values 
V must be considered just as a set of real numbers. An example is the tasks 
where the brightness in a point of the image represents the result of a direct 
measurement of a physical quantity, such as that in examining the temperature 
of a product on the rolling train, or the overall density of a body in a particular 
direction in computer tomography. But these are tasks of such a kind that we 
would not regard as typical image analysis by humans. There exist many tasks 
in which an observation in a certain point need not be considered so strictly. 
For example, for the image x: T -t V and a certain monotonically increasing 
function f: V -t V it commonly occurs that a change in brightness x(t) in the 
point t E T to the brightness J(x(t)) in the same point does not alter anything 
from the point of view of information which one is observing within an image, 
on the assumption that the transformation J is the same for all points t E T. 
This means that the domain of values V need not be considered as a set of real 
numbers, but it can be interpreted as a set with a far weaker structure, e.g., as 
a completely ordered set. Situations for which the domain of values V has an 
even weaker structure or it is void of any structure are not rare. Consider, for 
example, the analysis of the color graphical documents. 

At a cursory glance it might seem that applying a richer formalism than 
is needed for the examined reality does not do any harm. The application of 
a richer formalism, however, adds to the original task properties it does not 
actually have. Then involuntarily algorithms are created based on additional 
properties such as minimisation of mean square deviation of brightness, or 
linear transformations of an image. Thus operations are applied which make 
sense within the accepted formalism, but which do not provide a reasonable 
explanation in terms of the initial application task. 

Now let us have a look at what differentiates the domains of definition of the 
function T -t v' in the case in which the function is considered as a vector, and 
when it represents an image. The transition from an image to a vector is con
nected with a loss of immensely important properties of the image, particularly 
those, which account for the specificity of the image as an information medium. 
For the vector T -t V the domain of definition is an abstract alphabet of in
dices without any structure. For the image T -t V the domain of definition T 
is a rectangle in a two-dimensional integer lattice, which is a set with a clear 
structure. Outside this structure one can hardly imagine properties such as 
the connectivity of objects in an image, the symmetry of an image, and other 
concepts important for image analysis. We can only admire the optimism with 
which pattern recognition in its young days hoped that the machine analysis of 
images would be successfully solved without taking into account the structure 
of the domain of definition of the functions characteristic for the images. 

In the constructive application of the general theory of pattern recognition 
for image analysis, in the first place a set of observations X must be concretised 
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as a set of functions the domain of definition of which has a completely clear 
structure. 

7 .2.2 Set of hidden parameter values for an image 
The statistical theory of pattern recognition has been explained in the previ
ous lectures using a permanent assumption that the hidden parameter k of an 
object assumes its values from a finite set K. Earlier we have mentioned how 
greatly varied possibilities are contained in this brief formulation. The results 
of the previous lectures are valid for very heterogeneous hidden parameters. In 
spite of this, by many authors the set K was implicitly understood in the follow
ing narrower sense, in which applied domain of statistical pattern recognition 
theory also gets rather narrow. 

1. It is assumed that the set K is a list of labels which are assigned to the 
object. Thus the set K is an abstract alphabet void of any structure. 

2. The number of members in the set K is assumed to be so small that an 
exhaustive search in this set does not bring about any serious computational 
problems. 

3. An assumption that IKI is small leads to the concept of decomposition of 
an observation set into the classes Xk, k E K. Even when any strategy 
q: X -t K defines a set of subsets Xk = {x E X I q(x) = k}, k E K, 

. on the set X, the application itself of the concept of 'decomposition', or 
'classification' is for some functions unnatural, and thus these strategies are 
implicitly taken out of consideration. 

The abovementioned assumptions substantially narrow the extent of what is 
practically done nowadays in image recognition, and so lead to an impression 
that there is a visible gap between pattern recognition theory and image recog
nition practice. 

A rather rare outcome of image recognition is the image labeling by a label 
out of a finite and small alphabet. In usual applications the aim of recognition 
can be to find the position of an object (a number), to calculate its geometric 
parameters (an ensemble of numbers), to create a sequence of names in rec
ognizing a text document (a sentence in a certain alphabet), to create a list 
of components pertaining to an electrical device and the links between them, 
as it is in machine interpretation of an electrical circuit diagram or of another 
technical drawing (a graph), or last, to create a map according to an aerial 
photograph (an image again). It is unnatural to consider all the above forms 
of the outcome of recognition as labels of a recognized image; it is unnatural, 
as well, to consider as a result the assignment of the input image to one of the 
classes. 

The outcome of recognition in the case of an image is not only a symbol from 
a finite alphabet, but is a rather complicated mathematical object from a set 
with a well ordered structure. Such a concept of recognition would not go into 
the narrow ideas mentioned identifying pattern recognition with classification, 
which leads to a wrong conclusion that the statistical theory of pattern recogni
tion has nothing in common with image recognition tasks. It would be right if 
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someone said, 'That quite small part which I understand well in the statistical 
pattern recognition theory has nothing in common with the applications that 
I am engaged in'. 

Let us summarise; for a practical application of statistical pattern recognition 
theory in analysing images it is necessary to thoroughly concretise the set of K 
values of hidden parameters which are to be found in the analysis. 

7 .2.3 The role of learning and unsupervised learning 
in image recognition 

In cases in \vhich a multi-dimensional linear space X is assumed to be a suitable 
mathematical model for an observation set, it is, at the same time, assumed 
that the strategy q: X --+ K is simple in the sense that the computation of the 
value q(x) for each known observation x does not bring about insurmountable 
computational difficulties. With these optimistic assumptions the solution of 
the task itself would not be a complicated matter. If an algorithm for com
puting the values of a known linear, quadratic, or cubic function q for each 
previously defined point x E X is to be created then it is a not very difficult 
task for a programmer. No problem arises that could be an object of mathe
matical research. Therefore within such completely erroneous ideas, as will be 
seen later, the conclusion is arrived at that the purpose of scientific research in 
pattern recognition is limited to problems of learning and unsupervised learn
ing. It is a serious underestimate of the problem of recognition without learning 
which is expressed in bombastic statements such as 'if the strategy q: X --+ K 
is known then the pattern recognition problem has been already solved', or 'if 
the statistical model Px K : X x K --+ lR is known, then the recognition problem 
becomes trivial'. We will be dealing with a simple concrete example which 
demonstrates how deceptive such prejudices are. 

Example 7.1 Vertical and horizontal lines. 
Let the set T = {(i,j) 11:::; i:::; m; 1:::; j :::; n} be a rectangle of size m x n 
in a two-dimensional integer lattice and V = {0, 1} (i.e., white, black) be a 
set of observation results. A function of the form T --+ V will be called an 
image. We will denote by h; an image which we will call the i-th horizontal 
line, i = 1, ... ,m. Within this image the observation hi(i',j) has the value 1 
if and only if i' = i. In a similar· way we will denote by Vj, j = 1, ... , n, an 
image which we will call the j -th vertical line, in which Vj ( i, j') = 1 if and only 
if j' = j. We will denote by the symbol h the set of all horizontal lines and 
by the symbol v the set of all vertical lines, h = {hi I i = 1, ... , m}, v = { Vj I 
j=1, ... ,n}. 

Let k be a subset of horizontal and vertical lines which does not contain all 
horizontal and all vertical lines, i.e., k C v U h, v rf_ k, h rf_ k. The set of all 
possible subsets created in this way will be denoted K, !KI =(2m- 1)(2n- 1). 
For each group k E K of horizontal and vertical lines an image x will be created 
which depends on the group of images kin the following manner: x(i,j) = 0, 
if and only if within each image of the group k the observation in the point 
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(i, j) is zero. Simply speaking, the image x is created in such a way that several 
horizontal and vertical lines are coloured in black, but not all possible horizontal 
and not all possible vertical lines. 

Let us formulate the pattern recognition task so that, based on the knowledge 
of the image x, it is necessary to find k, i.e., to tell what lines are drawn in the 
image. 

The task is actually a trivial one. Since the ensemble k does not include all 
horizontal lines there exists a row i* in which there is not a horizontal line. In 
addition, there exists a column j* in which there is not a vertical line. Thus in 
the image x there is a point i*, j* which is white. Therefore the solution of the 
task is the following: the ensemble k contains a horizontal line hi if and only 
if x(i, j*) = 1, and it contains a vertical line Vj if and only if x(i*, j) = 1. 

We will now take into consideration the inevitable fact that the image x 
cannot be observed without noise. We will see that even with the simplest model 
of noise the task not only ceases to be trivial, but it is not solvable in polynomial 
time. 

Let the observed image be changed as a result of the noise to become the image 
x': T--+ {0,1} so that in each point (i,j) E T the equation x(i,j) = x'(i,j) 
is satisfied with the probability 1- c, and the inequality x(i,j) :f:. x'(i,j) is 
satisfied with the probability c. Not to diverge from the very simplest model 
of the noise we will assume that the noise affects different points of the image 
independently. When we assume that all ensembles k in the set K are equally 
probable the statistical model p(x', k), i.e., the joint probability of the ensemble 
k and observation x', is then uniquely determined, and for each k and x' can 
be easily calculated according to the formulfE 

x' k _ (1 _ c)mn m n (-c-)lx'(i,j)-<>(i) /3(j}l 

p( ' ) - (2m- 1)(211 - 1) II P 1- c ' 
•=1 )=1 

where a(i) = 1, if Vi E k, a(i) = 0, if Vi f/. k, {3(j) = 1, if Sj E k, {3(j) = 0, 
if Sj f/. k. The calculation according to this formula for either pair x' and k 
is not even worth mentioning. The function p(x', k) is thus not only uniquely 
determined, but moreover it has a very simple form. Nevertheless, the pattern 
recognition task remains unsolvable. The task could be, in this case, defined as 
seeking the most probable ensemble k which consists of horizontal and vertical 
lines under the conditions of the known observation x'. It is not difficult to 
understand that this task is reduced to a minimisation task 

m n 

( a*(1), ... , a* (m); ,8*(1), ... , ,B*(n)) = argmin L L lx' (i,j) - a(i) ,B(j)l 
(a(!), ... ,a(m). . 1 . 1 
ll(l), ... ,/l(n)) •= J= 

which is to be solved under the condition that the variables a( i) and ,B(j) as
sume only the values 0 or 1. It is not very difficult to write an algorithm for 
this minimisation problem. However, this algorithm will require a computing 
time which is proportional to 2min(m,n), and thus cannot be practically applied. 
No one in the world today seems to know substantially better algorithms. The 
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minimisation task quoted is of such a fantastic complexity that if anybody were 
to solve it successfully, without needing an enormously long time for the min
imisation, it would be a worldwide sensation. A 

In the previous example it can be seen how a seemingly easy task appears to be 
practically unsolvable. We are speaking about an exact solution of an exactly 
formulated task, and not about so called practically acceptable suggestions 
which, though they do not guarantee a solution, but in the majority of practical 
cases they . . . etc.. Neither do we mention here the so called practically 
acceptable algorithms, since they can be discussed only in the case in which the 
algorithm is intended for solving a task, which is of real practical significance. 
Our example is mere child's play in which it is to be found if there are ideal 
lines in the image. Practical tasks are substantially more difficult, because in 
the image far more intricate objects on a more complicated background are 
to be sought. The situation is further complicated by not fully known errors 
which affect the observed image. When coming across such tasks the incomplete 
theoretical understanding of the applied algorithm can be excused, since the 
requirements for theoretical perfection give way to far harder requirements 
of a practical character. In contrast to practical tasks, a theoretical clarity 
should be achieved in the extremely simplified case quoted, be it positive or 
negative. 

It is typical for the task mentioned that the set K of hidden parameter values 
is so immensely large that one cannot apply algorithms in which finding and 
examining of each member of the set K would be expected, even though the 
examination of each single member is extremely simple. The immense extent of 
the set K is nothing extraordinary in image recognition. In image recognition, 
the set K is, as a rule, so extensive that its exhaustive enumeration is impossible 
in practice. The complexity of image recognition tasks, however, does not only 
consist in this extent. In the example mentioned, we can formulate the aim of 
the recognition, e.g., in such a way that it is only to find whether a horizontal 
line passes through the fifth row of the image. The task in this case would 
just be the classification of the image set into two classes: into images in which 
the particular line occurs, and into the rest of the images. Unfortunately, the 
property that the hidden parameter assumes only two values does not bring 
about any simplification of the problem. The choice of the most probable 
value of the hidden parameter would not give rise to any difficulties in this 
case, since the parameter assumes two values only. However, insurmountable 
obstacles would appear in computing the a posteriori probabilities of these two 
values. 

The example mentioned demonstrates the usual difficulties in image recog
nition which do not consist in the lack of knowledge about necessary relations, 
sets, or probabilities. This knowledge might be available, of course, but it does 
not belong to the well respected classes of mathematical objects, which owing 
to centuries' old study and research, have assumed a perfect and elegant form. 
They are, simply, something new. 
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7.3 Main concepts necessary for structural analysis 

The peculiarity of images as objects of machine processing requires also specific 
mathematical methods for their analysis which will be explained in the following 
lectures. In the same way as in the previous lectures we will do our best so that 
the explanation may have a form usual in mathematical research, i.e., it should 
be based on unambiguously formulated definitions, premises, and results. Such 
an explanation necessarily anticipates a certain degree of abstraction. Abstract 
concepts are inclined to live their own lives after being born, and to get into 
contact not merely with those application problems which gave birth to them. 
Therefore the ideas described in the following lectures are known not as the 
theory of image recognition, but as the theory of structural pattern recognition, 
and it is right that it is so. With the greatest possible generality of constructions 
which we will be speaking about, the structural methods cannot cover all the 
richness of problems in image analysis, and, on the other hand, some outcomes 
are a contribution not only for images. 

We will now present the main concepts which will be used in the following 
explanation. 

Let an object be characterised by a certain set of parameters. Even though 
it need not always be quite natural, let us imagine that the parameter values 
are written in memory which belongs to the object itself. Let us denote the 
memory by the symbol T and call it the object field (the field of the object). We 
would like to point out that T means only the memory, and not what is written 
into the memory. The memory as a set of parameters T consists of memory 
cells t which correspond to individual parameters. For the time being we will 
assume that all parameters take their values from one single set S which is the 
same for all parameters. 

An object is completely described when for each parameter t E T its value is 
known, which will be denoted s(t), s(t) E S. Formally speaking, the description 
of an object is the functions: T -+ S the domain of which i& the set of parame
ters T (which is the same as the memory T), and its value domain is the set S. 

The recognition task here and in other parts of the lecture will be understood 
in this way: based on the knowledge of the memory's contents pertaining to its 
part T' C T something meaningful is to be said about the contents of the rest 
of the memory. Or in another formulation: based on the knowledge of values 
pertaining to some parameters, the values of others are to be found. Even 
from this informal definition we can feel its affinity with statistical pattern 
recognition, but here from the very beginning respect has been taken that both 
the observed and the hidden parameters are considered as sets of parameters. 

For a more precise formulation of the concepts needed we will accept the 
following notation. Let X and Y be sets. The set of all possible functions 
of the form X-+ Y is denoted by yx. It is clear that IYxl = IYIIXI. Let 
f E Y x be a function of the form X -+ Y and X' C X be a subset in X. The 
restriction of the function f: X -+ Y to the subset X' C X is defined as the 
function f': X' -+ Y, where for all x E X' the relation f'(x) = f(x) holds. 
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For the restriction of a function we introduce a slightly unusual notation. The 
restriction of the function f: X --t Y to the subset X' C X will be denoted by 
f(X'). Let us have one point a EX. The symbol f(a) denotes the value of 
the function in the point a which is the restriction of the function f: X --t Y 
to the subset {a}, where {a} C X. We will make one further step. We will use 
the notation f(X') even in the case in which X' is a subset, not a point. The 
notation f(X') is no longer one value, but a function defined on the subset X', 
see Fig. 7.1. A misunderstanding cannot occur since according to the argument 
of the function f(X') in parentheses it can be easily seen if the result is one 
single value (when the argument is a single point) , or a function (when the 
argument is a subset) . 

Let us consider a decomposition of 
the set T (i .e., the field of objects) 
into two subsets: the set Tx of ob
servable parameters (observable field) 
and the remaining set T k of hidden 
parameters (hidden field) . The sym
bols x, k in the introduced notation 
are understood as a part of the sym
bol and not as an index. 

The recognition task, still under
stood informally, assumes the follow
ing form: There is a function s : T --t 

r 
I 
I X 

'----~----L----------+--~~ 

X' 
X 

S which is defined on the known set Figure 7.1 Restriction of the function f(X'). 

T and assumes values from the known 
set S. The function s: T --t S is not known, but the restriction x : Tx --t S of 
the functions to the known observed field Tx C Tis known. The task is to de
termine the restriction k : T k --t S of the function s to the hidden field T k C T. 
The function x: Tx --t S represents the same notion that was understood as 
an observation in the previous lectures. The function k : T k --t S corresponds 
to the previous hidden state of an object. The function s : T --t S, which is 
nothing else but a pair created from functions x : T x --t S and k : T k --t S, will 
be called complete descr-iption of the object. 

It is obvious that the formulation mentioned is not the task definition. The 
hidden function k: T k --+ S could be found on the basis of the observed function 
x : Tx --t S only in the case in which the relation between functions k: Tk --t S 
and x: Tx --t S were to be known a priori, i.e., if a constraint to the complete 
descriptions: T --t S of the object would be known. We will define this relation 
by means of two different but still similar ways. In the first case a subset L c sr 
of parameters ' values ensembles will be determined that are admissible for the 
object , i.e. , the subset of functions s: T --t S that may occur. In the second 
case the function PT : sr --t IR will be determined. This function decides for 
any function s: T --t S, i.e., for each ensemble of parameters, what is the 
probability Pr(s) of the function (as well as the ensemble) occurrence. 

The foreshadowed formulation of the relation between observable and hid
den parameter-s is exactly the link connecting our forthcoming explanation of 
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structural pattern recognition with foregoing elucidation on statistical pattern 
recognition. Structural pattern recognition is not torn away from statistical 
pattern recognition, actually, the former is part of the latter. In structural 
pattern recognition the set of admissible pairs (x, k) and their probabilities are 
defined using its own specific means. Let us bring them up. 

The set T = { T1 , T2, ... , T m} of subsets of the object field T will be called 
a field structure and each element of the field structure will be called a field 
fragment. The number of elements in the largest fragment of the structure T, 
i.e., the number maxr'ET IT' I, will be called the order of the structure. For 
instance, when the structure T contains only a few pairs of elements from T, 
the structure has order two, i.e., the structure is simply the (unoriented) graph. 
We shall show which means will be needed to define the subset L C sr of 
admissible description of the object and then how the probability distribution 
on the set of descriptions can be defined. 

Let T be a structure and for each fragment T' E T let a subset Lr• C sr' 
be defined. The function 8: T --t Sis defined as admissible when its restriction 
to each fragment T' of the structure T belongs to Lr·. So the relation between 
observable and hidden parameters of the object, i.e., the subset L c sr, is 
determined by means of the ensemble of subsets Lr• c sr', T' E T. It is 
obvious that not every subset L C sr can be expressed in this way. The domain 
of structural recognition contains only those cases in which the complex set can 
be decomposed into several simpler ones. We will see that even this constraint 
leaves the domain of structural recognition quite broad. 

The probability distribution PT: sT --t lR is defined in another, but still 
similar manner. For each fragment T' from the structure T the probability 
distribution PT': sT' --t lR is determined, i.e., the function that for each func
tion of the form T' --t S assigns its probability. What is the relation between 
probability distribution PT and probability distributions on the fragments T'? 
Let us assume that the random function 8: T --t S is generated according to 
the original probability distribution PT· The restriction of this random function 
into the fragment T' is 8(T'). This restriction is random too, and its probability 
is PT• (8(T')). 

Example 7.2 Probabilities on fragments and on the entity. Let the ob
ject field be T = {1, 2, 3} and the structure T contain the pairs {1, 2}, {1, 3}, 
{ 2, 3}. From the assignment it follows that we consider thn~e random variables 
81, 82, 83. The distribution of their joint probabilities is described by the func
tion PT ( 81, 82, 83). This function is not known, but we know three distributions 
of joint probabilities P{I2}(8J,82), JJ{I 3}(8J,83) and JJ{23}(82,83). These three 
functions constrain the possible function Pr(sJ, 82, 83), since it must satisfy 
thr·ee equations, 

P{23}(s2,s3) = LPr(s1,s2,s3). 
83 
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The assumption postulated in the paragraph before the preceding Example 7.2 
does not define the probability distribution PT uniquely. The unambiguity is 
achieved using additional assumptions which are of the Markovian form. A 
precise formulation of these assumptions will be left for future lectures. Here 
we point out just once more the characteristic feature of structural pattern 
recognition: a complex function with a wide domain sT is defined by means of 
a number of simpler functions with a restricted domain of definition. And as 
before, the reduction of a complex concept into a number of simpler ones is not 
always possible. And it is the possibility of such a reduction that defines the 
action radius of structural methods which is very extensive even despite this 
limitation. 

We will illustrate the concepts mentioned and make use of the task outlined in 
Example 7.1 of horizontal and vertical lines. 

Example 7.3 Horizontal and vertical lines, illustration of concepts. To store 
the full description of an object it is necessary to have (mn + m + n) memory 
cells in which information on the image (mn cells), on the set of horizontal 
lines (m cells), and the set of vertical lines (n cells) is stored. The set of cells 
T, i.e., the object field, is a set {(i,j) I 0 ~ i ~ m, 0 ~ j ~ n, i + j -:f 0}. 
Only a part of the cells in this set is observable, namely, the part containing the 
information on the image. This part is the set { (i, j) \1 ~ i ~ m, 1 ~ j ~ n} 
and it represents the observed field Tx. The other hidden part of the field T in 
which the information on horizontal and vertical lines is stored, contains the 
cells (i,O), i = 1, ... ,m, and the cells (O,j), j = 1, ... ,n. Thus the hidden field 
Tk is the set {(i,O) \1 ~ i ~ m}U{(O,j) \1 ~ j ~ n}. The set of values which 
can be stored in the cells is evidently { 0, 1}, where the numbers 0 and 1, written 
in the hidden cells, carry information on whether a certain line occurs in the 
image. The same numbers, written in the observed cells, inform on the values 
of brightness (here black and white only) in certain positions of the image. 

The relationship between all parameters of the object, be the noise taken 
into account or not, is expressed by virtue of a structure of the third order, 
and thus through the structure which contains triplets of cells of the form 
((i,O),(O,j),(i,j)),1 ~ i ~ m, 1 ~ j ~ n. So the structure of the object 
is the set T = {((i,O), (O,j), (i,j)) 11 ~ i ~ m, 1 ~ j ~ n}. 

In the case in which the noise is not taken into consideration the restric
tion of the description s: T ~ S is defined by the set of permitted triplets 
(s(i,O),s(O,j),s(i,j)) of values that can occur in the fragment ((i,O), (O,j), 
(i,j)). This set is the same for all fragments, which is {(1,1,1), (1,0,1), 
(0, 1, 1), (0, 0, 0)}. This set formally expresses the relationship between hidden 
and observable parameters which was informally stated before. It is indicated 
that the cell ( i, j) can be black only when the i-th horizontal line or the j -th 
vertical line is rep1·esented in the image. 

When the noise is taken into account its probability then must be given for 
each triplet (s(i, 0), s(O,j), s(i,j)). In our case we assume that the probabilities 
do not depend on the coordinates (i,j). It is therefore necessary to have ISI3 = 8 
numbers which are presented in Table 7.1. A 
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11 s(i,j) = 1 1 s(i,j) = o 1 

s(i,O) = 0 s(O,j) = 0 lc 
4 t(l- c) 

s(i,O)=O s(O,j) = 1 t(l- c) tc 

s(i,0)=1 s(O,j) = 0 t(l- c) lc 
4 

s(i,0)=1 s(O,j) = 1 t(1-c) 
1 

;ic 

Table 7.1 Eight probabilities describing noise in Example 7.2. 

The concepts illustrated in the previous example do not yet define any pattern 
recognition task, but make us acquainted with the 'characters' which will be 
acting in the task. These are the concepts the formulations of which will precede 
the formulation of structural recognition problems, similarly as the sentence 
'let X and K be two finite sets, the function px K : X x K --t lR being defined 
on their Cartesian product' preceded the formulation of a task in the general 
statistical theory of pattern recognition. 

In further explanation, the previous brief sentence will be replaced by the 
following more detailed introductory sentence. Let T and S be two finite sets, 
where T is the set of parameters and S is the set of values which each parameter 
assumes. Let Tx C T be a subset of observed parameters, and the parameters 
from the set Tk = T \ Tx be hidden. Let T be a finite set of subsets from T. 
Let for each set T' E T the following be determined: 

either the subset Lr' C sT'; 

or the probability distribution PT' : ST' --t JR. 

Various tasks will be formulated after these introductory sentences. Gener
ally the tasks will require that according to the known function x: Tx --t S 
defined on an observed field, the function k: Tk --t S defined on the hidden 
field, should be found somehow. The following lectures will be devoted to the 
analysis of tasks of this kind for different classes of structures, starting from the 
simplest cases and switching over to the analysis of the problem in its complete 
generality. 

7.4 Discussion 
Lecture 6 is a kind of dividing line in that we completed a section of pattern 
recognition theory. I would now like to ask you a favour. Upon my supervisor's 
recommendation, I acted as a tutor for a seminar of the optional subject Pattern 
Recognition for students of Applied Informatics. As a basis I used your lectures. 
Some questions I have a.'iked you in our discussions were questions asked by my 
students in the seminars. 

It has occurred to me that it would be helpful if I organised a seminar to 
summarise and verify what the students had learned. Could you possibly make 
a list of questions for me to use in the seminar? 
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The previous lectures were to ensure that she/he who studied them would be 
well oriented in the following concepts and tasks. 
1. Observable and hidden parameters of an object, strategy, penalty functions, 

risk, Bayesian tasks of statistical decision making. 
2. Probability of the wrong recognition (decision) as a special case of Bayesian 

risk; the strategy which minimises the probability of the wrong decision. 
3. Bayesian strategy with allowed non-decision. 
4. The deterministic character of Bayesian strategies. 
5. The Neyman-Pearson task and its generalisation to a case in which the 

number of states is greater than two. 
6. Minimax task. 
7. Wald task of the form presented in Lecture 2. 
8. Testing of complex hypotheses, statistical decision making after Linnik. 

(Let us note that the form of strategy for solving the tasks under items 5-8 
is to be derived by using two theorems of duality). 

9. Risk, empirical risk, Chervonenkis-Vapnik theorem on the necessary and 
sufficient condition of convergence of the empirical risk to the risk itself. 

10. The growth function and the capacity of a set of strategies, sufficient con
ditions for convergence of the empirical risk to the risk itself. 

11. Anderson task in generalised form, necessary and sufficient conditions for 
optimality of strategies in Anderson task. 

12. Linear strategy, algorithm of perceptron and Novikoff theorem. 
13. Linear strategy, Kozinec algorithm and its validation. 
14. Fisher strategy by means of linear separation algorithm. 
15. f-solution of Anderson task by means of linear separation algorithm. 
16. Formulation of clustering tasks, taking the ISODATA algorithm as an ex

ample. 
17. Empirical Bayesian approach by Robbins, Robbins task and its generalisa

tion. 
18. Mutual relationship of learning and unsupervised learning in pattern recog

nition, unsupervised learning algorithm, a theorem about its monotonous 
convergence. 

That may be all. We wonder how successful your students will be in seminars 
and at examinations. 

I expect that future lectures will be substantially different from the previous 
ones. It may be a question of an entirely different subject matter which will be 
based on new concepts. That is why I would like to know if the next subject 
matter can be understood without knowing the previous one. Some students 
who did not attend my seminars would like to join them. Is not now the right 
moment for them to join the course? 

No, it is not. The following subject matter cannot be understood without a 
thorough knowledge of the previous one. Your question reminded us once more 
of the rooted, but erroneous concept of statistical and structural pattern recog
nition as two mutually independent areas of pattern recognition. With such 
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a conception only a small part of application tasks can be mastered. The im
age recognition problems, in which complex structural relations between image 
fragments need not be taken into account, are quite rare. Similarly, rare are 
tasks where a random character of images need not be considered. The ran
domness may be, at least, inevitably affected by noise in the observed image. 
And thus, in solving practical tasks both of the images' properties must be 
considered, their complex structure as well as their random character. 

I am afraid you do not seem to have understood my question in the right way. I 
did not ask whether for a practical activity in the pattern recognition field both, 
the previous and the future subject matter, are necessary. I have some doubts 
about it as well, but I am going to ask my question later. I am now above all 
interested in whether the subject matter of future lectures can be understood 
v.·ithout the knowledge of what was explained in the preceding ones. 

We have understood your question in the right way and we answer once more: 
The following lectures cannot be delivered to those who did not properly master 
the previous subject matter. In solving practical tasks, two parts of the images' 
nature must be considered in a more ingenious way than by merely applying 
purely statistical methods in a certain stage of processing, and then applying 
purely structural methods in the later stage. The applied algorithms are to 
make use of both, statistical and structural features of the image. Therefore 
one cannot say if the probability of the wrong decision is being minimised at 
some step of the algorithm, or the structural relations between fragments of the 
image are being analysed. Both activities are performed together at each mo
ment. In our future lectures we will direct our attention towards designing such 
algorithms and therefore a competence in statistical methods is a prerequisite. 

You are saying that for the future explanation everything that was previously 
dealt with is needed. Could you, perhaps, select the key concepts? I would like 
to recommend them to the students who are going to join us now so they can 
study the topics by themselves. 

Boy, you are rather strongly insistent today. You want, at all costs, to find 
something that was unnecessary in previous lectures. Well, as the saying goes, 
discretion is the better part of valour. 

To understand the subsequent subject matter it would be required to know 
the Bayesian formulation of the pattern recognition task, the formulation of 
learning and unsupervised learning tasks as the maximum likelihood estima
tion of unknown statistical parameters. The designing of unsupervised learning 
algorithms should be understood almost automatically. Moreover, it is neces
sary to master the procedure seeking the linear discriminant function by means 
of Kozinec or perceptron algorithms which is nearly the entire contents of Lec
ture 5. 
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I would rather be less insistent. But the subject matter is far too extensive. 
I am not afraid of it since I have carefully studied and understood all of the 
subject matter. At the same time I wonder if we will still need algorithms 
linearly separating subsets in a linear space. Methods based on formulations 
by a set of observations in a linear space were subject to such a sweeping 
criticism from your side that I believed that I should forget them as something 
that allures the student astray. When you are saying that we will still need 
these methods in structural analysis, I cannot come to terms with it. 

It might sound strange even to us, if we did not get used to peculiar destinies of 
some scientific ideas that develop in a quite unpredictable and unexpected way 
and start to live lives of their own. Let us again recall Minsky and Papert [Min
sky and Papert, 1969], who compared pattern recognition to a mathematical 
novel in which the characters can disappear for some time and reappear at the 
right moment. Only in a lapse of time, could it be seen that the contribu
tion of those ideas is far richer than it seemed at first glance. Even when the 
criticism against the linear approach is justified we will, despite this, actively 
apply methods seeking separating hyperplanes in linear spaces as soon as we 
deal with problems of learning in structural pattern recognition. Do not try to 
cope with this contradiction now. When we arrive at this subject matter, the 
knowledge will settle down in a desirable way. 

I already wonder! It is an unexpected turning point in the events. Rosenblatt 
invents algorithms seeking automatically a proper strategy in a certain class of 
strategies. After a time, this entire class is found to be not very well adapted 
for image analysis, and as an alternative, the structural methods appear. Due 
to it, even Rosenblatt algorithms disappear from the stage and the learning 
problem retires from the scene. After a time, when the learning methods start 
to be applied again, Rosenblatt algorithms will appear to assert themselves in 
quite another class of strategies. Do I understand it correctly? 

Yes, you do. 

I understood the mathematical contents of the previous lectures. Could you 
tell me, please, what other mathematical concepts will IJe used in further ex-
planation so that I may prepare? · 

Besides probabilities, which we have actively used, we will need a number of 
additional concepts. The fundamental and best known of them are: Markovian 
chain, graph, the shortest path in a graph, dynamic programming, automa
ton, regular expression, NP-completeness, Chomsky's formalisms for languages 
and grammars, regular and context free language. The development of some 
algorithms of structural analysis will be based on several concepts of abstract 
algebra, such as semi-rings with an idempotent addition operation, modules on 
these semi-rings and isomorphisms on them. 

Do not worry about the new concepts for the time being. They are the most 
elementary concepts, and the meaning of eac:h of them will be explained in the 
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lecture itself. Roughly speaking, to understand the next subject matter, no 
special mathematical knowledge is required other than that which was dealt 
with in previous lectures. But what will be helpful is the capability and zest 
for acquiring knowledge. 

It seems to me that I have understood the main concepts of the lecture which 
will become the basis for future formal constructions. The objects of research 
will be functions of the form T --+ S, where Tis a finite set for which a structure 
T c 2T is defined, where 2T denotes a system of all subsets ofT. Why was 
nothing said about the structure of the set S? 

The structure of the set S will not be taken into consideration anywhere in 
our lectures. The course was built up, in a sense, in contrast with the theory 
which formalises the observed object by means of points in a linear space, i.e., 
by means of a function which assumes numerical values, but is defined on a set 
void of any structure. We will examine the opposite of such an assumption and 
will see what results follow from a case, where the domain of definition of the 
function is a well structured set, and despite this, the structure of the value set 
is not taken into consideration. 

It is natural that this diametrically opposed view has its drawbacks. But 
you must not forget that the anticipated view of the tasks is rather general. 
From the fact that the structure of the value set of a function is not considered, 
it does not follow that the results of such an examination hold only for sets 
void of any structure. The other way round, there will be results that are valid 
for sets with whatever structure they may have. The other thing is that on 
certain assumptions about this or that set of values which the function under 
examination assumes, other additional results could still be obtained. These 
open questions, however, will not be dealt with in our lectures. 

I have revealed a certain contradiction connected with the case of horizontal 
and vertical lines which was quoted in the lecture. On the one hand, it has 
been said that in the image only such a group of horizontal and vertical lines 
is regarded as admissible which does not include all the horizontal and vertical 
lines. This restriction was essential in deriving a pattern recognition algorithm 
of a noise-free image. 

On the other hand, if a set of admissible images was defined by means of 
structural methods then this restriction was not taken into consideration. The 
structure T and the constraint on the fragments of this structure were defined 
in such a way that any subset of lines was admissible, including those which had 
been regarded as inadmissible. I would not bother you with this contradiction 
if I thought that it was just a mere oversight from your side. When I tried, 
however, to do away with it, I was unable to, and it seemed to me that it might 
be something more important than merely a slight mistake. The matter is, in 
fact, that the ensemble (s(i,O), i = 1,2, ... ,m) cannot be an arbitrary one, 
but one in which there exists at least one number s(i, 0), different from 1. This 
requirement, which restricts the ensemble of m variables, cannot be reduced to 



7.4 Discussion 293 

constraints of smaller groups of variables. I may be able to prove it because I 
hardly made an error in my considerations. I assume you know it even without 
my comments. If I am right then I can be afraid that the case of horizontal and 
vertical lines is just the one which cannot be coped with even by the theory 
which is to be explained later. 

We will reply in the style of the Clever highlander girl (a character from the 
popular Czech fairy tale). Yes as well as no. Do not ask for a more precise 
answer from us now. We would like to draw your attention to the fact that the 
question, whether the restriction to a certain set of variables can be expressed 
by means of relations in their subsets, is not so simple. We will examine this 
question in detail later. 

We will now only demonstrate how, by the means mentioned in the lec
ture, a requirement is to be expressed that the ensemble of numbers {s(1,0), 
s(2, 0), ... , s(m, 0)) must contain one zero at least. You are right that this 
constraint cannot be reduced to partial constraints. But auxiliary variables 
( z ( 0), z ( 1), ... , z ( m)) can be introduced such as to make the restriction pos
sible. A local constraint will be introduced for the variables z(O), z(m) and 
for the triplets of variables of the form (z(i - 1), s(i, 0), z(i)), i = 1, 2, ... , m. 
The constraints will result in the following meaning of variables z(i): the quan
tity z(i), i = 1, 2, ... , m, is zero if and only if at least one of the quantities 
{s(1,0),s(2,0), ... ,s(i,O)) is zero. Local constraints, therefore, state in which 
z(O) must be 1, z(m) must be 0, and the triplet of values {z(i -1), s(i,O), z(i)) 
must be one of the following four triplets: (1, 1, 1), (1, 0, 0), (0, 1, 0), and (0, 0, 0). 

I see that I have opened a box with rather complicated questions. I realised 
that some complex 'multi-dimensional' relations can be expressed in a sim
plified form. This simplification consists of reducing 'multi-dimensional' rela
tions to a larger number of 'less-dimensional' ones. It is also clear to me that 
there exist such multi-dimensional relations for which the before mentioned re
duction is not possible. For the present, can I assume in advance that some 
multi-dimensional relations can be simplified only when to the original variables 
additional variables are added? 

When we connive at a not very satisfying precision of your statements, you are 
right . 

. From what has been said, a lot of new questions arise. But I am afraid that I 
am in too much of a hurry when I wish to know just now what will be spoken 
on at the lectures. Still before I start with the questions, I would like to make 
clear for myself, roughly at least, the relation between the previous and future 
theories. It may be untimely to make an attempt to do it just before the 
explanation gets started. But the formulation of concepts itself, such as the set 
of observations S, the object field T, the observed field Tx c T, the hidden 
field Tk C T, T = Tx U Tk, the structure of the field T c 2T and the system 
of subsets Lr' c sT'' T' E T, or of functions PT' : sr' ~ IR, T' E T, already 
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creates the framework of the future theory, and gives an idea of what will be 
dealt with at the lectures. I have a certain idea at least. For the time being, 
my idea does not suffice for me to answer the question whether the structural 
theory is a concretisation of the statistical pattern recognition theory, or its 
generalisation. 

On the one hand it was said in the lecture that the structural theory is a 
particular case of the general statistical theory, which concretises the form of 
the set X x K, whereas the general theory is not based on the assumption 
concerning the form of the sets X and K. 

On the other hand, the general theory as a whole can be regarded as a 
trivial case of the structural theory in which the observed field Tx consists 
of one single cell tx, the hidden field consists of a single cell tk, the set S is 
XU K. The structure T is }~ tx, tk}}, i.e., it consists o~ one sing]: subset. ~he 
system of functions PT': S --+ JR, T' E T, also cons1st of a smgle functwn 
p x K : X x K --+ JR. In this case the structural pattern recognition can be 
regarded as an immense generalisation of the previous statistical theory of 
pattern recognition which in itself is impractically general. Is it really so? 

Certainly, it is. Do not take it too seriously. The statements of the type 'X is a 
special case of Y' or 'X is a generalisation of Y' express something unambigu
ously understandable only when the objects X and Y are formally defined in an 
unambiguous way. In our case these are two rather general theories. An exact 
expression of the relationship between them would require the construction of 
a kind of metatheory beforehand, i.e., a theory about theories. But we are not 
inclined to do it, and so forget the last question, please. 

Even though I did not make my previous question with much seriousness, I still 
cannot dismiss it completely from my mind because I am interested in it for 
quite earthly, and therefore serious reasons. Now may be the most opportune 
moment for me to remember why, in fact, I started to study your lectures. If 
you still remember, my interest in pattern recognition was stimulated by the 
fact that I had written a program for character recognition. I made it on the 
basis of considerations that seemed to me quite reasonable, but in spite of that, 
it did not work satisfactorily. 

Now I can tell you that it was a program for recognizing standard printed 
characters. There are a lot of similar programs commercially available. None 
work perfectly, but one can make a good profit from such programs. The 
program I wrote was not based on the results of pattern recognition theory for 
the very reason that most of them were not known to me. Now, thanks to your 
lectures, I know the fundamental results of the theory, but I do not have even 
a vague notion of how to go back, by virtue of these outcomes, to my earthly 
objectives. The outcomes of the pattern recognition theory are still abstract 
for me, even when I do not cover up the reason for my interest. I hoped that 
in the second part we would pass, at last, from the abstract level to a more 
earthly one. But now I see that instead of returning from the sky to our Earth, 
we are flying still higher, and I do not know when my quite concrete tasks get 
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their turn. I am almost afraid that I am heading further and further away from 
my original objective for the sake of which I had set off, together with you, 
on a laborious journey. Could I, possibly, ask you the question what out of 
the previous subject matter, and perhaps also out of the future one, may be 
directed at my not very noble interests? 

Why could you not ask? But it may be clear to you that your question is far 
more difficult than all the previous ones. First, it requires from us the acquisi
tion of your application task, and second, to know what you have actually done. 
In any case the answer to your question can be neither short, nor complete. If 
you did not find by yourself what to use from the previous subject matter then 
no short answer will persuade you. Let us try to reconstruct what troubles 
you have already undergone and what is still ahead of you. You might feel 
disappointed seeing that we did not assess or explain your steps adequately. 
Therefore, you had better imagine that we are not speaking about you, but 
about someone else. 

You certainly tried, at first, to cope with the task on a simplifying assump
tion that only one single character is present in the image. Thought further 
simplification, the character can have only one of two labels, say, A or B. The 
character can be located in any place on the image, it has a certain rotation 
and size. You assume that when there are more characters arranged in several 
lines certain complications will arise, but you will leave their solution to a later 
time. At first, you will cope with primary problems, which lie on the surface 
and do not seem to be difficult for you. 

You will scan several hundred images, each of them consisting of 150 · 100 
pixels. The character in the image covers a rectangle which consists of 30 · 20 
pixels. You made the size of the image five times larger than the size of 
the character because you anticipate that you will soon intend to recognise 
simple texts which consist of 25 characters written in five lines by five char
acters each. For the time being there is only one character in each of the 
scanned images which can be placed anywhere. A character can assume any 
out of (100 - 20) · (150 - 30) = 9600 positions. Thanks to binary scan
ning, the image will be represented in the memory of your computer by a 
two-dimensional array x the element x(i,j) of which is 1 or 0 according to 
whether the pixel with coordinates (i,j) is white or black. When you display 
the ensemble on the screen, and you view your characters, you will see how 
perfectly you can recognise them for your part, and in optimistic spirits you 
will write a program, which, as you are sure, will also cope with character 
recognition. 

Design the program on the basis of reasonable considerations. You will 
prepare two small images of dimensions 20 · 30 by which you represent two 
recognised characters, A and B, which are, in your opinion, ideal. You call 
them exemplars. Then you will copy either of the two exemplars 9600 times 
so that you will obtain 9600 images of dimensions 100 · 150, where in each 
image there is a character A in all possible positions. In a similar way, you 
will obtain 9600 images for a character B. The images will be denoted so that 
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Vtk, t = 1, 2, ... , 9600, k = A, B, will mean the character k in the position t. 
The image x will be recognised so that you will calculate the dissimilarity of 
the image x from each of the 2 · 9600 images. You will find the image Vt•k• 
which is least dissimilar from the image x, and you will find that the image 
x represents the character k* in the position t*. You do not think long about 
how to measure the dissimilarity of the image Vtk from the image x. It is clear 
to you that it should be Hamming distance 

150 100 

L L I x(i,j)- Vtk(i,j) I , (7.1) 
i=1 j=1 

and so you define the result k* of recognising the image x as 

( 
150 100 ) 

k* = arg~in mint;~ jx(i,j)- Vtk(i,j) I (7.2) 

You will use the written program for practical experiments and their results 
will astonish you. They are not only bad. They are unexplainable. 

On the one hand, the program makes frequent errors, on the other hand, the 
errors appear in cases other than those you would expect. You would be able, 
for example, to explain if an error occurred for the character A, which would 
be so much distorted by noise that it could be hard to find, in an objective 
way, if it concerned the character A or B. But such errors are hardly noticed 
by you. The algorithm quite frequently and with certainty decides for the 
character A, even in the cases in which you can clearly see that a rather correct 
character B was presented to it. At first, you assume that an error has crept 
into the program. After carefully checking the program, you will arrive at a 
conclusion that you will have to explain the wrong behaviour of the program 
on the basis of additional experiments. There you will come across difficulties 
since your program is too slow to be apt for extensive experiments. And so you 
will arrive at the knowledge that you will have to deal with questions such as 
the recognition speed which you intended to put off until the time when the 
algorithm worked properly. 

In the effort to make the program faster you will notice, at first, that ac
cording to the algorithm, i.e., the relation (7.2), the dissimilarity (7.1) is to 
be calculated for every possible position t of the character in the image. You 
assume that it could be possible to find the actual position t0 of the character 
by a less expensive means. If the actual position t0 would be known then the 
answer k* sought can be determined by a simpler algorithm 

150 100 

k* = arg~in L L I x(i,j)- Vt 0 k(i,j) I· 
k i=1 j=1 

(7.3) 

instead of the calculation (7.2). We will not deal with the question which of 
the known algorithms has to be used. The reason is that all of them are rather 
bad. Actually you used one of them. 



7.4 Discussion 297 

It is important for us that the program which implements (7.3) works at 
about a thousand times higher speed than the program based on (7.2). Now 
you can examine the algorithm not only for several but for many examples. 
None of the results will please you. Wrong results are many, but now you start 
to understand what causes them. You see that Hamming's distance (7.1) rather 
grossly evaluates what you would like to regard as the dissimilarity between 
images, because it starts from the assumption that all the pixels in the image 
are equivalent. But the experiments showed you that different pixels had had 
different natures. Some pixels in the image A are nearly always black, others 
are of a rather stable white colour, the third ones are more white than black, 
the fourth ones are both, white or black, with rather equal frequency. You 
will sort the pixels of the images into classes, separately for the character A, 
and separately for the character B. In this way, you will amend the formula 
for stating the dissimilarity between characters. But neither is this of much 
help to you, and you are slowly coming to a conclusion, that the diversity of 
pixels cannot be expressed only by sorting them into classes, but that each pixel 
must be characterised by a weight coefficient with which the particular pixel 
is present in the formula (7.1). When you see that in selecting the coefficients 
based on sound reasoning you still cannot attain correct results, you begin to 
feel that you are in a tight spot. We may have met in just this moment of your 
worries and started to discuss our lectures. 

After the third lecture when we discussed the two simplest statistical mod
els of observation, you could understand by yourself how to select the weight 
coefficients. You will easily see that the dissimilarity of the image x from the 
exemplar VA of the character A, or from the exemplar VB of the character B is 
to be calculated according to the 

L L afj ( x(i,j)- vk(i,j) f, k =A, B 
i j 

(7.4) 

which can be interpreted in a double sense. If both the observed image x and 
the exemplars VA and VB are binary then the coefficient a~i is to be adjusted 
to the value 

( 
P~j ) log -k , 

1- Pij 

where P~j is the probability that in the image x, which actually displays the 
character k, the observation x(i,j) will not have the value vk(i,j). That means 
that there will be no observation in the pixel (i,j) which would be expected in 
an ideal image, i.e., undistorted by noise. 

But it can happen that you will find at this stage of analysis that many erro
neous decisions were due to wrong binarisation of the original image which was 
performed by the scanner. You can choose a more exact way of data acquisition 
by scanning more brightness levels. The brightness is then represented not by 
a binary, but by an integer number in an interval, say, of 0 through 255. In this 
case you can express the numbers vk(i,j) in the formula (7.4) as mathematical 
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expectation of the numbers x(i,j) in the actual image which represents the 
number k, and the coefficient a~j as (a~ )-2 , where a~ is the variance of that 
number. 

It is an awfully primitive method of recognition, but it is still more advanced 
than the calculation of Hamming distance which seemed to you the only pos
sible one at the beginning. These concrete recommendations are not the most 
important. More significant is that you have learned in the third lecture from 
which assumptions about the probability distribution PXIK these recommenda
tions follow. If these assumptions are satisfied then the algorithm recognising 
characters must (!!!) operate not only in a correct, but also in an optimal way. 

Now, when your algorithm has continued yielding unsatisfactory results (and 
the results will be really bad all the time), you need not examine that algorithm 
of yours, but you can view the images themselves without their recognition, 
and try to find what assumptions about the probabilities PXIK from which the 
application of the formula (7.4) follows are not actually satisfied. 

Stop it, please. I apologise for being impolite, but I feel I must interrupt 
you. Up to now you have managed to give a true picture of my past troubles. 
It was clear to me that we still keep, in our field of view, our aim which is 
to create an algorithm for recognising images containing texts. But now you 
actually recommend me to quit refining the algorithm and to begin a kind of 
new research. Just now, I started having a feeling that we are beginning to 
go away from my original task and get stuck in new research from which there 
would be no way out. I am afraid that in your further explanation my feeling of 
going away from the original task will be reinforced. When you are at the end 
of your explanation I will be flummoxed by it. I would not know how to adapt 
to my task the interesting information which I will certainly Jearn from you. 

You are right to have interrupted us. We are not going away from the solution 
of your original task, but only reveal that we are still some distance away from 
the solution. Please realise that when two people are at the same distance 
from the target, but only one of them knows the distance, it is he that has an 
advantage over the other. Moreover the second person starts from the wrong 
assumption that he is quite near to his target. 

The path to solving the pattern recognition task inevitably leads through 
examination of the the model of the object that is to be recognised. Sometimes 
the path is long, sometimes short, it is not always pleasant, but it is a passage. 
He who would prefer to avoid it completely can arrive at a marshland. Let us 
examine the formula (7.4), and try to answer why it does not work properly 
even if it works a bit better than the relation (7.3). The reply to this question 
will be sought in examining what premises which validate the procedure (7.4), 
are not actually satisfied. 

If you examine even a small number of images then you will rather quickly 
discover that at least one premise is not satisfied on the basis of which the 
formula (7.4) was derived. It is the premise concerning the independence of 
brightness parameters x(i, j) in different pixels of the observed image. You will 
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see that there are groups of pixels in which the same, or very similar brightness 
is observed, but which changes from one image to the other. In addition you will 
notice that in the image such pairs of regions exist within which the brightness 
is the same, or nearly the same, but the brightness parameters in pixels of 
different regions are usually different. A dependence can even be observed if 
brightness parameters in one region rise then in another region fall down, etc .. 

Primarily you have the idea that dependencies of this kind can be expressed 
by the general Gaussian model of multi-dimensional random variables. The 
particular case of this idea is the independence of the components of the multi
dimensional variable which was the basis for deriving the formula (7.4). You are 
quite entitled to be afraid of expressing the revealed dependence by covariance 
matrices which would assume huge dimensions in this case, i.e., the number 
of pixels in the image raised to the power of 2. Already for tiny images of 
the dimension 30 · 30 pixels we can speak about a covariance matrix of the 
dimension 900 · 900. Of course, if you did not have any knowledge of the nature 
of brightness dependence in pixels then you would have no other simpler choice 
than to express the dependence by means of covariance matrices. 

But you have quite thoroughly examined and understood your characters. 
You have arrived at a conclusion that if a character really occurred in the same 
position in the image then the dependence of brightness in pixels would be 
far less. The dependence between pixels mostly results from the property that 
your method of finding the position of a pixel in an image, be it of any kind, 
is rather inaccurate. The actual position of a character may differ from the 
position found by your algorithm, say, by one, or two pixels to the left, to the 
right, downwards, or upwards. That is just why the brightness parameters in 
the pixels of an actual image do not change independently of each other but all 
at once for the whole pixel group. It happens because a character as a whole 
has moved, say, by two pixels to the right. If you know not only the mere fact 
that brightness parameters in pixels are mutually dependent, but, moreover, 
you know the mechanism of this dependence then you can state the dependence 
not by covariance matrices, where your knowledge might dwindle away, but by 
another model in which the revealed mechanism of the dependence will be ex
plicitly expressed. For this case it would be best to consider the probability 
distribution PX/K as a mixture of twenty-five partial distributions. The value 
25 is the number of all possible positions in which a character can actually 
occur when your algorithm has defined a certain position for it, i.e., 

25 

PX/k = I>k(t) P~X/k' (7.5) 
t=l 

and this means that the strategy for recognition should be as follows: it has to 
decide that the image represents the character A if 

25 25 

LPA(t)p~/A(x) ~ LP8 (t)p~ 18 (x), (7.6) 
t=l t=l 

and the character B in the opposite case. In the formulre (7.5) and (7.6), the 
number pA(t) states how often the displacement, numbered by t, of the actual 
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position of the character A from the position found by your algorithm has oc
curred. A similar meaning is that of the numbers p8 (t) which, of course, are 
not the same as pA(t) because the accuracy with which your algorithm finds the 
position of the character A need not be the same as the accuracy of finding the 
position of the number B. The function p~lk is the probability distribution of 
the image which displays the character k in the position t. It is a distribution 
about which one can now assume with greater certainty that the brightness 
parameters in individual pixels are mutually independent. The influence due 
to the change of the position of the character, which was the main cause of this 
dependence, is out of the question. 

In applying the formulre (7.5) and (7.6), you must not assume that the 
probabilities of each displacement t are the same because your way of finding 
the position of a character is not altogether bad. Quite often, the position of 
the character is found in a correct way, and the error in displacement by two 
pixels does not occur so often as that by one pixel. The recognition algorithm 
has to take into account these properties of your algorithm which searches for 
the position of a character, and therefore 50 numbers pk(t), t = 1, 2, ... , 25, 
k = A, B must be known to apply the formulre (7.6). This is, however, a 
far more specific task than the task of searching for the recognition algorithm 
which does not always provide an easy survey. Your attention is drawn to the 
fact that we deal only with the estimate of the algorithm used to recognise the 
true position of the character, not with its improvement. The algorithm for 
locating a position need not be exact but you must know precisely the measure 
of its inaccuracy. 

Your explanation seemed to me so comprehensible that I immediately started 
writing a program which implements the method (7.6), intending to check the 
algorithm. But all at once, it appeared that I am not capable of determining 
those unlucky 50 constants pk(t) which must be included into the program. To 

·be able to determine them, I am expected to make a number of experiments 
with images of one class, say, with the characters A, and in each experiment to 
determine two quantities: the position t found by my algorithm, and the actual 
position to of the particular character. From these two quantities, only the 
quantity t is known to me. I cannot find the actual position. When I observe 
a character on the screen then I can easily estimate if it is the character A 
or B. But it is completely impossible to determine, if the actual position of 
a character is the one which the algorithm has found, or if it differs from the 
actual position by one or two pixels. The actual position is simply unknown 
to me. Neither have I any algorithm for finding tl1is actual position. If I had 
it at my disposal then no problems would arise and I would be in much higher 
spirits. 

But this is not the end of my troubles. To apply the algorithm (7.6) I have 
to know not only the 50 numbers pk(t), but the ensemble of functions p~lk as 
well. To find the ensemble, I would have to get a set of images in which one 
character in one position is displayed. I do not have such a set at my disposal, 
in turn, I do not have the algorithm which would faultlessly indicate the actual 
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position. I feel like I am in a vicious circle. I cannot do without an algorithm 
for accurately determining the position of a character, but on the other hand, 
I do not know how to scan and print a set of characters about which I could 
claim that they are characters all in the same position. That makes me think 
that the function P\·lk' describes a multi-dimensional random variable which 
cannot be determined experimentally. 

Eventually I can see that, after all, I become astray in the marshland, even 
though it was not in the immediate design of the algorithm, but in examining 
the statistical model of the recognised object, in my case, that of a character 
image. 

You must not be angry with us, but we misled you in the moor land on purpose. 
We wanted you to notice by yourself that the task waiting to be solved is an 
unsupervised learning task. Moreover, it is exactly that concrete case you so 
thoroughly dealt with in the discussion after Lecture 6. We did not bring it to 
your attention that it was the unsupervised learning task which was waiting for 
you. It was just for you to see by yourself that unsupervised learning was not a 
mere intellectual game solved with one's head in the clouds. It is a procedure 
for solving quite earthly statistical tasks which occur at the first steps of the 
statistical examination of a complex object, such as an image, if it is examined 
quite seriously, of course. Well, do not be afraid of getting into the marshland 
because you know how to get out of it. 

For the estimate of parameters in the statistical model (7.5) apply the algo
rithm which you so brilliantly found in the discussion after Lecture 6. You even 
wondered at its simplicity. We are already eager to know what will it result in. 

I declare victory. Though, I am afraid of speaking too soon. The results of the 
recognition algorithm into which I included the parameters calculated by means 
of unsupervised learning appeared to be very satisfactory. I could already 
regard them as practically applicable. During the relatively long experiments 
I noticed not a single (!!!) error. 

We do not intend to lower your results. But do not forget that the capacity of 
the set of strategies in the form of (7.6) is quite large in your case. You have 
to take into consideration all outcomes of the statistical theory of learning that 
we discussed with you in Lecture 4. They claim that the results of recognition, 
obtained in learning, can in some cases differ rather substantially from the 
results you will observe when applying a non-variable algorithm. 

Do you not, possibly, think that I have forgotten about the results in Lecture 4? 
It is clear that I checked my algorithm on data other than that I used for stating 
the parameters of the model in (7.5). 

In advance, and with some caution for the time being, we can already con
gratulate you. Note that now you have not only the algorithm for recognising 
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characters, but also their statistical model. It is by far more than a mere 
algorithm since you can continue examining the statistical model for further 
purposes, and not only for constructing the recognition algorithm. 

I have already started doing so. At first I was interested in what the partial 
probability distributions p~lk looked like. I expected that they would seem as 
if the algorithm for unsupervised learning itself came to the conclusion that 
the image is affected by such a parameter as the position of a character. This 
would be so, if the functions p~lk at different parameters t mutually differed 
by the displacement. But I did not observe anything like that. I was not able 
to interpret in a comprehensible manner the group of functions p~lk' k =A, B, 
t = 1, 2, ... , 25 by which the algorithm approximated the set of observed images 
of one class. 

Well, as you can see, it was the position of characters that was the influence 
which first occurred to us when we wanted to explain why the brightness pa
rameters in different pixels were mutually dependent. Actually there are even 
more parameters of this kind. For example, we can consider yet another pa
rameter which is the thickness of character-lines. If we examined the characters 
even further, we would come across other parameters as well which are hidden 
at first glance. The unsupervised learning algorithm devoted more time to this 
examining than we did, and therefore, within the scope of potentialities pre
sented to it (which were limited by the number 25), it found an appropriate 
approximation for all parameters which cause the dependence between pixels. 

I dare assume that even the statistical model on which recognition is based 
corresponds to reality at the first approximation. I tried to examine this model 
even further. I recognised images that were not scanned as such, but which 
were generated by means of that particular statistical model. For some pur
poses, these experiments are preferred to the experiments with real images. If 
I generate an artificial image then I know everything about it. Not only do 
I know what character is displayed, but I also know at what parameter value 
t the character was created. I cannot obtain such information in any way by 
real experiments because I even do not know the meaning of that parameter. 
Naturally I even cannot determine its real value. 

When I had completed the experiments with artificial images I found some
thing which arouses some fear in me. I will try to explain this. I found that the 
probability of the wrong decision substantially depends on the parameter t. At 
some values oft, and those are the more probable, the recognition is of a far 
better quality than at those which are less probable. It does not surprise me 
much because the strategy created is aimed at minimising the average proba
bility of the wrong decision. Primarily, the strategy tries to achieve a correct 
recognition of images that were generated for values of the parameter t with 
greater probability. 

Though all these considerations are reasonable, I would not like to follow 
them hastily. After all, I would not like to regard the parameter t as a random 
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one because I do not understand its meaning completely. I would like to create 
another strategy which would secure, instead of the minimal average probability 
of the wrong decision, a good magnitude of this error at any value of the 
parameter t. This means that I must formulate a non-Bayesian task for the 
already created statistical model and solve it from the very beginning. Shall I 
make such a decision? If I choose this path then it will mean that I will have 
to throw the whole of my program away. I regret it. I have already put much 
effort into it, and finally it is not so bad. 

We start to like you again, because you have found what we wanted to call your 
attention to. But you are not right when you fear that you have to throw all 
your work into a waste-paper basket. If you go through Lecture 2 once more 
then you will see that the task in the new non-Bayesian formulation is solved 
by a strategy of the same form as the strategy (7.6) which you have already 
programmed. You just need to include in it other values of the quantities pk(t) 
than those you obtained by means of the unsupervised learning algorithm. You 
must calculate them in a different way. We believe that you will come across 
it without our help. 

But this means I have programmed the unsupervised learning algorithm in vain 
when I am expected to throw its outcome away. 

By no means! The unsupervised learning has provided you not only with the a 
priori probabilities of values of the parameter t, but in addition the conditional 
probabilities p~lk which you will make use of now. 

We will answer one more question even though you have not yet asked it. We 
will not preclude that you will manage to design an algorithm which will secure 
quite good results of recognition at any value of the parameter t. You can try to 
simplify the recognition strategy itself, and instead of the strategy of the form 
(7.6), you can use, say, a linear discriminant function. This can be created as a 
solution of a generalised Anderson problem. You have the mathematical model 
of your images at your disposal, and you can apply it for different purposes. 

So, you can see that even in your rather simplified task nearly all tasks and 
their solutions were used that were referred to at a theoretical level in our 
lectures. 

O.K. But in spite of that, the identification of abstract concepts with a concrete 
application task seems to me to be rather painful and not straightforward. 

That is not so. When one has learnt one's application thoroughly and is quite at 
home in the theory then the connection is clear and it should immediately catch 
one's eye. We are, therefore, greatly surprised that you needed our explanation 
concerning the connection of the subject matter from our lecture with your task. 
We noticed that you are quite at home in the theory. The only explanation 
may be that you did not carefully examine the images which you were trying 
to recognise. You may have believed that knowledge of the theory could make 
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up for the lack of knowledge about the application task. Well, you were wrong. 
Once more we will remind you that the theory of pattern recognition is no 
magical means for a lazybones who relies on the 'Magic Table' method! 

But if one knows one's application rather thoroughly, he or she may solve it 
even without the theory. Am I not right? 

That is true. The only question is how much time it would take him or her. 
Assume that in an application an area below a graph of a polynomial function of 
one variable in the interval from 0 to 1 is to be calculated. Your question could 
be transposed to this example in the following way. Can anybody solve this 
task without knowing the integral calculus? It is, of course, possible because 
nothing stands in the way of creating the concept of the derivative, finding 
formul<E for differentiating the polynomial function, creating the concept of the 
integral, and proving Newton and Leibnitz theorems. If he or she had known 
these concepts and relations between them prior to it, he would have solved 
the task faster. 

We analysed my application task in detail. Should I regard it as good luck 
that in solving it I managed with only the subject matter from the lectures on 
statistical pattern recognition? Do I not also need the knowledge of structural 
pattern recognition turn of which will follow? 

The task we have just analysed can be regarded as an application task only 
with a large amount of politeness. We have only analysed a case in which the 
recognised image consists of one single character. You certainly admit that it 
is child's play when compared to a real application task. 

We have solved the most difficult part of it, I think. To solve an interesting 
practical task, I have nothing more to do than divide a large image into smaller 
rectangles circumscribing every character. Then, it could be possible to solve 
a task of real application significance, could it not? 

No, not as a whole, but quite a large part of it. Do not think, however, that 
you will manage to break up a text into individual characters by means of 
some simple aids. We again remind you that you should look carefully at the 
texts you would intend to recognise. Even a cursory glance at real images 
is an effective means for sobering up. In a real image you can notice that 
neighbouring characters in one line touch one another now and then and so 
the space between them is lost; due to noise, individual characters come apart 
so that the set of black pixels stops being connected; rectangles circumscribing 
the characters differ in heights and widths; the neighbouring position of two 
characters in a line forms a configuration, which consists of two halves of two 
different characters, and this configuration cannot be distinguished from some 
other character which actually does not occur in that place (such as the pairs 
oo ~ x, xx ~ o, cl ~ d, ic ~ k, lc ~ k); rectangles that circumscribe individual 
characters are not disjunctive, etc., etc .. 
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When you get a notion of all these tiny and not so tiny treacheries of an 
actual image, you will come to the conclusion that recognition of character 
lines cannot be so easily reduced to recognition of individual characters of 
which the line consists. Then you will deduce the correct conclusion which is 
that you have to formulate your task as recognition of a whole line at once. 
This may drive you mad since the number of possible sequences in such a line 
is astronomically large. That will be the right moment for you to read the 
following two lectures and see that there already exist methods which are quite 
well elaborated for recognising a whole sequence at once. On the basis of these 
methods, you would be ready to create an algorithm for recognising images 
with texts that could be respected even in the world of applications, but only 
on the assumption that there are reasons for believing that you are capable of 
dividing the image into rectangles circumscribing one and just one line. Only 
in this case you will manage to reduce the recognition of a whole page to the 
recognition of individual lines. 

In cases in which the lines are closely adjacent to one another, you will prob
ably not manage to break up the text by means of simple tricks into individual 
lines. You will have to formulate the task as the recognition of a whole page at 
once. In this case you will have to read further lectures of ours where algorithms 
for recognising such two-dimensional structures are designed. 

I am already looking forward to it. But perhaps one little remark. I do not 
know how I should express my fear. I would much regret if the entire integral 
calculus was applicable only for the calculation of the area below a graph of 
polynomial functions. It might not be worth creating it only for the sake of 
such a narrowly oriented task. 

We understand your fear. The operating radius of structural methods is exten
sive and covers much more than mere recognition of images with text. But do 
not ask us to analyse another application area with you. It is now your work, 
and we would not wish to do it for you. 

February 1998. 

7.5 Bibliographical notes 
This lecture provided an overview on the relation between statistical and struc
tural methods rather than a solid scientific result. A part of the given thoughts 
was published in [Schlesinger and Gimmel'farb, 1987]. We have not observed a 
similar approach by other authors. Our approach constitutes a general starting 
point to the lectures to come. Here, the statistical methods will be used for 
structural recognition. 

The ill-considered representation of images in the multi-dimensional space 
or equivalently as vectors is criticised in [Minsky and Papert, 1969]. In [Beymer 
and Poggio, 1996) it is demonstrated that representing images as vectors makes 
sense only if the correspondence problem is solved. This means that in two or 
more images the pixels are detected that correspond to the same location in 
the scene. This location often corresponds to a salient landmark in the scene. 



Lecture 8 

Recognition of Markovian sequences 

8.1 Introductory notes on sequences 
A sequence being, perhaps, the simplest structure which for a number of rea
sons is best suited for us to use to start our talk on structural recognition. 
Even in such a simple special case it can be shown how to recognise a com
plex object which consists of many parts and how the knowledge of relations 
between the parts contributes to better recognition of both the object as a 
whole and its components as well. We will see that although the algorithms 
for recognising complex objects are not always trivial, in their realisation no 
insuperable computational complications will occur. We will realise that the 
recognition problems, supervised and unsupervised learning which are formu
lated in the statistical pattern recognition, can be, in a studied particular case, 
solved exactly and without additional simplifying assumptions. 

Formal models described in this lecture are of interest because they express 
important features of an extensive class of real recognition tasks. We are going 
to give two examples of such practical tasks. It is not our intention to create 
the impression that the intrinsic content of these practical tasks is completely 
covered by expressing them using Markovian sequences. We only wish to show 
through examples the meaning of abstract concepts which will be used in later 
explanation. 

Example 8.1 Recognition of a line in images. Let xi, x2 , ... , Xn be a line 
of text, i.e., a sequence of images representing letters. Each image corresponds 
to a letter from alphabet K. The aim is to decide what sequence of letters 
ki, kz, ... , kn corresponds to the observed sequence of images Xi, Xz, ..• , Xn. If 
the letters labeled k;, i = 1, ... , n, were mutually independent then the task 
to estimate the sequence ki, k2 , ... , kn would be reduced to n mutually inde
pendent estimation tasks each yielding the label of the individual letter. The 
decision concerning which letter stands in the position ·i would be made only 
with respect to the image x; in the sequence Xi, x2 , ... , Xn. Such a decision 
would not be the best one in a r·eal situat·ion in which letters ·in the line of text 
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cannot be regarded as mutually independent. The dependence (context) provides 
such significant information that often, with respect to the knowledge of labels 
k1 , k2 , ... , ki-I, ki+1 , ... , kn and the image Xi, the label ki can be found even 
in the case the image Xi is severely damaged by noise. The problem is that 
not a single letter ki is known at the beginning and therefore the task consists 
in recognising the complete sequence k1 , k2, ... , kn at once, i.e., with respect to 
the complete sequence of images XI, x2, ... , Xn, but considering the previously 
known mutual dependence of individual letters. • 

Example 8.2 Medical diagnostics. Let XI, x 2 , .. . , Xn be the result of measur
ing certain parameters of a patient in some particular instants and k1, k2, ... , kn 
be the sequence of his or her states of health which is not directly observable. 
The objective is to find the different states of health as exactly as possible with 
respect to the sequence of observed parameters. Health states of the patient in 
different moments are not independent. The knowledge of this dependence con
tributes to a more accurate estimate of individual states and their sequence. • 

Methods of sequence recognition for certain formulations of recognition tasks 
will now be thoroughly examined. The characteristic feature of these methods 
is the application of dynamic programming to find the optimal sequence of 
hidden states ki, k2 , ..• , kn. The original source of these methods are papers 
by Kovalevski [Kovalevski, 1967] who designed the methods for recognition of 
lines of text. Vincjuk [Vincjuk, ] was the first to apply dynamic programming 
to speech recognition. The methods spread worldwide in a short time. Nowa
days, the respect for these methods is so great that it starts to be detrimental 
to them. Slowly the original formulation of tasks, for the solution of which dy
namic programming is well suited, is being forgotten. Dynamic programming 
algorithms are applied even in situations in which other algorithms are more 
suitable. 

In this lecture we define a certain class of statistical models of the recog
nised object and within this class we formulate various Bayesian recognition 
tasks. Some of these tasks are solved by the well known methods of dynamic 
programming. Other less known methods are suitable for solving other tasks. 

8.2 Markovian statistical model of a recognised object 
Let an object be characterised by 2n + 1 parameters that are expressed by 
two sequences x = (xi, X2, ... , Xn) and k = (k0 , k1 , ... , kn). Sequences will 
be denoted by the bar over the symbol representing the sequence in this lec
ture. Parameters ko, ki, ... , kn are hidden and parameters XI, x2 , ... , Xn are 
observable. The sequences x and k are random and assume values from the 
sets xn and Kn+I, where X is a set of all possible values of each observ
able parameter Xi and K is a set of values of each hidden parameter ki. The 
connected subsequence (xi1 , xit +I, ... , Xi2 ) will be denoted xi2 and the subse-

. ~1 

quence (ki1 , ki 1 +1, ... , kiJ will be denoted k?. The symbol x} then means x, 
. 1 - . 

the symbol xi represents Xi, the symbol k0 means k, and ki represents ki· 
We will speak of joint and conditional probabilities of the given parameters 

and different groups of these parameters. All the probabilities will be denoted 
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by a single symbol p. For example, the notation p(x;, k;, k;-1) will be used for 
a joint probability that the i-th observable parameter has assumed the value 
x;, the (i- 1)-th hidden parameter has assumed the value k;-1, and the i-th 
hidden parameter has assumed the value k;. Along with it, the same symbol p 
will also be used for the conditional probability p(x;, k; I k;-1) in the event that 
the i-th observable parameter has assumed the value x; and the i-th hidden 
parameter has assumed the value k; under the condition that the (i - 1)-th 
hidden parameter assumed the value k;_ 1. So, the same symbol p denotes two 
different functions in two expressions: p(x;, k;, k;_t) and p(x;, k; I k;-1) and it 
is not quite correct. Nevertheless, we will use this incorrectness for simplifying 
the expression. This inaccuracy should not cause misunderstanding since in 
this lecture we will not use the identifier p without subsequently writing paren
theses containing the parameters. The parameters unambiguously determine 
which function is referred to. In cases in which the incorrectness could lead 
to ambiguous understanding we will diversify the notation of the probability p 
by means of indices which will inevitably result in a certain clumsiness of the 
expressions. 

The statistical model is determined by the function xn X Kn+ 1 -+ IR which 
for each sequence x and each sequence k expresses the probability p(x, k). With 
this probability we will assume that for each i = 1, 2, ... , n-1, for each sequence 
k = (kb- 1 , k;, kJ+ 1 ), and for each sequence x = (xt, xi+l) the following holds 

p(x, k) = p(k;) p(xi, kb- 1 I k;) p(xf+l, kf+1 I k;) . (8.1) 

This follows from the assumption that the probability p(k) can be expressed in 
the form 

(8.2) 

The expression is valid for each i = 1, 2, ... , n- 1 and each sequence k E Kn+1 , 

where k = (kb- 1 ,k;,kf+1 ). Equation (8.2) was formed by summing Equation 
(8.1) over all sequences i. 

A random sequence k the probability distribution p(k) of which satisfies the 
condition (8.2) is referred to as a Markovian sequence, or a Markovian chain. 
In this lecture we will be exclusively concerned with cases in which the random 
sequence is of the Markovian type. 

If the summation in Equation (8.1) will be performed over all sequences kf+2 

and then over all sequences xif-2 , we will obtain 

L L p(x, k) = p(xi, k~) L L p(xJ+1 , kf+ 1 I k;) . 

This implies that the following holds 

p(xf+1, k~+l) = p(xl, k~) p(xi+1, ki+l I k;) . 

If we summarise this recursive relation we obtain the following working formula 
for calculating the joint probability for each sequence k and each sequence x, 

n 

p(x, k) = p(x1, x2, ... , Xn, ko, k1, ... , kn) = p(ko) IT p(x;, k; I k;_t). (8.3) 
i=1 
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We can see that owing to the Markovian assumption (8.1) the definition and 
calculation of a complex function depending on 2n + 1 variables k;, i = 0, ... , n, 
and x;, i = 1, ... , n, is simplified to a definition of n functions p(x;, k; I k;_l) 
of three variables, and one function p(ko) of a single variable. The assumption 
(8.1) therefore specifies a very narrow but important class of statistical models 
we are going to examine. We consider it useful to understand this specification 
in an informal manner, as well. We will present some considerations supporting 
the informal understanding of further ideas. 

The property (8.1) can be, for example, understood in the following way. 
Let, in the universal population of pairs (x, k) = (xi, ... , Xn, ko, ki, ... , kn), 
the probability distribution p(x, k) have Markovian properties (8.1). We will 
specify an arbitrary number i, 0 < i < n, and an arbitrary value a for the 
hidden parameter k;. Let us fixate the selected values i, a and take from the 
universal population all pairs (x, k) in which k; = a. Being Markovian then 
means that the group of parameters (xi,x2 , .•• ,x;), (ko,ki, ... ,k;_l) in the 
chosen ensemble is statistically independent of the group of parameters (xi+l, 
Xi+2, ... , x,J, (ki+I, ki+2, ... , kn)· 

This correct interpretation is often expressed in a vulgarised form, i.e., a 
Markovian sequence is such a sequence in which the future does not depend 
on the past, but only on the present. The vulgarised form is treacherous, since 
while being incorrect it is very similar to the correct one. 

The following mechanical model 
of a Markovian sequence provides a 
good intuitive idea. Let the sequen
ces (ko, ki, k2, k3, k4) and (xi, x2, 
x3, x4) be represented by the posi
tions of points in a plane, Fig. 8.1. 

Figure 8.1 A mechanical model of a Markovian Assume some pairs of points are con
sequence. nected by a spring which is denoted 
by abscissas between the points. Assume that one of the points, say the point 
X3, starts for some random reasons to oscillate. By virtue of mechanical links, 
all (!) the other points of the mechanical system start to oscillate as well, not 
only the points k2 and k3 which are connected to the point x3 by the spring. 
In this system each point is dependent on every other point, and the system as 
a whole does not break up into independent components. Furthermore, if the 
positions of points XI, x2, X3, X4, have been fixed then the positions of points 
ko, ki, k2, k3, k4 are determined as well. The position of each point k; will 
be affected not only by the positions of the points x; and x;H to which the 
point k; is immediately connected, but also by the positions of all points XI, 

X2, X3,X4. 
But if we now imagine that a point, say the point k3 , is fixed immobile on 

the plane then the whole mechanical system breaks up into two independent 
parts. One consists of the points k0 , ki, k2, XI, x2, x3 , and the other of the 
points X4 and k4. Now the oscillation of a point, say the point x4, does not in 
any way affect the positions of points k1 , x2 , and of the points to the left of 
the point k3. 
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Further explanation will be based on representing Markovian processes by 
finite automata. A finite automaton is defined as a six-tuplet (K, V, X, 6, ko, F), 
where 

K is a finite set referred to as a set of automaton states; 

V is a finite alphabet of input symbols; 

X is a finite alphabet of output symbols: 

k0 is the initial state, ko E K; 

F c K is a subset of states which are regarded as target states of the 
automaton; 

6: K x V ~ K x X is a transfer function. 
The above six-tuplet formally defining the finite automaton is interpreted in 
the following way. 

If the automaton is in the state k E K and the symbol v E V is brought 
to its input then the automaton reacts by changing into the state k' E K and 
generates the output symbol x E X where the pair (k', x) is determined through 
the transition function c5: K x V ~ K x X so that (k',x) = 6(k,v). The initial 
state of the automaton is k0 . 

For each sequence ii of the input symbols v1 , v2 , ... , Vn, the finite automa
ton determines one single sequence of the states k = (k1 , k2, ...... , kn) and 
one single sequence of the output symbols x = (x1, x2, ... , xn)· This is the 
sequence of states through which the automaton passes and the sequence of 
symbols which occur at its output if the sequence ii is brought to the input of 
the automaton which is in the initial state ko. At the same time, the state, 
which the automaton reaches when the sequence ii is the input, is also uniquely 
determined. In this way each automaton constructively expresses three map
pings of the set of input symbol sequences: (1) into a set of output symbol 
sequences, (2) into a set of state sequences, and (3) into a set of states. These 
three representations are given without applying the concept F, i.e., set of final 
states which is also a characteristic feature of an automaton. The set of final 
states F determines the mapping of the set of input symbol sequences onto the 
set { 0, 1}, i.e., it specifies a certain subset of input sequences. These are the 
sequences that transfer the automaton from the initial state k0 to one of the 
target states of F. 

The generalisation of the finite automaton has resulted in the stochastic fi
nite automaton. In generalising the transition function c5: K x V ~ K x X 
is replaced by a more complex function 68 : X x K x K x V ~ lR and the 
specification of the initial state k0 is replaced by the function p: K ~ JR. The 
functions mentioned above have the following meaning. The initial state is 
random and each state k E K can become the initial one with the proba
bility p(k). Further behaviour of the automaton is random too. If the au
tomaton is in the state k E K and the symbol v E V is its input then 
the automaton generates a random pair (x, k') E X x K with the probabil
ity c5s (x, k' I k, v), transits into the state k', and produces the symbol x at 
the output. Thus, for each sequence of input symbols the stochastic finite 
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automaton expresses constructively the probability distribution on the set of 
output symbol sequences, on the set of state sequences, and on the set of 
states. 

Assuming that the alphabet of input symbols consists of only a single symbol, 
we obtain a construction which is referred to as the autonomous stochastic 
automaton. In this case input symbols need not be taken into account since for 
each integer number n there is only one input sequence of the length n. The 
autonomous stochastic automaton is a precise model of processes expressed by 
Equation (8.1). 

Let the autonomous stochastic automaton have a set of states K and a set of 
input symbols X. The automaton behaves in accordance with the probability 
distributionp(ko), p(xi,kilki_I), ko E K, ki E K, Xi EX, i = 1,2, ... ,n. 
The automaton generates a random output sequence of symbols XI, x2, ... , Xn 
of length n in the following way. At the beginning the automaton generates a 
random state k0 with the probability distribution p(ko) and transits into it. In 
the i-th moment, i = 1, 2, ... , n- 1, the automaton generates a random pair 
(xi, ki) according to the probability distribution p(xi, ki I ki_I), transits into 
the state ki and produces the symbol Xi at its output. The joint probability of 
the transition of the automaton across the sequence of states k0 , ki, ... , kn and 
the generation of the sequence of output symbols XI, x2, ... , Xn is just given by 
Equation (8.3) . 

. This model of the autonomous stochastic automaton will be used in our 
lecture. However, this does not mean that the recognised object must neces
sarily be an automaton and the sequences k0 , ki , ... , kn and XI , x2, ... , Xn must 
express the development of a state in time. 

The formulations of tasks and their solutions which are presented further on 
are exclusively based on the assumption of their Markovian nature (8.1) and 
hold for any object that satisfies the assumption of Markovian property. 

8.3 Recognition of the stochastic automaton 
8.3.1 Recognition of the stochastic automaton; 

problem formulation 
Let a and b be two autonomous stochastic automata. Both of them have the 
same set of states K and the same set of output symbols X, but the statistical 
properties of the two automata are different. It is obvious that the assumption 
of the same set of states and output symbols for both the automata is not at 
the expense of generality. If the sets of states K and the sets of output symbols 
X were different then we would make them unified and the differences between 
the automata would concern different statistical parameters. 

The first automaton is characterised by the probabilities Pa(ko) andpa(xi, ki I 
ki_I), ko E K, ki E K, Xi EX, i = 1,2, ... ,n, and the probabilities in the 
second automaton are Pb(ko) and Pb(xi, ki I ki-d· Because of this definition 
we have implicitly accepted that the above probabilities do not depend on the 
index i. We have done it just to simplify further formulre. All other consid
erations can be easily transferred to the general case in which the statistical 
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properties of the automaton depend on i. In a recognition task the objective is, 
based on the knowledge of statistical characteristics of both the automata, to 
find which of them generated the given sequence x1, x2, ... , Xn. 

The recognition task can be expressed as a Bayesian task of minimising 
the risk of decision making and, in a particular case, it can be a probability 
of the wrong recognition. The task can be expressed as a Neyman-Pearson 
task, as a minimax task, or as many others. It has been known from the first 
two lectures that in any concretisation of a task, the algorithms for solving it 
have a common part. This is the calculation of probability Pa(x) of the se
quence x = (xi, x2, ... , Xn) under the condition that it was generated by the 
automaton a and the calculation of the corresponding probability Pb(x) for 
the automaton b. The decision benefits the first or second automaton accord
ing to the likelihood ratio Pa(x)/Pb(x). The calculation of the probabilities 
Pa(x) and Pb(x) is for the given observation x the most extensive part of the 
recognition algorithm and does not depend on the choice of the particular 
recognition task. Let us now see what the algorithm for this calculation looks 
like. 

8.3.2 Algorithm for a stochastic automaton recognition 
The algorithm for calculating the probability Pa(x) is equal to the algorithm 
for calculating Pb(x). Therefore, we will present only one of them and in future 
explanations we will not give the indices a, b within the symbol p. 

According to the definition, the number p(x) is equal to Lie p(k, x) and by 
applying (8.3) it can be expressed as a multi-dimensional sum 

n 

p(x) = L p(k, x) = L L .. · L L p(ko) II p(xi, ki I ki-d . (8.4) 
i=l 

A direct application of Equation (8.4) for calculating the probability p(x) is 
not possible since this number is expressed as a sum of IKin+l summands. The 
expression (8.4) can be slightly changed through an equivalent transformation 
and the calculation becomes constructively realisable. Behind the summation 
sign according to the variable ki those factors which do not depend on the 
variable ki are factored out, and we obtain 

p(x) L p(ko) L p(x1, k1 I ko) .. · L p(xi, ki I ki-d 
ko k1 k; 

If we denote for i = 1, 2, ... , n, 
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then we obtain the calculation procedure 

k, 

p(x) == LP(ko) h(ko). 
ko 

It can be seen that the number of operations for calculating p(x) is of the 
order IKI 2 n. First, the numbers fn(kn_ 1) are to be calculated according to the 
first row in (8.6), and then gradually the numbers fn-1 (kn-2), ... , fi(ki_I), 
... , h (k0 ) according to the second row in (8.6), and finally the number p(x) 
according to the third row. In this way the task of the stochastic automaton 
recognition has been solved. According to the procedure (8.6) the probabilities 
Pa(x) and Pb(x) for the automata a and bare to be calculated and then with 
respect to the ratio Pa(x)/Pb(x) a decision is made for the benefit of one of the 
automata, a or b. As a rule the decision is made by comparing the likelihood 
ratio to a certain threshold value, though in some tasks the decision making 
strategy may be more sophisticated. 

8.3.3 Matrix representation of the calculation procedure 
Even if the procedure (8.6) unambiguously describes the algorithm of automa
ton recognition, we will express it in a briefer form which is more suitable for 
further formal analysis. 

The procedure (8.6) does not result in an explicit formula for calculating p(x) 
because it comprises a calculation of a series of auxiliary quantities fi(ki-d· If 
we excluded these quantities from the system (8.6) then we would arrive back 
at the starting formula (8.5). We will express the procedure (8.6) in another 
way to obtain, after excluding the auxiliary variables, the formula in a form 
different from that of (8.5). 

Probabilities p(xi, ki I ki-1), ki E K, ki-1 E K, can be regarded as the 
function K x K ~ IR of two variables ki, ki_ 1. The quantity Xi is not a variable 
in our task since it is the result of measuring the i-th observable parameter. In 
each task Xi is a fixed constant, but changes for different tasks. The function 
expressing probability can be thought as a square matrix of the dimensions 
IKI x IKI in which the (ki)-th column and the (ki_l)-th row contain the number 
p(xi, ki I ki-d· This matrix will be denoted Pi. The matrix Pi depends on the 
index i at least because the value Xi is dependent on the index i. Representing 
a set of probabilities (p(xi, kd ki-d, ki E K, ki-1 E K) by means of a matrix is 
justifiable since this set will be used later as a factor in matrix multiplications. 
This will make further analysis of the algorithm more clear and will eventually 
lead to more efficient algorithms. · 

The numbers fi(ki-d, ki- 1 E K, i == 1, 2, ... , n, which are calculated one 
after another according to the procedure (8.6) can be regarded as a sequence of 
IKI-dimensional column vectors f;, i == 1, ... , n in which the k-th coordinate is 
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fi(k). Let f be a IKI-dimensional column vector all the coordinates of which 
are 1. The probabilities p(k0 ), k0 E K, will be regarded as a IKI-dimensional 
row vector the (ko)-th coordinate of which is p(k0 ). This vector will be denoted 

'P· 
Owing to the designation introduced we can express the calculation proce-

dure (8.6) in a linear algebraic form 

fn = Pnf, 
fi = Pi fi+l , i = n- 1, n- 2, ... , 2,1, 

p(x)='Ph, 

or, after excluding the auxiliary vectors h, h, ... , fn, in the form 

p(x) = 'P P1 P2 · · · Pn-l Pn f · 

The notation (8.7) can be made even more concise 

(8.7) 

(8.8) 

Strictly speaking the previous equation should not be considered equivalent 
to the equation (8. 7) since the multiplication of matrices is not commutative, 
which is expressed by the given order of factors in the matrix product (8.7), 
but which is already hidden in the formula (8.8). 

Even if in the matrix representation (8. 7) the statistical character of the 
original task is almost lost, such an expression is appropriate from the com
putational point of view. Owing to the associativity of the matrix product 
the formula (8. 7) reveals a variety of calculation procedures for calculating the 
probability p(x) which was not so evident in the procedure (8.6), and in the 
formulre (8.5) and (8.4). From these calculation procedures one can be chosen 
which is most suitable in one or the other application from the point of view 
of implementation. For the time being we will show only two alternatives for 
calculating the product (8.7), and later on we will present others. 

For practical illustration let n = 5. The formula (8.7) is equivalent to the 
following two formulre which differ from the calculation point of view 

p(x) = 'P(P1 (P2 (P3 (P4 (P5f))))), (8.9) 

p(x) = ( (((('PPI) P2) P3) P4) P5) f. (8.10) 
The calculation according to the formula (8.9) corresponds to the procedure 
(8.6) and the calculation according to the formula (8.10) differs from it. Both 
calculation procedures are correct, but in their formal argument the statistical 
character of the original task has nearly disappeared from view. The user has 
already lost a clear idea of what is actually done in each step of the procedure. 
We will show how the procedures (8.9) and (8.10) can be derived directly from 
the assumption of the Markovian character of the model (8.1). In addition to 
understanding formal matrix multiplication the statistical interpretation of the 
matrix products will be uncovered. 
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8.3.4 Statistical interpretation of matrix multiplication 
We will show how to calculate the probability p(xf I k;_I) for any i, i.e., the 
probability that the automaton will generate a sequence x;, Xi+l, ... , Xn under 
the condition that the generation has started in the automaton state ki-1· The 
calculation of p(xn I kn-d is trivial since 

p(xn I kn-d = L p(Xn, kn I kn-d, (8.11) 
k,EK 

and the numbers p(xn, kn I k71 _1) are the known probabilities that represent the 
stochastic automaton. For the probability p(xn-l, Xn I kn-2) in the general case 
the following equation holds 

p(Xn-l, Xn I kn-2) = L p(Xn-l, Xn, kn-1 I kn-2) 
kn-1EK 

= L p(Xn-1, kn-1 I kn-2) p(Xn I Xn-1, kn-l, kn-2)· (8.12) 
kn-1EK 

Based on Markovian property (8.1) (with the intuitive support of the mechan
ical model of being Markovian in Fig. 8.1), we have 

and the expression (8.12) will assume the form 

p(Xn-1, Xn I kn-z) = L p(xn-1, kn-1 I kn-2) p(xn I kn-1) · 
kn-1EK 

(8.13) 

So, the probabilities p(xf I k;_ 1 ), which we should like to calculate for any i, 
can be calculated, at least, for i = n and i = n - 1 by means of the sums 
(8.11) and (8.13). Now, we will show how to calculate these probabilities for 
i- 1, assuming that the probabilities p(xf I k;_ 1 ) are already calculated for the 
value i. 

For the probability p(xil_ 1 I k;_ 2 ) in the general case there holds that 

p(xil_1 I k;-2) = p(xi-1, x? I k;-2) 

L p(x;-1,x;',k;-1lk;-2) 
k;-1EK 

L p(xi-l, k;-1 I k;-2) p(x? I x;-1, k;-1, k;-2) . (8.14) 
k;-1EK 

With respect to the property (8.1) (and to an intuitive understanding of the 
mechanical model of the Markovian property), the sequence xj' with the fixed 
state k;-1 does not depend on the previous state k;_ 2 and on the previous 
observation X;-I, and thus the factor p(xflx;_ 1 , k;_ 1 , k;_ 2) in the formula 
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(8.14) can be changed into p(x? I ki-d and the expression (8.14) will then be 
changed to 

(8.15) 
By means of the formula (8.11) and the multiply applied formula (8.15) we 
can calculate the probability p(xi' I k0 ) for each state ko and then calculate the 
probability p(x) :;ought according to the relation 

p(x) = L p(ko) p(x~1 I ko) . (8.16) 
koEK 

The calculation according to the formulre(8.11), (8.15) and (8.16) is actually 
the same as that according to the procedure (8.6). The calculation procedure 
(8.6), as well as its representation by a matrix product (8.9), is therefore not 
only formally derived, but can be interpreted from the statistical point of view. 
The statistical interpretation of a column vector 

means that its coordinates are II< I numbers p(xi, Xi+!, ... , Xn I k;_I), ki-1 E K, 
which are the probabilities that the automaton will generate a sequence of 
symbols Xi, Xi+!, ... , Xn under the condition that the generation started in the 
state ki-1· 

Let as now look at the statistical considerations which will lead to the calcu
lation of the probability p(x) according to the procedure (8.10). They are nearly 
the same as the ideas mentioned above. \Ve will state now how the joint proba
bility p(xf, k;) would lw ealculated for the event that the automaton generates 
the sequence x1, x2, ... , x;, and after the end of the generation the automaton 
will transit into the state k;. For i = 1 the probability is obviously 

p(x1, kJ) = L p(ko) p(x1, k1 I ko) . (8.17) 
koEK 

Assume we have already calc:ulated the probabilities p(xt-1 , ki-d for some i 
and with respect to them we would like to calculate the probabilities p(x{, ki)· 
For the probability p(xt, k;) in the general case holds 

p(xLki) = p(x~- 1 ,x;,k;) 

L p(xt-l, x;, k;-1, ki) 
k,_,EK 

" ( i-1 k ) r k I i-1 k ) ~ ]J X 1 , i-1 ]J 1Xi, i X1 , i-1 (8.18) 
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Owing to the Markovian property (8.1) (expressed intuitively by means of a 
mechanical model), we claim that at the fixed state ki-1 the pair (xi, ki) does 
not depend on the observation xi-1 and thus 

If we include the previous expression into the sum (8.18) then we obtain the 
following recursive expression for the calculation of p(xi, ki), 

p(x1, ki) = L p(xi-1, ki-J) p(xi, ki I ki-d . (8.19) 
k;-1EK 

If we have calculated according to the formulre (8.17) and (8.19) the probabili
ties p(xf, kn) then we can calculate the probability p(x) being sought according 
to the formula 

p(x) = L p(x?, kn), (8.20) 
knEK 

since xf is simply X= (xl, X2, ... , Xn)· 

The calculation of the probability p(x) according to the formulre (8.17), 
(8.19) and (8.20) is therefore the same as that in the matrix representation 
(8.10). On the one hand, this form is the formal consequence of the associativity 
of matrix multiplication, but on the other hand this can also be statistically 
conceived. The matrix product 

represents the jKj-dimensional row vector whose ki-th component, ki E K, is 
the joint probability p(x1, x2, ... , Xi, ki) that the automaton will generate the 
given observation sequence xr, x2 , ••• , xi and finally traverse to the state ki. 

8.3.5 Recognition of the Markovian object 
from incomplete data 

In previous considerations we identified the recognised object by a stochastic 
automaton. It meant that we had considered the sequence x 1 , x 2 , ... , Xn as well 
as the sequence ko, k1, k2 , ••• , kn to be processes which developed in time, and 
the index i representing time. Having such a concept of the recognised object 
facilitated the explanation of the task and the algorithm for its solution. The 
derived algorithms, however, are not confined only to processes developing in 
time. The Markovian model described by the relation (8.10) does not require 
the index i to represent just time. It is important that both the observed and 
the hidden parameters are sequences, but not necessarily sequences in time. 
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When the features Xi are measured one after another, and not in accordance 
with the index i the following situation can occur which requires a different 
calculation ordering than the two already mentioned procedures. 

Assume that the object is described by twenty features x1, x2, . .. , x2o and 
twenty-one hidden parameters k0 , k1 , ... , k20 . Let us also assume that the fea-
tures (x 5 ,x6 , ..• ,x10 ) and (x 12 ,x13 , ... ,x17) were known at some moment. 
Waiting for the results of the measurement of the rest of the features takes 
considerable time. However, when the remaining features become known then 
the object must be recognised as fast as possible. In such situations a purely 
technical question arises: How should the features already known be processed 
before the rest is measured and so the computation time not wasted in waiting? 
Matrix representation (8. 7) of the probability p(x) provides a clear answer to 
this question. The expression (8.7) is equivalent to 

(8.21) 

where 

(8.22) 

(8.23) 

From the previous relations it can be seen that with the known sequences 
x~0 and xg matrix products P* and P** can be calculated by means of for
mulre (8.22) and (8.23). By the time the information for all the other features 
is available, the probability p(x) of the formula (8.21) will be calculated. The 
total number of operations in this case will be greater if compared with the 
calculation according to the formula (8.9) or (8.10), but on the other hand the 
number of operations needed for calculating (8.23) with the matrices P* and 
P** already known will decrease. 

Now let us imagine that in the given example no information about the other 
features were provided and it was necessary to recognise the object only with 
respect to the already known features. In this case the probability p(x~0 , xm 
should be calculated. We will briefly show how the probability has to be calcu
lated. Let I be a set { 1, 2, ... , n}, through which the index i ranges in notation 
xi, I' be a subset of indices and for each i E I' the value Xi is known. The 
ensemble of known values will be denoted as (xi, i E I') and the ensemble of 
not yet known values will be denoted as (xi, i cf. I'). Let k be a sequence 
ko, k1, ... , kn. The joint probability of the ensemble (xi, i E I) and the se
quence k is 

p((xi, i E I), k) = p(ko) ITp(xi, ki I ki_I), 
iEJ 
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and sought probability p((x;, i E I')) is 

p( (x; , i E I')) = L L p(ko) II p(x;,k; I k;_I) 
k (x; ,ifll') iE/ 

k iEl' (x;, ifll') ifll' 

= L p(ko) II p(x;, k; I k;_I) II p(k; I k;_I) 
k iEI' ifll' 

= L p(ko) II P;(k; I k;_I) , (8.24) 
k iEl 

where 

{ 
p(x;, k; I k;_I) , if the value x; is known, 

P;(k; I k;_I) = p(k; 1 k;_I) = ~p(x;, k; I k;_I), if the value x; is not known. 

If we regard the function P; : K x K --+ lR as a square matrix of the dimension 
IKI x IKI then we can again represent (8.24) for the probability p((x;, i E I')) 
as a matrix product 

When compared with the previous matrix products, the matrix P; differs in 
that it depends on whether the value of the feature x; is known or not known. 

Let us now notice the great diversity of object recognition tasks which occur 
within the framework of the Markovian model. Usually, this class of recognition 
problems is closely connected to optimisation methods based on dynamic pro
gramming. However, in quite meaningful recognition problems considered so 
far, the dynamic programming has not yet occurred. In this respect we would 
like to cast doubt upon the naive, but well rooted view which regards dynamic 
programming to be a universal key opening every door. 

Later we would like to draw attention to the importance of representing 
recognition tasks concerning the Markovian-describable objects by matrix prod
ucts. This representation keeps all modifications of the task together and does 
not allow them to be broken into isolated and mutually separated problems. It 
is not surprising since the stochastic matrix is one of the basic concepts in the 
general theory of Markovian processes. It is rather strange that the representa
tion through the matrix product has not become thoroughly settled in pattern 
recognition tasks. Later we will see that matrix products appear even in some 
well known tasks where hardly anybody would expect them. 
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8.4 The most probable sequence of hidden parameters 

8.4.1 Difference between recognition of an object as a whole 
and recognition of parts that form the object 

The analysis of the task of recognising a Markovian object which was presented 
in the previous Subsection 8.3.5 provides instructive results. The recognition 
task was formulated for the object as a whole and not for the recognition of 
the parts it consists of. It could be subconsciously expected that the formal 
solution of the task would include the recognition of individual parts of the 
object too. Then, based on parts, one could decide about the object as a 
whole. We have thoroughly studied recognition of Markovian object from all 
aspects, in different modifications of the task, in both the formal and informal 
way. In spite of that we have not revealed any hierarchy that could be regarded 
as the recognition of individual parts of the object from which the decision on 
the object as a whole would be synthesised. The formal solution of the exactly 
formulated task has a substantially different form than would be intuitively 
expected. As long as the task was formulated as recognition of the automaton 
as a whole, the algorithm solving it did not seek the sequence of states the 
automaton passed through. If we want the algorithm to reveal the sequence of 
the traversed states then we have to embody this desire in a task formulation 
(which we will construct in the coming subsection). Solving one task does not 
mean that another task will be solved at the same time. 

8.4.2 Formulation of a task seeking the most probable 
sequence of states 

Let X = xr be a sequence of observations Xj' Xz' ... 'Xn and k = kl) be a 
sequence of automaton states. Their joint probability p(x, k) has the form 

n 

i=l 

wherep(ko),ko E K, andp(x;,k;lk;-1}, x; EX, k; E K, i = 1,2, ... ,n, are 
known probabilities. 

The task is formulated as seeking the sequence k• the a posteriori probability 
of which is greatest under the condition of the sequence x, i.e., 

-. p(x,k) _ -
k = argmax """ (- k) = ':rgmax p(x, k). (8.25) 

kEKn+! L.., p X, kEKn+! 
kEKn+! 

8.4.3 Representation of a task as seeking the shortest path 
in a graph 

We will show how an optimisation task (8.25) can be expressed as the known 
task seeking the shortest path between two given vertices in a graph of special 
form. The solution of the task is known and uses dynamic programming. 

By q;, i = 1, 2, ... , n, the function of the form K x K-+ lR will be denoted. 
Its individual values q;(k;_ 1 , k;), k;- 1 E K, k; E K, are -logp(x;, k; I k;_ 1 ). By 
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A. -
B -
c 

Figure 8.2 The optimisation task concerning the transition through the states is represented 
as seeking a path in an oriented graph. Edges of the graph are oriented from left to right. 

'Po the function of the form I<~ lR will be denoted the values cpo(ko), ko E I<, 
of which are numbers -logp(k0 ). Thus, the optimisation task (8.25) can be 
written in the form 

k• ~ ,:::;~i~. ( ~( ko 1 + t. q; ( k;-" k; 1) , (8.26 I 

and represented by means of an oriented graph of a special form. 
The oriented graph consists of vertices V and oriented edges between them. 

The set of graph vertices V contains the initial vertex a, goal vertex /3, and 
further )I<) ( n + 1) intermediate vertices of the form (a, i), a E I<, i = 0, 1, ... , n. 

Example 8.3 Representation of a Markovian automaton by a graph. For 
simplicity a set of vertices V for the case n = 3 is shown in Fig. 8.2. The set 
of states I< of the automaton consists of the states A, B and C. The vertex 
(a, i) can be considered to be a point in a plane, the coordinates of the point 
being a and i. The coordinate a of the vertex (a, i) will be referred to as the 
label of the vertex. The label of the ver·tex corresponds to a state from the set 
I<= {A, B, C}. '-

The oriented edges of the graph are arranged in the following way. 
• !I<! edges lead from the vertex a to the vertices of the form (a, 0), a E I<. 
• II<I edges lead to the vertex /3. They originate in vertices ofthe form (a,n), 

a E I<. 
• II< I edges originate in each vertex of the form (a, i), a E I<, i = 0, 1, ... , n-

1. They lead into vertices of the form (a', i + 1), a' E I<. 
• I< edges lead to each vertex of the form (a, i), i = 1, 2, ... , n, a E I<. They 

originate in vertices of the form (a', i - 1), a' E ]{. 
• The edge (o:,(a,O)), a E I<, is of the length cp(a). 
• The edge ((a,n),f3), a E I<, is of the length 0. 
• For each a E I<, a' E /(, i = 1,2, ... ,n, the edge ((a,i -1), (a',i)) is of the 

length q; (a, a'). 
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The graph created in this way defines a set of paths from the vertex a to the 
vertex (3 and each path acquires its length given by the sum of lengths of edges 
which the path consists of. To each path from a to (3 in the graph a sequence 
of states corresponds, which is given by the labels of the vertices through which 
the path goes. Conversely to each sequence ko, k1 , ... , kn a path in the graph 
corresponds which passes through the vertices 

a, (ko, 0), (k1, 1), (k2, 2), ... , (kn, n), (3. 

The value cp(ko) + 2::;,~ 1 Qi(ki-1, ki) is the length of the path corresponding to 
the sequence k0 , k1 , ... , kn. Thus, the optimisation task (8.25) is reduced to 
seeking the shortest path between a pair of vertices in the graph. This task 
has been solved successfully by the algorithm based on the Bellman's dynamic 
programming. In the coming subsection we will provide, for completeness, the 
algorithm finding the shortest path by means of dynamic programming. 

8.4.4 Seeking the shortest path in a graph describing 
the task 

The following informal imagination of the shortest path problem might be use
ful. Let us imagine that some messengers are to deliver a message from the 
vertex a to the vertex (3. At the beginning the messengers are located at the 
vertices of the graph in such a way that their number at each vertex of the 
graph is the same as the number of edges leading out from that particular 
vertex. When a messenger brings a message to a vertex then the message is 
immediately handed over to the waiting messengers, and they run out along 
the edges that have been assigned to them. The speed of all the messengers is 
assumed to be the same so that the time of transferring the message from one 
vertex to the other corresponds to the length of the edge of the graph. The 
target time for a message to go from the initial vertex a to the target vertex 
f3 is proportional to the length of the shortest path in the graph between these 
vertices. 

The quoted informal model will be used for a more instructive explanation 
of the algorithm seeking the shortest path from the vertex a to the vertex (3. 
We will denote by fi(u) the length of the shortest path from the vertex a to the 
vertex (u, i) which corresponds to the shortest time in which the messengers in 
the vertex (u, i) receive the message. The numbers f 0 (u), u E K, are evidently 
cp(u) since each vertex (u, 0) is connected with the vertex a with only one edge, 
i.e., 

fo(u) = cp(u). (8.27) 

The values fi(u) for the other vertices (u, i), u E K, i > 0, can be calculated 
by the following informal, but still accurate considerations. The message is 
brought to the vertex (u, i) only from the vertex of the form (u', i- 1), u' E K. 
Information from a specific vertex ( u', i - 1) will be delivered at the moment 
fi_I(u') + Qi(u',u), where fi-l(u') is the moment when the message was at 
disposal at the vertex ( u', i - 1), and the quantity qi ( u', u) specifies the time 
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necessary for the transfer of the message from the vertex ( u', i- 1) to the vertex 
(u, i). The shortest time fi(u) in which the message will be delivered to the 
vertex ( u, i) is 

(8.28) 

At the same time it will be indicated from which vertex (u', i- 1) the message 
was delivered to the vertex (u, i) in the fastest possible way. This preceding 
vertex will be denoted by the symbol indi ( u), 

indi (u) = argmin{fi-1 (u') + Qi (u', u)) . (8.29) 
u'EK 

The variable indi ( u) states that the shortest path from the vertex o: to the 
vertex (u,i) passes through the vertex (indi(u),i -1). Notice that there can 
be more than one such possibility. One of them can be selected randomly for 
simplicity. 

The moment at which the message is delivered to the target vertex {3, i.e., 
the length of the shortest path from o: to {3 is given by the value 

min fn(u) . 
uEK 

(8.30) 

The vertex from the group (u, n) from which the message was first delivered to 
the end vertex is 

kn = argmin fn(u) . 
uEK 

The formulre (8.27), (8.28), (8.29), and (8.30) are the core of the algorithm 
seeking the shortest path from the vertex o: to the vertex {3. Let us quote them 
together 

fo(a) = cp(u) , u E K; (8.31) 

fi(u)=min(fi-I(a')+qi(a',u)), i=1,2, ... ,n, aEK; (8.32) 
u'EK 

indi(u) = argmin(fi-I(a') +qi(a',u)), i = 1,2, . .. ,n, a E K; (8.33) 
u'EK 

kn = argminfn(a). 
u'EK 

(8.34) 

At first, according to the formula (8.31) the distances to the vertices of the group 
(a, 0) from the vertex o: will be calculated. It is not a matter of calculating, 
but of transcribing the values of the function f(u) from one memory cell to 
another. Then gradually by means of the formulre (8.32) the distances from 
the vertex o: to the vertices of the ensemble (a, 1), a E K, are calculated, then 
those of the ensemble (a, 2), a E K, and so on, until the distances for the 
vertices of the group (a, n), a E K, are calculated. Along with determining 
the distance fi(u) the value indi(a) for each vertex will be calculated according 
to the formula (8.33). This value determines the label of the vertex (a', i- 1) 
which immediately precedes the vertex (u, i) along the shortest path from the 
vertex o: to the vertex (a, i). 
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A _... 

B _... 

c _... 

ii=O ii=1 ii=2 ii=3 

Figure 8.3 Seeking the shortest path in the Markovian sequence. 

After completing the calculation according to the formulre (8.31), (8.32) 
and (8.33), the length of the shortest path from a to (3 is determined by the 
number mina fn(CJ). The formula (8.34) indicates the label of the last vertex 
along the shortest path. The value indn(kn) indicates the label kn-1 of the last 
but one vertex, the value indn-dkn-1) indicates the label of kn-2· Expressed 
in the general way, indi(ki) indicates the (i - 1)-th member in the sequence 
k0 , k1, ... , kn, being sought which minimises (8.26) and maximises (8.25). 

The formal notation of the algorithm by virtue of the formulre (8.31), (8.32), 
(8.33) and (8.34) does not reveal, at first glance, its immense simplicity and 
cleverness. If the simplicity is not yet quite evident to the reader then we 
recommend him or her to study the following example and apply the quoted 
algorithm for the calculation of all the data given in Fig. 8.3. 

Example 8.4 Seeking the shortest path in a graph with three possible states. 
The Fig. 8.3 depicts the same situation as in Example 8.3 in which the set of 
states consists of three states A, B, C. The index i assumes the value 0, 1, 2, 3. 
The numbers labelling the edges of the graph provide information about their 
lengths, i.e., quantities q;( CJ 1 , CJ). Vertices are denoted by circles. The numbers 
labelling the vertices represent the quantities fi ( CJ). Values ind; ( CJ) are depicted 
as arrows from the vertex (CJ,i) to the vertex (ind;(CJ),i- 1). It is possible to 
traverse from the target vertex (3 following the arrows and the shortest path is 
laid back in the inverse direction, from the target vertex towards the start vertex. 
Notice that in some cases there can be more than one arrow from a vertex. In 
such a case just one of the arrows can be selected randomly. Let the selected path 
traverse through vertices ( C, 3), (A, 2), (A, 1), ( C, 0) and is shown in bold in 
Fig. 8.3. The sequence that minimises (8.26) and maximises (8.25) is AAAC. 
In this particular case the optimal sequences can be AABC and AACC too. A 
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8.4.5 On the necessity of formal task analysis 

The algorithm mentioned above seeking the shortest path in a graph (and 
thus also seeking the most probable sequence of states) is usually deduced by 
informal, but convincing considerations just as we have done in the preceding 
Subsections 8.4.3 and 8.4.4. The algorithm became favoured far and wide owing 
to its clearness, and not only in pattern recognition. We do not intend to cast 
doubt on the positive aspect of the illustrative way of explanation, but we are 
also going to show why this way is not suited for some tasks. 

The way mentioned above refers too often to the illustrative obviousness 
of considerations which replace their formal reasoning. Algorithms are de
duced using sentences of natural language, and not by means of mathematical 
expressions which are transformed into different, but equivalent forms by ap
plying certain rules. A procedure by means of which an algorithm is deduced is 
markedly different from a procedure used, say, in solving algebraic equations. 
The equation solved is given by an algebraic expression. The procedure which 
solves the equation consists of equivalent transformations. The algebraic ex
pression of the original task is modified to the form in which the solution is 
obvious. 

The rules for equivalent transformations do not make the solved task trivial. 
But a formal deduction of the solution of a task with the help of a finite number 
of afore given rules still has some advantages. When all respective equivalent 
transformations for solving the task are found then it can be easily proved 
to someone else that the solution is correct. Neither intuition nor informal 
understanding of the task is expected. It is sufficient only to understand that 
the applied transformations of the expressions are really equivalent. 

The tasks analysed so far have been so transparent that it has been possible 
to describe them in natural language. However, it become possible only because 
we have dealt with the easiest problem of structural analysis so far. Now 
we are going to proceed to the more complex problems. Verbal speculations 
inevitably would be clumsy and vast and, consequently, less and less convincing. 
Therefore, in the case in which really difficult problems are considered, their 
formulations, analysis and solution must be supported by formal deduction. 
There can be no doubt about the correctness, the analysis of the task can be 
briefer, and a clarity of an approach is achieved which would be lost in the case 
of the verbal approach. 

In ignoring the actual complexity of a task, there naturally always exists a 
possibility to avoid the formal analysis and treat the task as if it were quite 
simple. Then, for solving a certain task an algorithm is willfully used which is 
assigned for another task, or in an even worse case, it is by no means known 
what task is solved by that particular algorithm. We will present a rather 
widespread example of such a solution. 

Example 8.5 Unsuitable application of the algorithm seeking the shortest 
path. Let i = (x1, x2, ... , Xn) be a sequence of observed symbols, e.g., for 
n == 100. This sequence depends on the sequence k = (k0 , ..• , kn) of the states 
the automaton passed through when generating the observed sequence. Thanks 



8.4 The most probable sequence of hidden parameters 327 

to this dependence the sequence k can be reasonably estimated on the basis of 
the sequence x. Now let us assume that we are not interested in the sequence k 
as a whole but only in its last ten elements, kg1, k92 , ... , k100 with the highest 
a priori probability. This task is not a task seeking the shortest path in a graph, 
just because the paths correspond to sequences of length 100, but we are only 
interested in sequences of length 10. The task should be examined from the very 
beginning, i.e., from its formulation to the proof of its solution. 

With exorbitant faith in knowing how to seek the whole sequence k0 , k1 , 
... , kwo by means of dynamic progmmming and having faith in the fact that 
this knowledge is sufficient for· solving any task, one could arrive at different 
incorr·ect solutions. For example, it can be an algor·ithm which seeks the most 
probable sequence k0, k;, ... , k;00 , and then uses only the last ten elements of 
it. Such a recommendation is not correct because it is not stated what are the 
properties of the sequence of the last ten states which were sought in such a way. 
If the task were formulated as a task of seeking the sequence kg1, kg2, ... , kwo a 
posteriori probability of which is greatest under the condition of the observation 
x1, X2, ... , Xn then the procedure mentioned above would be wrong. The most 
probable subsequence kg1, k92, ... , kwo of the last ten states need not be equal to 
the last ten states of the most probable sequence k0, k;, ... , k;00 . • 

We will explain the mathematical apparatus which is suitable for expressing 
tasks performing structural recognition of sequences. Again we will use the task 
seeking the most probable sequence even if we have already succeeded in solving 
it without a new mathematical formalism. Thus, we will better understand the 
concepts which will be used later on. 

8.4.6 Generalised matrix multiplications 
We have in mind the optimisation task 

(8.35) 

To avoid unnecessary complications which would obscure the main idea, we will 
only concern ourselves with calculating the value of the minimum and we will 
not seek the sequence (kg)* in which the minimum is achieved. 

The optimisation task (8.35) has a similar form to the expression 

n 

p(x) = L L L · · · LP(ko) ITp(xi, ki I ki-d (8.36) 
i=l 

which we studied when solving the task recognising the automaton. In both 
expressions, (8.35) as well as (8.36), a number is calculated, namely the number 
d in (8.35) and the number p(x) in (8.36). ThP- number is calculated with 
respect to the function of the form K --+ IR (in (8.35) it is r.p(ko) and in (8.36) 
it is p(ko), ko E K) and n functions of the form]( x K--+ IR (in (8.35) they are 
the functions Qi, i = 1,2, ... ,n, and in (8.36) they arep(xi,ki I ki-t), ki E K, 
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ki-l E K, i = 1, ... , n). The relations (8.35) and (8.36) are calculated by 
means of different, but yet similar programs. The difference is only in that the 
program for calculating (8.35) is obtained from the program (8.36) in such a 
way that wherever a sum of two numbers occurs in the first program, a smaller 
one of both numbers has to be found in the second program. Moreover, the 
multiplication of two numbers in the first program is replaced by the sum of 
the same numbers. 

In examining the procedure of calculating the numbers p(x), see (8.36), 
we have arrived at a conclusion that when the starting numbers p(ko) and 
p(xi, k.i I ki-d are understood as components of a row vector cp and matrices 
Pi, i = 1, ... , n, then the calculation according to the formula (8.36) is equiv
alent to the calculation of the matrix product 

(8.37) 

This matrix product represents the number being computed, and in this sense 
converts the problem into creation of an algorithm that must compute the num
ber. This problem is obviously equivalent to the problem (8.36), but is given 
in a different form. The number to be computed according to the formulated 
problem is explicitly stated by the expression (8.37). In this sense the matrix 
expression (8.37) immediately performs the algorithm for its calculation. So, 
the transformation of the problem of the form (8.36) to the form (8.37) is virtu
ally the solution of the problem because expressing the task in the form (8.37) 
makes the task trivial. 

The equivalence of the expression (8.36) which is the original formulation 
of the task, and of the matrix product (8.37) is based on properties of adding 
and multiplying real numbers. These properties are so obvious that usually 
they go without saying. They are the associativity and distributiveness of 
multiplication with respect to addition. For any three real numbers x, y and z 
there hold 

x+(y+z) = (x+y)+z,} 
x(yz)=(xy)z, 

X (y + Z) = X y + X Z . 

(8.38) 

In other words a set of real numbers with the operations of addition and mul
tiplication forms an algebraic structure known as a semi-ring. This structure 
satisfies other requirements, but at the moment they are not important for us. 
The essential observation is that addition and multiplication are not the only 
pair of operations that satisfy requirements (8.38). It is of key importance 
for the operation with sequences that a set of non-negative real numbers with 
operations min and + also forms a semi-ring. There hold 

min (x,min(y,z)) =min (min(x,y),z), 
x+(y+z) = (x+y)+z, 

x + min(y, z) = min(x + y, x + z). 

When applying matrices and the matrix product we can rely on the fact that a 
set of non-negative real numbers with a pair of operations (min,+) constitutes 
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an algebraic structure of a semi-ring. Let qi: K x K --t IR, i = 1, 2, ... , n, 
correspond to n functions of two variables which assume their values on the 
finite set K. Each function qi can be understood as a matrix of the dimension 
IKI x IKI the element of which in the k-th row and k'-th column is qi(k, k'). 
Let us denote two functions of one variable 'P: K --t IR and f: K --t JR. The 
function 'P will be understood as a IKI-dimensional row vector, and the other a 
IKI-dimensional column vector. Let q' and q" be two matrices. Their product 
q' r:J q" will be called a matrix q of the dimension IKI x IKI the element q(k, k') 
of which is defined by the expression 

q(k,k') = min(q'(k,l) +q"(l,k')). 
IEK 

(8.39) 

The product 'P 8 q of the row vector 'P of the dimension IKI and the matrix 
q of the dimension IKI x IKI will be the row vector t.p' the k'-th coordinate of 
which is 

t.p'(k') =min (t.p(k) + q(k, k')) . 
kEK 

(8.40) 

And finally, the product q 8 f of a matrix q having the dimension IKI x IKI 
and IKI-dimensional column vector f is understood as the column vector f' 
the k-th coordinate of which is 

J'(k) = min (q(k, k') + f(k')) . 
k'EK 

(8.41) 

If we denote by x EB y the operation min(x, y) and by x C:l y the operation x + y 
then we can write the definitions (8.39), (8.40) and (8.41) in the form 

q(k,k') = EB(q'(k,t)8q"(t,k')), 
/EK 

t.p'(k') = EB ('P(k) 0 q(k, k')) , 
~·EK 

(8.42) 

f'(k) = EB (q(k, k') 0 J(k')) 
k'EK 

which altogether formally agrees with the conventional definition of the matrix 
product. So far ( EB, 8) has been considered as a pair (+,product) built up using 
addition and multiplication where the formulre (8.42) define the matrix prod
ucts in the usual sense, i.e., the matrix products in the semi-ring (+,product). 
However, if the (67, c;J) is understood as a pair (min,+), the same formulre cor
respond to a matrix product in the sense we have introduced, i.e., to matrix 
products in the semi-ring (min,+). 

The original expression (8.35) defining the original optimisation task can be 
expressed using notation EB and 8 as 

(8.43) 
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Based on the same considerations by which the equivalence of the multi-dimen
sional sum (8.36) and the matrix product (8.37) was proved, we can claim that 
the expression (8.43), and thus the (8.35) as well is the matrix product 

(8.44) 

in the semi-ring (min,+), where f is a column vector all the coordinates of 
which have zero values. 

The matrix product (8.44) is just the original optimisation task (8.35) writ
ten in an algebraic form. With such a notation, the construction of the actual 
algorithm is quite trivial since the expression (8.44) directly demonstrates the 
algorithms of the calculation. Thanks to the associativity of the matrix product 
we can calculate according to the formula 

( (( .. · ((cp 8 qt) 8 q2) 8 · · · 8 qn-2) 8 qn-l) 8 qn) 8 J, 

which is just a different notation of the calculation according to the algorithms 
(8.31)-(8.34), we formulated before by virtue of informal considerations. The 
expression (8.44) reveals still more possible procedures for calculating d, for 
example, that according to the formula 

or 

'P 8 6 q; 8 ( 6 q;) 8 6 q; 8 f ' 
i=l i=l+l i=k+l 

and we can choose either of them according to purely technical conditions we 
know from Section 8.3. 

8.4. 7 Seeking the most probable subsequence of states 
In the task presented in Example 8.5 we have said that seemingly reasonable, 
but inaccurate considerations can fail. Let us show now how the problem of 
such type must be dealt with correctly. 

Let X and J( be two finite sets, x = (x1 , ... , Xn) E xn and k = (k0 , ... , kn) E 
J(n+l be two random sequences the joint probabilities of which are given by 

n 

p(x, k) = p(ko) II p(xi, ki I ki-1) , (8.45) 
i=l 

where p(ko), p(xi, ki I ki-tl, k; E K, Xi EX, i = 1, 2, ... , n, are known numbers. 
The quantities Xi, i = 1, 2, ... , n are observable, and ki, i = 0, 1, ... , n are 
hidden parameters of an object. 

Let us assume that even when all features Xi are observable, the values of 
some features were not measured in the experiment. We will denote by the 
symbol Ix a set of indices of those features the values of which are measured. 
So the outcome of the experiment is a set of features (x;, i E Ix). On the basis 
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of experimental data, the evaluation should concern the hidden parameters 
k0 , k1, ... , kn. However, the experimentalist is not interested in values of all the 
hidden parameters, but only in the values of some of them which are designated 
by the ensemble of indices Ik. In the task based on the experimental data 
(xi, i E Ix) an ensemble (ki, i E Ik) is to be found the a posteriori probability 
of which is the greatest, 

(kt, i E Ik) = argmaxp((xi, i E Ix), (ki, i E Ik)). 
(k; , iEJk) 

With respect to general probability properties we have 

p((xi, i E Ix), (ki, i E Ik)) = L L p(x,k). 
(x;, iftlx) (k;, iftlk) 

With respect to Markovian property (8.45) of the observed object we write 

n 

p((xi,iElx),(ki,iEik))= L L p(ko)ITp(xi,kilki-d· (8.46) 
(k;, iftlk) (x;, iftlx) i=1 

This quantity depends only on the values (ki, i E Ik) which are to be deter
mined. It does not depend on the quantities (xi, i (/. Ix) and (ki, i (/. Ik) since 
according to them addition is performed. It does not depend on the values 
(xi, i E Ix) because they are fixed results of the experiment and so they are 
constants within one task. The number (8.46) which depends on (ki, i E Ik) 
will be denoted d((ki, i E Ik)). The summation with respect to the values 
(xi, i (/. Ix) will be performed in the following manner, 

n 

d((ki, i E Ik)) L p(ko) ITp(xi, ki I ki-d 
(k; , if/_lk) (x; , if/_Jx) i=1 

L p(ko) IT p(xi, ki I ki-d IT L p(xi, kd ki-d 
(k;, iftlk) iElx ift/x x; EX 

n 

= L r.p(ko) IT Qi(ki-1, ki) 
k; ' iftlk i=1 

where 

(8.47) 

and the number r.p(ko) is the probability p(k0 ). The objective is to find the 
maximum value for d ( ( ki , i E Ik)) , i.e., 

n 

d = m~x L r.p(ko) IT Qi(ki-1, ki) , 
(k;, zEJk) . 

(k; , zftlk) i=1 

(8.48) 
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and the ensemble (ki, i* E Ik) by which the maximum value is attained, i.e., 

n. 

(ki, i E Ik) = argmax L cp(ko) IT Qi(ki-1, ki) . 
(k;,tElk) (k;,i~lk) i=l 

(8.49) 

We will be concerned with the task (8.48) only. According to its solution the 
solution of the task (8.49) will become clear. As before, the symbol Qi will 
denote a matrix of the dimension IKI x IKI in which in the (ki_I)-th row 
and (ki)-th column we find the number Qi(ki-1, ki) calculated according to 
(8.47). We will denote by cp the row vector composed from the coordinates 
cp(ko) = p(ko), ko E K. We will denote by 0i the matrix multiplication in the 
semi-ring (+,product) if i (/. lk, and in the semi-ring (max, product) if i E Ik. 
With this notation the number (8.48) is a matrix product 

(8.50) 

where f is a JKJ-dimensional column vector all coordinates of which are 1. 
The expression (8.50) presents the two tasks studied in a unified way. It con

cerns the recognition of a Markovian object as a whole, as well as the recognition 
of values of its hidden parameters, including different modifications of the task. 
An important advantage of expressing tasks in this way is not only that their 
affinity becomes revealed, but also that the tasks themselves are becoming easy 
since they are formulated as matrix product which has just to be calculated. 

In calculating matrix products of the form (8.50), it must be taken into con
sideration that in the expression (8.50) the matrix products occur in different 
semi-rings. This makes them different from the previous two tasks in which 
the multiplications within the product (8. 7) were understood as being in the 
semi-ring (+,product), and multiplications within (8.44) were considered as 
being in the semi-ring (min,+). In both cases thanks to the associativity of 
matrix multiplication, the calculations according to the formulre (8.7) or (8.44) 
could be performed in any arbitrary order, from left to right, from right to left, 
from the centre, etc .. It is a different matter in the expression (8.50). There 
the diversity concerning the potential order of calculations is smaller since the 
products in the semi-ring (+,product) possess priority over the multiplication 
in the semi-ring (max, product), and therefore they have to be processed first. 
It is due to the fact that the product A G"J (B C) is not the same as the product 
(A 0 B) C, even if A 0 (B 8 C) = (A 8 B) 8 C and A (B C) = (A B) C. The 
product A 8 (B C) means 

m;u ( a(x, y) ( ~ b(y, z) c(z, u))) , 
and the product (A 8 B) C means 

~ ( m;x (a(x, y) b(y, z))) c(z, u) 

which are different functions. 
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Owing to the required order in calculating the product (8.50), the complexity 
can increase compared with the complexity in calculating the expressions (8.7) 
and (8.44) which is O(IKI2 n). In the case in which the sequence of parameters 
to be determined consists of a large number of mutually non-interconnected 
segments, i.e., if the set Ik is strongly mixed up with the set {0, 1, 2, ... , n} \ Ik 
then the calculation of the product (8.50) has the complexity O(IKI 3 n). In the 
case, however, if a certain connected subsequence of hidden parameters, i.e., 
k'j is to be determined then the complexity of calculation according to (8.50) 
will remain O(IKI2 n), i.e., it will not increase with respect to the complexity 
of calculation according to the formulre (8.7) and (8.44). The product (8.50) 
assumes the form 

(
1-1 ) ( m ) ( n ) 

d = <p II Qi 0 0 Qi 0 . II Qi 1 
t=1 t=l t=m+1 

in this case and this form is to be understood as a brief notation to the following 
calculations. 

1. The calculation of a row vector <p1 according to the formula 

1.{)1 = <p Q1 Q2 ... Ql-1 

which has the complexity O(IKI2 l). 

2. The calculation of a column vector f' according to the formula 

J' = Qm+l Qm+2 · · · Qn J 

which has the complexity O{IKI 2 (n- m)). 
3. The calculation of the number d, that is looked for, according to the formula 

d = 1.{)1 8 Ql 8 Ql+l 8 · · · 8 Qm 8 / 1 

which has the complexity O{IKI2 (m -l)). 

The total complexity of the calculation is O(IKI2 n). 
We can see that if a matrix operation is considered in a broader sense then 

a certain group of tasks of structural sequence recognition can be uniformly 
and concisely expressed by means of matrix multiplications. Certainly, each of 
the so far quoted tasks could be solved even without applying the formalism 
presented above. But in a separate analysis of the tasks, one would hardly 
succeed in finding that all the tasks could be mastered in one lot with one 
single program which with small alterations can be tuned for solving any of the 
tasks studied so far. 

8.5 Seeking sequences composed of the most probable 
hidden parameters 

The task of estimating a hidden parameter sequence (or subsequence) of an 
object was formulated as seeking a sequence (or subsequence) which for certain 
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observations outcomes of an object possesses the highest a posteriori proba
bility. Such a task formulation is quite natural and was apparently worth the 
attention. The same attention is to be paid to the aspect that a task in such 
a formulation is only a special case of a more general task of minimising the 
Bayesian risk with a concrete penalty function. Let us now examine this special 
case from a more generakpoint of view, and let us ask the question to what 
extent the penalty function is natural. This results in the necessity of seeking 
the most probable sequence. 

Seeking for the most probable sequence results from the penalties of the form 
W(k, k1) = 0, k E Kn+l, k1 E Kn+l, if k = k1 , and W(k, k1) = 1 in the opposite 
case. This means that all cases of wrong recognition of the sequence, i.e., the 
situation when k1 f. k are given an equal penalty, the sequence k1 may differ 
from k in one element only, or in all of them. Naturally, such a requirement 
does not seem to be so self-evident. At least, when considering any application 
context then it does not seem to be the only possible and universally acceptable 
requirement. For example, it could be assumed equally natural that the penalty 
W(k, k1) was equal to the number of elements i with which ki f. k~. It would 
mean that the penalty function has the form 

n 

W(k,k1) =I: w(ki, kD, where (8.51) 
i=O 

and not the form 

W(k k) = 
- -1 { 1, if k f. f/ , 
, 0, if k = k1 • 

(8.52) 

The optimal strategies minimising the risk are different for (8.51) and (8.52). 
This will be evident in the following example. 

Example 8.6 Dissimilar Bayesian solutions for two penalty functions. 
Let us have sequences k of length n = 2. The problem is to estimate the pairs 
(k1, k2). The set of possible values for k1 as well as for k2 is {A, B, C}. There 
are nine such possible sequences. Assume that by virtue of observation, it has 
been found that the a posteriori probabilities of these nine possible sequences 
are those given in the table. 

I k2 \kJ II A I B I c I 
A 0.30 0 0 
B 0.20 0 0 
c 0 0.25 0.25 

_ If_ a sequ!!nc!! (kL k~) has to be found such that the probability of the event 
(k1, k2) f. (k~, k~) should be minimal which corresponds to the penalty function 
{8.52) then a decision must be made that the sequence (k~, k~) is (A, A). With 
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such a decision the probability of the inequality (k1 ,k2) -=f (k~,k~) will be 0.7, 
and with any other decision this probability will be greater. Let us see what 
risk is present with such a decision with respect to the penalty function {8.51}, 
i.e., in other words, what mathematical expectation of the number of incorrectly 
recognised sequence elements amounts to. The actual sequence ( k1 , k2 ) can be 
one of four possibilities (A, A), (A, B), (B, C) and (C, C) the probabili
ties of which are 0.3, 0.2, 0.25, 0.25 correspondingly. The number of incorrectly 
recognised elements will be 0, 1, 2, 2, correspondingly and the mathematical ex
pectation of this number will be equal to 1.2. 

Now let us see what the mathematical expectation would be like if the decision 
were made that (k~, k~) = (A, C). Let us note that this sequence has a zero 
a posteriori probability, but in spite of that, at the decision (kL k~) = (A, C) 
the mathematical expectation of incorrectly recognised elements will have the 
value 1. The actual sequence can rightly be only (A, A), (A, B), (B, C), 
( C, C), and with each of these sequences the number of incorrectly recognised 
elements will be 1. 

We can see that the solution of a Bayesian task at the penalty function {8.51} 
is not even approximately identical with the solution the penalty function of 
which is {8.52}. Therefore, if the application requires a penalty function of the 
form {8.51} then the algorithm which is seeking the most probable set of hidden 
parameters cannot be used. It is suited for other penalty function of the form 
{8.52). & 

If the penalty function of the form (8.51) occurs then the Bayesian task has to 
be solved from the very beginning, i.e., starting from the Bayesian formulation. 
Let X and K be two finite sets, and x and k be two sequences of the lengths 
nand n + 1, respectively, which are composed from elements of X and K, x = 
(xi,x2, ... ,xn), k = (ko,ki, ... ,kn). The pair (x,k) is random and assumes 
the value from the set xn X Kn+l so that the probability of the pair (x, k) is 
given by the expression 

n 

p(x, k) = p(ko) ITp(x;, k; I k;_I) 
i=l 

in which p(ko), p(x;, k; I k;_I) are known numbers. 

Let W: Kn+l x Kn+l -+ IR be a penalty function of the form 

n 

W(k, k') = L w(k;, kD , where 
i=O 

w ( k; ' k;,) = 1 ' if k; -=f k: ' 

w(k;,k:) = 0, if ki = k:. 

(8.53) 

(8.54) 

(8.55) 

(8.56) 

For thiH known data a strategy q: xn -+ Kn+l is to be created, i.e., an al
gorithm which for each sequence x1 , x 2 , . .. , Xn determines the sequence k' = 
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( kb, k~ , ...... , k~), minimising the risk 

L p(k I x) W(k, k'), i.e., the sequence 
kEKn+l 

k' = (kb, k~, ... , k~) = ar&_min L p(k I x) W(k, k') 
k' k 

= ar&_min L p(x, k) W(k, k') 
k' -

k 

n 

= ar&_min L p(x, k) L w(ki, k;). 
k' 

(8.57) 
i=O 

By using the expression (8.53) we get 

k' = (kb,k~, ... ,k~) 

~ "''i~in ~ ~ ... :t (p(ko) g p(x;, k;l k;_ J)) t, w(k;, k;) . (8.58) 

An important feature of this task already results from the mere assumption 
that the penalty function has the form (8.54), without taking into account the 
Markovian property (8.53), and its concretisation (8.55) and (8.56). Let us 
demonstrate this feature. 

The risk l:k p(x, k) 2:7=o w(ki, k~), which the sequence k~, k~, ... , k~ sought 
has to minimise, will be denoted by R. We can write 

n n 

R = L p(x, k) L w(ki, k;) = L L p(x, k) w(k;, kD 
i=O 

n 

= :2:: :2:: w(k;,k;) :2:: p(x,k~,k;, ... ,k;, ... ,k~) 
i=O k;EK ( k;•, i' #-i) 

n 

= L L w(k;, k;) p(x, k;). 
i=O k;EK 

We can see that the function of n + 1 variables ( kb, k~, ... , k~), which is to 
be minimised, is created as a sum of n + 1 functions, each of them depending 
on only one variable. The optimisation task (8.57) is thus broken into n + 1 
independent optimisation tasks along a single variable, 

(8.59) 

When considering the specific forms (8.55), (8.56) of the partial function w 
then we arrive at the conclusion that 
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k; = argmax p(x, ki) . (8.60) 
k;EK 

The conclusion claims that even when the task was originally formulated as 
an optimisation one, (see (8.57) and (8.58)), its complexity is not caused by 
optimisation at all since it is reduced to trivial tasks (8.59) and (8.60). The 
core of its complexity is in the calculation of the (n + 1) IKI values p(x, ki), 
i = 0, 1, ... , n, ki E K, according to the general formula 

p(x, ki) = 2: p(x, k) , 
(k;• 'i*#i) 

or in making use of the Markovian property of the model according to the 
formula 

n 

p(x, ki) = 2: 2: (8.61) 
ko k1 

Computational complexities in counting the previous multi-dimensional sum 
can be coped with because of the results of the analysis of the automaton recog
nition problem. In the analysis in Section 8.3 we found that the matrix product 
'P( rri:i Pj) was an ensemble consisting of IKI probabilities p(xl' X2, 0 0 ° 'Xi, ki), 
and fhe matrix product ( f1~1=i Pj) f expressed the probabilities p( Xi+ 1' 0 0 ° ' 

Xn I ki). The numbers p(x, k;) defined by the expression (8.61) can be calcu
lated using the formula 

correctness of which results both from the expression in relation (8.61) and 
directly from the Markovian property of the model. 

The complexity of calculating the values p(x, ki) for one particular i and for 
all ki E K is identical with the complexity of calculating the matrix products 
~P(IT;:i Pi) and (f17=i Pi)f and is O(IKI 2 n). The complexity of computing 
the numbers p(x, ki) for all i = 0, 1, ... , n, and for all ki E K will by no means 
be O(IKI 2 n2 ), but will remain O(IKI 2 n). This will be the same situation as in 
the previous task of automaton recognition and in the task of the most likely 
estimation of the sequence of hidden parameters. 

We have analysed three recognition tasks which can be formulated within the 
Markovian model of the recognised object. These are the task of recognising the 
object as a whole, seeking the most probable sequence of hidden states of the 
object, and seeking a sequence of the most probable hidden states of the object. 
Even if we have analysed diverse varieties of these tasks, we do not intend to 
create an impression that the tasks analysed cover a vast variety of possible 
applications. Rather the opposite, one of the aims of this lecture is to rouse a 
feeling that we know only a small part of the relevant tasks. In this way we wish 
to impair the widespread and pleasantly self-delusive ideas that it is sufficient 
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to know only one method of Markovian sequence recognition, and this is seeking 
the shortest path in a graph by the methods of dynamic programming. 

A significant breakthrough in structural recognition appeared when the so
lution of problems, insurmountable before, proved successful with the aid of 
dynamic programming. This deserves credit even after several decades. In this 
context, however, we wished to point out that significant as the knowledge may 
be, it need not be an actual contribution, when, without forethought, it begins 
to be considered as generally valid. 

8.6 Markovian objects with acyclic structure 

8.6.1 Statistical model of an object 
We have seen that if a recognised object can be successfully expressed as a 
Markovian sequence of its observable and hidden parameters then for such a 
model the classic Bayesian recognition tasks can be solved. The most important 
property is that the solution of these tasks does not require calculations of any 
fantastic complexity. The rooted apprehension that the calculation complexity 
increases exponentially with the increase in the number of observations (fea
tures) has not materialised. The increase of calculation complexity has been 
linear for Markovian models. 

All these pleasant features are owed to one simple assumption about the 
form of the joint probability p(x, k) which for sequences was expressed by the 
relation (8.1), equivalent to the relation (8.3), and informally represented by a 
mechanical model (Fig. 8.1). Now we will demonstrate that constructive recog
nition of a complex object is possible even at weaker assumptions than those 
in (8.1), or in an equivalent manner, in (8.3). This means that complex objects 
can be constructively recognised even in cases in which their parts cannot be 
one-dimensionally ordered into a sequence, and have a more complex structure. 

The sequence k = ( ko, k1, ... , kn) can be regarded as a function of the form 
I--+ K defined on a set of indices {0, 1, ... , n }, which consists of integer num
bers. We will now generalise the concept of the sequence in such a way that 
the set I will not be regarded as a set of integers but as a set of vertices of a 
connected unoriented acyclic graph G, i.e., of a tree. The ensemble k will be 
regarded, as before, to be the function I --+ K defined on the set of the graph 
vertices. The sequence is a particular case of such a function if the graph G 
is a chain, i.e., a connected graph in which from each vertex one edge at least 
and two edges at most go out. 

We will generalise the concept of the sequence x = (x 1 ,x2 , ... ,xn) in such 
a way that x will be regarded as a function H --+ X defined on a set of edges 
H of the graph G. So the observation x is the ensemble (xh, h E H) built 
up from indexed quantities xh, where h represents an edge of the graph G, or 
which is the same as a certain pair (i, i') of vertices. The observation x is a 
sequence provided the graph G is a chain, and thus also the set of its edges 
forms a chain. 

The main precondition of the joint probability p(x, k) of the observation 
x: H --+ X and of the hidden parameters k: I --+ K which generalises the 
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Figure 8.4 Mechanical model of a Markovian acyclic graph. 

Markovian model (8.1), consists of the assumption that for any vertex 0 E I, 
let it be called a 0-th one, the probability p(x, k) has the form 

p(x,k) =p(ko) II p(x{i,g(il},kilk9(i)), (8.62) 
iEI\ {0} 

where g(i) is the vertex connected with the vertex i by an edge which pertains 
to the path from the 0-th vertex to the i-th. The property (8.3) formulated 
before is a particular case of the property (8.62), for I = {0, 1, 2, ... , n} and 
g(i) = i - 1. 

The property of the model (8.62) can be informally represented by the model 
in Fig. 8.4 which generalises the mechanical model in Fig. 8.1 used for informal 
representation of the Markovian sequence properties. 

In Fig. 8.4 the values xh, h E H, and ki, i E I, are represented by means 
of points in a plane which are connected by line segments. If we visualise each 
straight line as a flexible rod then it can be seen that the position of each 
point affects the positions of all other points. If we fixate a point that corre
sponds to some quantity ki, say the point kJ, then the mechanical model in 
that given case breaks into three independent parts: one consists of the points 
ka, kb, kc, kd, Xab. Xcb. X de and Xbf, the second consists of the points kt, x fl, and 
the third of the points kh and x f h. It is this property of conditional indepen
dence of individual parts of a complex object that is formally expressed by the 
assumption (8.62). This assumption has become a basis for the formulation 
and exact solution of Bayesian recognition tasks, similar to those which we 
analysed for the case of sequences. We will briefly examine only two tasks: 
the task of calculating the probability p(x) for the given observation x and the 
task of calculating the number maxkEKI p(x, k) for the given observation x. 
After completing this analysis, the solution will become quite dear for other 
tasks and their modifications which we have dealt with in detail in the case of 
sequences. 

8.6.2 Calculating the probability of an observation 
The calculation of the probability p(x) means the calculation of a multi-dimen
sional sum 

p(x) = L p(ko) II p(x{i,g(i)}> ki I kg(i)). (8.63) 
(k;,iE/) iEl\{0} 
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Since the quantities xh, h E H, are fixated the expression (8.63) will be 
written so that these quantities should not be present in it. The probabil
ity p(x{i,g(i)},ki I kg(i)) will be denoted fi(ki,kg(i))· To achieve symmetry of 
the expression (8.63) with respect to the indices i, and also for further rea
sons which will become clear later, we will introduce the notation IPi(ki)· This 
means p(k0 ), if i = 0, and IPi(ki) = 1 for all i :f. 0 and ki E K. The expression 
(8.63) thus assumes the form 

d = L II IPi(ki) II fi(ki, kg(i)) . (8.64) 
(k; , iE/) iE/ iEI\ {0} 

In this expression the variable ki for each i is present in a single factor IPi(ki). 
As to the factors fi(ki, kg(i)), the variable ki· can be present depending on the 
index i* in one, two, or more factors. The variable ki· is naturally present in the 
factor h·(ki•,kg(i•)), but also in those factors fi(ki,kg(i)) for which g(i) = i*. 
There certainly exists such an index i*, that the variable ki· is present only in 
one factor of the form fi(ki, kg(i))· It is such an index i* for which i* = g(i) is 
valid for no index i. The existence of such an index results from the property 
that a vertex exists in an acyclic graph from which only one edge goes out. For 
the index i* defined in this way the formula (8.64) will be rewritten in the form 

d = L II IPi(ki) II fi(ki, kg(i)) L (/)i• (ki·) li• (ki·' kg(i•)). 
(k; I iE/,i;ti•) iEI\{i•} iEI\{O,i*} k;• 

(8.65) 
We will denote g(i*) as i' and calculate new values of the numbers IPi' (ki') 
according to the assignment 

(8.66) 

The denotation IPi' (ki') on the right-hand side of the expression (8.66) is con
sidered to be the value of the number IPi' (ki') before the operator has been 
satisfied; the same denotation on the left-hand side is considered to be the 
new value obtained through this operator. The calculation complexity of the 
operator (8.66) is O(IKI2). 

The obtained numbers (/Ji' (ki') can be substituted into the expression (8.65) 
and it can be written in the form 

L II IPi(ki) II li(ki, kg(i))' (8.67) 
(k; liEh) iElt iElt\{0} 

where h =I\ {i*}. The expression (8.67) has the same form as the original 
expression. Only the number of variables ki, according to which the addition is 
performed decreased by one. Among the reduced number of variables there is 
at least one that it is present only in one factor of the form fi ( ki, k9 ( i)), and can 
be eliminated in the way already described, i.e., by the operator (8.66). After 
the (III - 1)-th elimination of the variables the expression (8.65) will assume 
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(a) (b) 

(d 

~ 
(c) (d) 
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~ 
(e) (f) (g) 

Figure 8.5 Reduction of the graph in calculating p(x). 

the form 
d= L~(ko) 

ko 

which can be easily calculated since the addition is done only along the values 
of one variable. Therefore, we have proved that the calculation complexity of 
the number p(x) is O(IKI 2 III), i.e., the same as the complexity in the case in 
which the recognised object had the structure of a sequence. 
Example 8. 7 Calculating the probability of observation for an acyclic graph. 
We will demonstrate the procedure presented above using an example of a graph 
from Fig. 8.4- The structure of the input data for calculating the number p(x) 
corresponds to the initial configuration of the graph, see Fig. 8.5(a). For each 
vertex i the memory for IKI numbers 'Pi(ki), ki E K, is reserved, and for each 
edge h = (i,i') the memory for IKI2 numbers fi(ki,ki'), ki E K, ki' E K is 
reserved. 

A calculation diagram for processing this data can be expressed in the fol
lowing form. In Fig. 8.5{a) the graph was enclosed by a curve (an outline). 
We will choose a starting point on the outline which is represented by a filled 
square, and passes along the outline anticlockwise. During the passage we will 



342 Lecture 8: Recognition of Markovian sequences 

create a sequence of graph vertices around which the path is led. The sequence 
of vertices will be (b, a, b, f, h, j, l, f, b, c, d, c, b). Furthermore, this se
quence passes through one vertex after another, and the filled square in Fig. 8. 5 
indicates the position at that moment. Some vertices are passed by without any 
change in the data, i.e., nothing is calculated. The data is changed in other 
vertices including the graph. The changes are brought about by those vertices 
from which only one edge goes out in the particular momentary graph, but they 
are not the starting vertex. In our case the vertex b is the starting one. The 
sequence of vertices which change the data is (a, h, l, f, d, c). We will show 
what changes will occur in the data at each of these vertices. After each change 
the graph is modified in a corresponding way. 

Vertex a. New values of the number 'Pb(kb) are calculated according to the 
formula 

tpb(kb) := tpb(kb) L'Pa(ka) fa(ka,kb). 
ka 

The vertex a is eliminated from the graph and the algorithm continues 
using the graph in Fig. 8.5(b). 

Vertex h. New values of the number 'Pt(kt) are calculated according to the 
formula 

The vertex h is eliminated from the graph and the algorithm continues 
using the graph as in Fig. 8.5(c). 

Vertex l. New values of the number 'Pt(kt) are calculated according to the 
formula 

The vertex l is eliminated from the graph and the algorithm continues 
using the graph as in Fig. 8.5(d). 

Vertex f. New values of the numbers tpb(kb) are calculated according to the 
formula 

'Pb(kb) := 'Pb(kb) 2:: cp1(kt) ft(kj, kb). 
k, 

The vertex f is eliminated from the graph and the algorithm continues 
using the graph as in Fig. 8.5(e). 

Vertex d. New values of the number 'Pc(kc) are calculated according to the 
formula 

The vertex d is eliminated from the graph and the algorithm continues 
using the graph as in Fig. 8.5(f). 

Vertex c. New values of the number tpb(kb) are calculated according to the 
formula 

'Pb(kb) := 'Pb(kb) L 'Pc(kc) fc(kc, kb) · 
kc 
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The vertex c is eliminated from the graph and the algorithm arrived at the 
elementa1·y graph in Fig. 8.5{g) which contains a single point b. 

When the graph was simplified then the probability of the observation x is cal
culated as the sum L:kb <l'b(kb)· & 

8.6.3 The most probable ensemble of hidden parameters 
This subsection need not have been written as it would be sufficient to substi
tute the word 'addition' in the previous subsection by the word 'maximisation'. 
The new subsection would be correct in the same way as the previous subsec
tion. The correctness of previous subsection is owing to the distributivity of 
multiplication with respect to addition. The correctness of present section re
sults from distributivity of multiplication even with respect to maximisation on 
the set of positive numbers. It really holds that x max(y,z) = max(xy, xy). 
Thus, the algorithm for the calculation 

(8.68) 

has the same structure and is based on the same considerations as the algorithm 
for calculating 

(8.69) 
(k;,iE/) iE/ iEI\{0} 

which we have just analysed. Let us briefly recapitulate these considerations, 
but this time with respect to the calculation (8.68), and not to that of (8.69). 

Let i* be such an index that for no i E I the condition g(i) = i* is satis
fied. This means that the variable k;· occurs only in one factor of the form 
J;(k;,kg(iJ), namely in J;.(k;•,kg(i•J). Therefore, the formula (8.68) can be 
rewritten in the form 

We will denote g(i*) as i' and calculate new values of the numbers <p;• (k;•) by 
the operator 

We will make use of the calculated value and write the number d in the form 

(8.71) 

in which lr = I \ { i * } . In expression ( 8. 71) the maximisation is performed 
along the variables the number of which is 1 less than that in the expression 
(8.68). The operator (8.70) is used (III - 1) times and every time one of the 
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variables is eliminated after which the minimisation is done. So the original 
task is reduced to the calculation 

d = max cpo (ko) 
ko 

which is trivial since the maximisation is done after one variable. The total 
number of operations needed for solving the task (8.68) has the complexity 
O(IKI2 n) which is the same as that for a sequence. 

8. 7 Formulation of supervised and 
unsupervised learning tasks 

In Lecture 4, three learning tasks have been formulated in the general form, 
through which a reasonable estimation of a statistical model of the object un
der examination can be found. In Lecture 6, we formulated the unsupervised 
learning task and solved it in the general form. We will express analogous 
tasks for the class of Markovian models which we are now dealing with. We 
will discuss a case in which an ensemble of parameters has the structure of a 
sequence, and not the general structure of an acyclic graph because here the 
most essential properties of the analysed tasks can be revealed without being 
overshadowed by unnecessary details. The results we obtain for sequences can 
be easily generalised for the general case of acyclic structures. 

In the same way as before we assume that a complete description of a recog
nised object is formed by two sequences: the sequence of observable features 
x = ( x1, x2, ... , Xn) of the length n and the sequence of hidden parameters 
k = (ko, k1, ... , kn) of the length n + 1. The pair (x, k) is random and is de-
scribed by the probability distribution p(x, k) which is not arbitrary but has 
the form 

n 

p(x, k) = p(ko) ITPi(ki, xi I ki-d. 
i=l 

This means that the function p: xn X Kn+l -+ lR is uniquely determined by n 
functions Pi, i = 1, 2, ... , n, of the form K x X x K -+ lR the value Pi(k', x, k) 
of which means the joint probability of the (i - 1)-th hidden parameter hav
ing the value k', the i-th hidden parameter having the value k, and the i-th 
observed feature having the value x. The function Pi uniquely determines the 
probability that the i-th hidden parameter has the value k E K. This proba
bility is Ek'EKExEXPi(k',x,k). The same probability is determined by the 
function Pi+ I as ExEX Ek'EK Pi+ I (k, x, k'). It is quite natural that these two 
determinations must not be in contradiction which means that the functions 
Pi, i = 1, ... , n, have to satisfy the conditions 

L L Pi(k',x,k) = L L Pi+dk,x,k'), i = 1,2, ... ,n -1, k E K. 
k'EKxEX xEX k'EK 

The ensemble of functions (Pi, i = 1, ... , n) which satisfy the equation above 
will be denoted as P, and will be referred to as a statistical model of the 
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recognised object. Since the ensemble P uniquely determines also the function 
p(x, k), i.e., the probability distribution of the pairs x = (x1 , ... , Xn) and k = 
(k0 , ... , kn), the function p will also be referred to as the statistical model of 
the object. 

If the statistical model of an object is known then various pattern recognition 
tasks can be formulated and solved the examples of which were analysed in the 
previous parts of the lecture. If the statistical model of an object is not known 
then it must be found either by experimentally examining the object, or on the 
basis of the user's information in which he states his or her ideas either about the 
recognised object, or about the desired behaviour of the recognition algorithm. 

The creation of the statistical model is mostly called learning, supervised 
or unsupervised. The information on the basis of which the model is created 
is termed training information. A precise formulation of the learning tasks 
depends on the properties of the training information. These formulations will 
be presented now. 

8.7.1 The maximum likelihood estimation 
of a model during learning 

Let us assume special experimental conditions for examining an object in which 
all parameters of the object are known, both the observable and the hidden 
ones. Let l experiments be made with the examined object. The outcome of 
the j-th experiment, j .= 1, 2, ... , l, was the sequence xi = (x{, xt ... , x~) and 
the sequence ki = (k6, k{, ... , k~). From this point up until the end of the 
lecture the denotation xi, i = 1, 2, ... , n, j = 1, 2, ... , l, means the i-th element 
in the j-th sequence. The denotation k{ has a similar meaning. 

Provided we have good reasons for assuming that the outcomes of the l ex
periments were mutually independent, and each of them was a random instance 
from the general ensemble of pairs (x, k) with the probability distribution p then 
the model P = (pl,P2, ... ,pn) can be estimated as that which maximises the 
probability of the outcome of the experiment as a whole, i.e., the probability 
TI~= 1 p(xi, ki). Learning is conceived as finding the ensemble 

l n (kj j kj) _ II (ki i ki) II Pi i-1,xi, ; - argmax · · · max P1 0 , x 1 , 1 · · 
Pt Pn j=l i=2 L L Pi(kf_1 7 X, k) 

kEK xEX 

(8.72) 

Let us note that the previous expression for the joint probability p(x, k) has 
a slightly different form than that used before. The previous expression in
volves the Joint probabilities p;(k{_ 1 , x{, k{), not the conditional probabilities 
p;(kf,xi I kf_ 1 ). 

8.7.2 Minimax estimate of the model 
Often it is quite difficult to secure or check the conditions under which the 
maximum likelihood estimate of the model is an appropriate one. These con-



346 Lecture 8: Recognition of Markovian sequences 

ditions require that the outcome of the experiment is a multi-set of random 
and mutually independent instances. If these conditions are not satisfied then 
the task should be formulated in a following way which does not rely on the 
assumptions mentioned above. 

It is assumed that the training set consisting of pairs (x1 , P ), (x2 , P), 
... , (x1, k1) is known. The training set was selected by an experimenter (may 
be, when she/he observed a real object) and is regarded as a typical set that 
summarises quite probable examples of the observed object behaviour. Learn
ing has to create such a model P* in which none of the probabilities p(xi, ki) 
corresponding to an instance in the given training set is too small. More pre
cisely, such a maximal value c: and such a model P* are to be found to secure 
that the probability p(xi, ki) of any example (xi, ki) is not less than c:. This 
means that 

P * ( * * • ) = P1 ,p2, · · · ,pn 

. ( ( i j kj) ITn Pi ( k{_ 1 , xi, k{) ) = argmax max · · · max mm P1 k0 , x1, 1 i 
Pl P2 Pn J i=2 L L p;(ki-1, X, k) 

kEK xEX 

8.7.3 Tuning of the recognition algorithm 
Assume that someone has created an algorithm which recognises the sequence 
k = (k0 , k1 , ... , kn), based on the sequence x = (x1 , x2 , ... , Xn) in the formula
tion we have presented in Section 4.2. It is an algorithm of the form 

n 

k = argmax Lli(ki-l,x;,ki), 
ko ,k1, ... ,kn i=l 

(8. 73) 

where the functions j; : K x X x K """"* IR depend, in a certain way, on the 
statistical model (p;: K x X x K """"* IR, i = 1, ... , n). It is quite possible that 
the author had created a program for the calculation of (8.73) before he got 
the information about the statistical model P = (p;, i = 1, 2, ... , n). After 
the program was written a question arose about what functions J; are to be 
included into the program. The functions J; can be created in two different ways 
according to the nature of the training set of examples (xi, J)), j = 1, ... , l. If 
the pair (xi, ki) can be regarded as an instance of a random pair the probability 
distribution of which is p(x, k) and if, at the same time, the pairs (xi, ki) 
at different j are mutually independent then the ensemble P can be built up 
according to the requirement (8. 72). Then, in an appropriate manner according 
to P, the functions j; have to be created. 

The origin of the set of examples (xi, ki), j = 1, ... , l, can be quite different. 
The set might be created not as an outcome of the observation of a real object, 
but as a training set by which the requirements for the future algorithm are 
expressed. In this case ki is a sequence which the algorithm has to create as 
a result of recognition when the sequence xi is brought to the input. Here the 
functions J; are no longer considered as statistical parameters of a recognised 
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object, but as parameters of a recognition algorithm. These parameters are to 
be tuned up so that the algorithm should operate correctly at the examples 
of the training set. The learning task, i.e., the tuning of the algorithm to the 
beforehand given training set, lies in seeking the functions /I, h, ... , f n which 
satisfy the following system of relations 

n 

(k~, k1, ... , k~) = argmax max··· max L f(ki-I, xi, ki), j = 1, 2, ... , l. 
ko kt kn i=I 

8. 7.4 Task of unsupervised learning 
The ensemble P = (PI, p2, ... , Pn) does not only uniquely determine the 
probabilities p(x, k) of each pair (x, k) which consists of a sequence of obse~ved 
parameters x = (xi,x2 , ••• ,xn) and a sequence of hidden parameters k = 
(k0 , ki, ... , kn), but it also determines the probability of each sequence x = 
(xi, x2, . .. , Xn) of the observed parameters. Its probability is given by the sum 
I:kEKn+t p(x, k). 

Assume that l experiments were performed with the examined object during 
which only the values of the observed features were observed. In the unsuper
vised learning task the point is sought on the basis of experimental data, i.e., 
the maximum likelihood model of the object 

l 

P* = (pr ,p~, ... ,p~) = argmax II L p(xi, k) 
p j=I kEKn+t 

_ III "'"' "' ( j )IIn Pi(ki-I,x{,ki) - argmax···max L.JL.J"""L.JPI ko,x1 ,ki " " ·(k· k). 
PI Pn J·=I k k k i=2 L...., L...., p, l-l,X, 

0 I n xEX kEK 

8.8 Maximum likelihood estimate of the model 
The maximum likelihood estimation of a model is defined by requirement (8.72). 
A correct estimate can be guessed on the basis of mere common sense intu
ition. First, we will show this estimate and then demonstrate that it satisfies 
the requirement (8.72). Assume that on the basis of the experimental data 
((xi, ki), j = 1, 2, ... , l) for the fixed triplet k' E K, x' E X, k" E K it is 
necessary to find a joint probability that the value of the (i - 1)-th hidden 
parameter will be k', the value of the i-th observed parameter will be x', and 
the value of the i-th hidden parameter will be k". Without further specifying 
this task, we could hardly look for a more natural procedure than simply cal
culating how many times the case ki-I = A:', Xi = x', Xi = k" occurred in the 
experiments, and then dividing the obtained number by l. 

We will prove this quite reasonable recommendation, i.e., we will see that 
the model created in this way maximises (8. 72). We need this proof because 
maximum likelihood estimation will be used later as an element of more complex 
algorithms for minimax estimation and unsupervised learning. Analysis of these 
more complex problems will be based not only on the fact that the above stated 
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way of creating the model is reasonable, but on the property that the created 
model maximises (8.72). 

For the sake of formal analysis the task will be expressed in the following 
equivalent form 

The experimental data ( (:cJ, kJ), j = 1, 2, ... , l) can be expressed by means of 
the functions g: xn X Kn+l -t z' where z is a set of integers. For each sequence 
x E xn and the sequence k E Kn+l the number g(x, k) states how many times 
the pair (x, k) occurred in the experimental data ( (xJ, I.J), j = 1, 2, ... , l). If 
we use the notation g then the previous expression for P* assumes the form 

(8.74) 

The task given by the previous relation does not change if the integer function 
g is substituted by the function a for which there hold a(x, k) = g(x, k)/ l, i.e., 

P* = arg~ax:(_L _ L a(x,k)(logp1(k0 ,x1,k1) 
xEXn kEKn+t 

(8.75) 

For the function a 

L L a(x, k) = 1, 
xEXn kEKn+t 

holds and therefore a can be understood as the probability distribution on the 
set of all pairs (x, k), i.e., over the set of all possible outcomes of the experiment. 

We will introduce the notation Xi(x'), i = 1,2, ... ,n, x' EX, for the set 
of such sequences X= (xl,Xz, 0 0 0 ,xn) E X 11 in which Xi= x'. The notation 
Ki(k', k"), i = 1, 2, ... , n, k' E K, k" E K, means the set of such sequences k = 
(ko,kl, ... ,kn) E Kn+l for which k.i-1 = k', k; = k 11 holds. By ai(k',x',k") 
we will denote the sum 

ai(k',x',k") = L L a(x,k). (8.76) 
xEX;(x') kEK;(k',k") 
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The previously mentioned recommendation for calculating the numbers Pi ( ki-l , 

xi, ki) was stated on the basis of understanding what probability really is. In 
its precise formulation the recommendation reads that the functions Pi should 
be identical with the functions ai defined by the previous formula. The proof 
that they are the functions Pi created just in this way which solve the opti
misation task (8.75), and thus also the task (8.72), is given in the following 
theorem. 

Theorem 8.1 Maximum likelihood estimation of the Markovian model. Let 
X and J( be two finite sets and let a be a non-negative function of the form 
Xn X J("+l --t JR for which ther·e hold 

L L a(x,k) = 1. 
xEXn kEKn+l 

Let Pi, i = 1, 2, ... , n, be functions of the form J( x X x J( --t lR for which there 
hold 

Pi(k',x',k") = L L a(x,k), 
xEXi(x') kEK;(k',k") 

and Pi, i = 1, 2, ... , n, be arbitrary non-negative functions J( x X x J( --t lR for 
which there hold 

L L L Pi(k',x',k") = 1. 
k'EK x'EX k"EK 

In this case the inequality holds 

• 
Proof. The basis for the proof is Lemma 6.1. First we will make clear the 
relationship between the sums 

(8.77) 
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For the first of these sums there hold 

L L a(x,k)logpi(ko,x1,k1) 
xEXn kEKn+J 

= L L L L L a(x,k)logpi(ko,x1,ki) 
x1EX xEXJ(xJ) koEK k1EK kEKJ(ko,kJ) 

L L L ( L L a(x,k)) logpi(ko,x1,kl) 
~'oEK x1EX k1EK xEXJ(xJ) kEKJ(k0 ,kJ) 

= L L L Pi(ko,x1,kl)logpi(ko,xl,kl). (8.78) 
koEK x1EX k1EK 

Similarly we can demonstrate that the second sum in (8.77) is 

L L L Pi(ko,x1,k1)logp1(ko,x1,k1). (8.79) 
koEK x1EX k1EK 

Since both the sum I:koEK l:x 1 EX I:k1 EK p~ (ko, x1, kl) and the sum 
l:koEK I:x 1 EX l:k1EKP1(ko,x1,kl) are equal to 1, we can find on the basis of 
Lemma 6.1 that (8.78) is not less than (8.79), and thus 

L L a(x,k)logpi(ko,x1,ki) 2:: L L a(x,k)logp1(ko,x1,k1). 

(8.80) 
Now we will make clear the relationship between the sums 

"'"' "'"' a(x k)lo Pi(ki-1,xi,ki) 
L.....- L.....- ' g "' "' *(k· x 1 k1 ) JEX" kEKn+J L.., L.., P, z-1 1 1 

x'EX k'EK 

and 
"'"' "'"' (- k)l Pi(k;-l,Xi,ki) 
L.....- L.....- ax, og "' "' ·(k· xl kl) . 

xEXn kEKn+J L.., L.., p, z-1' ' 
x'EX k'EK 

(8.81) 

The first of the sums is 

L L a(x,k) log I: p';(ki-1' Xi, k;) 
x- I: p';(ki-!,X1,k1) 

xE n kEKn+l x'EX k'EK 

= L L L L L a(x,k)log "'pi(ki-l,xi,ki) 
'· ,_. vk L' - L.., I: P';(ki-1 1 X1,k1) 
,·i-JE.n x;E." ·;En xEX;(xi) kEK;(k;-J,k;) x'EX k'EK 

= L L L ( L L a(x,k)) log ai(ki-1,xi,ki)l I 

k K· x. K- . - L :Lai(ki-l,x,k) 
•-IE x,E. k,E xEX,(x;) kEK;(k;-J,k;) x'EXk'EK 

"'"' "'"' "'"' (k ai(ki-l,x;,k;) = L.....- L.....- L.....- a; i-l,xi,k;)log "' "' ·(k· 1 k1). 

k ,,. v k K L.., L.., a, z-1' X ' 
i-JE.n x;E., ·;E x'EX k'EK 

(8.82) 
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With respect to similar considerations we claim that the second sum in (8.81) 
is 

(8.83) 

. ~ ~ p;(k;-t,X;,k;) . l 1 l 
Smce the sum 6 6 ~ ~ ·( . 1 k1) 1s equa to at any va ue 

x; EX k; EK L.x' EX L.k' EK p, k,_l' X ' 

k;_ 1 we claim on the basis of Lemma 6.1 that the inequality 

is correct at any value k;-1. If we sum this inequality over all k;-1 then we 
obtain the inequality 

"""""' """""' """""' O:;(ki-1, X;, k;) 
L.._.- L.._.- L.._.- O:;(k;-t,X;,k;)!og ~ ~ ·(k· 1 kl) 

L. L_.O:, ,_),X, 
k;- 1EK x;EX k,EK x'EX k'EK 

"""""' """""' """""' ( ) p;(ki-1, X;, k;) > L....- L....- L....-o:;k;-t,X;,k; log~~ ·(k· 'k1)' 
L. L. p, 1-l, X , 

k;-1EK .r;EX k;EK x'EX k'EK 

and thus owing to (8.82) and (8.83) we also obtain the inequality 

"""""' """""' (- k)! pj(k;-t,X;,k;) 
L....- L....- o: x, og ~ ~ *(k·_ x 1 k1) 

xEXn k~E/('n+l L. L. P, 1 1' ' 
x'EX k'EK 

> """""' """""' (- k)! p;(k;-),X;,k;) 
L....- L....- o: x, og ~ ~ ·(k·_ x 1 k') 

xC\" kEKn+l L. L. p, ' 1' ' 
x'EX k'EK 

which is satisfied for any i = 2, 3, ... , n. If we sum this inequality over all i 

(8.84) 

The inequality expressed by Theorem 8.1 being proved, is an evident conse
quence of the inequality (8.84), and the previously proved inequality (8.80). • 

If the statistical model of an object is known to be Markovian then Theorem 8.1 
proved the following algorithm for the maximum likelihood estimate of the 
statistical model of an object. 



352 Lecture 8: Recognition of Markovian sequences 

Algorithm 8.1 Maximum likelihood estimation of the Markovian model 

1. The outcomes of the experimental examination of an object which were originally 
expressed by the ensemble ((xJ,kJ), j = 1,2, ... ,n), xj E xn, kj ~ Kn+ 1 , are 
to be expressed as a function Q: xn X Kn+l -+ lR the value a(x, k), X E xn, 
k E Kn+l of which is the relative frequency of the pair (x, k) in the experiment. 

2. For each i = 1, 2, ... , nand for each x' EX, k' E K and k" E K the probabilities 

Pi(k',x',k") = L a(x,k) {8.85) 
.tEX;(:r') kE/\,(!-',k") 

are to be calculated which in the experiment means the relative frequency of the 
value x' in the position i of the sequence x together with the values k' and k" in 
the i - 1-th and i-th positions of the sequence k. 

3. The ensemble of numbers Pi (k', x', k") expresses the Markovian model of the ob
ject examined in the sense that for each pair of sequences x E xn and k E Kn+l 
it determines their joint probability according to the formula 

( - k-) (k k ) nn Pi(ki-l,Xi, ki) 
px, =p1 o,x1, 1 "' "' ·(k· 'k')' 

i-2 ~x'EX ~k·'EKP• t-J,X' 
(8.86) 

Theorem 8.1 proved claims that the Markovian model of the object obtained is 
the most likely one in the sense that the probability of the ensemble ((xi ,ki), 
j = 1, 2, ... , l) experimentally observed in this model is not less than the 
probability of the same experimental outcomes in any other Markovian model 
of the object. 

For further explanation it is helpful to consider Algorithm 8.1, i.e., the for
mulre (8.85) and (8.86) as a transformation of the function a: xn X Kn+l -+ lR 
to the function p: xn X Kn+l -+ JR. The transformation converts the prob
ability distribution a which need not be Markovian and can be of any kind 
to the probability distribution p which must be Markovian. The probability 
distribution p which is formed on the basis of the probability distribution a 
will be referred to as the Markovian approximation of the function a and will 
be denoted as aM. The index M in the denotation aM is understood as an op
erator which affects the function a and transforms it into the function p = aM. 

For example, the denotation (a+ (3)M means the Markovian approximation of 
the sum of functions a and /3. The denotation o:M (x) means the value of the 
function that is the Markovian approximation of the function a in the point x, 
etc .. 

From the definition of the Markovian approximation there immediately fol
lows 

L a(x, k) 1ogp(x, k) 

where p: xn X K"+l -+][(is any probability distribution of a Markovian form. 
We will call to mind once more the idea that even if the Markovian ap

proximation given in (8.85) and (8.86) seems to be non-constructive because of 
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the multi-dimensional sum on the right-hand side of (8.85), the calculation of 
(8.85) is actually a quite natural and easily realisable processing of experimen
tal data. Its complexity is proportional to the length of the experiment l, i.e., 
to the number of non-zero addition terms on the right-hand side of (8.85). In 
constructing further algorithms the Markovian approximation will be used as 
a multiple performed operation, and it is necessary therefore to realise that it 
is a natural and easily calculable kind of operation. 

8.9 Minimax estimate of a statistical model 

8.9.1 Formulation of an algorithm and its properties 
In this subsection we will give a survey of the main results of an analysis of 
a task without a proof including the algorithm of its solution, and we will 
prove them later in subsequent subsections. From the algorithm presented we 
will see that the minimax estimate is reduced to a sequence of the maximum 
likelihood estimates, i.e., to a step by step calculation of certain Markovian 
approximations. 

The input information for the minimax estimate is the finite training set L 
consisting of the pairs (i, k) which represent a typical (probable) behaviour of 
the object. The task seeks an ensemble of functions P* = (pi, P2, ... , p~) of 
the form Pi : K x X x K --+ ffi., 

p• = (pi,p2, ... ,p~) 

. ( (k ) ~ p;(ki-1, X;, k;) ) 
= argmax _ll}m logp1 o,x1,k1 + Llog "'"' "'"' ·(k x' k') · 

PJ, ... ,pn (x,k)EL ._2 L, L, p, 1.-1, , 
,_ x'EX k'EK 

We will introduce an algorithm which solves this task with any predefined 
accuracy c > 0. 

The algorithm alters stepwise the integer numbers n(x, k) for each pair x = 
(x1, ... , xn) and k = (ko, k1, ... , k11 ) which occurs in the training set L, and 
the integer numbers n;(k', x', k") for each i = 1, 2, ... , n and for each triplet 
k' E K, x' E X, k" E K. The numbers n(x,k) and n;(k', x', k") serve for 
calculating current values of the probabilities a(x,k) and p;(k',x',k") in the 
following way 

a ( i, k) = __ n (-'-x-'-, k..:...)~ 
L n(i,k)' 

(x,k)EL 

·(k' x' k") = n;(k',x',k") 
p, ' ' 2:: 2:: 2:: n; ( k', x', k") · 

k'EK x'EX k"EK 

In each step the algorithm creates a Markovian approximation of the current 
distribution a. The initial values n 1 (i, k) and n} (x', k', x") can be arbitrary(!). 
For the sake of unambiguity we define them in such a way that n 1 ( i, k) = 1 
for any (i, k) from the training set L. For the automaton states k, k' and the 
output signal x', let us introduce the number n}(k', x', k") stating how many 
times a sequence occurred in the training set such that the state was k' in the 
instant i- 1, the state was k" in the instant i, and the observed output signal 



354 Lecture 8: Recognition of Markovian sequences 

was x' in the instant i. Assume that prior to the step t the numbers n 1(x, k), 
(x, k) E L, and the numbers nHk', x', k"), i = 1, 2, ... , n. were computed. Next 
values of these numbers are calculated according to the rules: 

Algorithm 8.2 Minimax estimate of the statistical model 

1. The probabilities are calculated fori= 1, 2, ... , n, k1 E K, X 1 EX, k" E K, 

n1(x, k) 
c/ ( x, k) = _L:_:..._n.:..._t -'-( x-, k~) ' (x,k) E L, 

(x,k)EL 

t I I II nl(k1 ,X1 ,k11
) 

Pi ( k ' x ' k ) = L: L: L: nl( kl' xl' k") . 
k'EK :r'EX k"EK 

2. The probabilities p1 (x, k) are calculated according to the formula (8.86), i.e., 

t(-- t( llln pl(ki-!,X;,k;) 
p x,k) =p! ko,XJ,k! ·-· L: L: Pl(k;-J,xl,kl)' 

'-2 x'EX k'EK 

(x, k) E L. (8.87) 

3. It is verified if the following inequality is satisfied 

4. If the inequality (8.88) is satisfied then the algorithm ends, and the current values 
pl( k1 , X 1 , k") form the c-solution of the task. 

5. If the inequality (8.88) is not satisfied then the following calculations are per
formed. 

(a) Any pair (x*, k*) E Lis found for which there holds 

p1(x*,k*)= ~in p1(x,k). 
(x,k)EL 

(b) New values of the numbers n(x,k) and n;(k;- 1 ,x;,k;) are calculated 

n1+1(x,k) =n1(x,k) + 1, if x = x*, k = k*, 

n1+1(x, k) = n1(x, k), if (x,k) ::F (x*, k*), 

n:+ 1(k1 ,X1,k")=nl(k1X1,k")+1, if k;_ 1 =k1 , x; =x1 , ki =k", 

n~+ 1 (k 1 ,X 1 ,k")=nUk1 X 1 ,k"), if (k;_ 1 ,xi,ki)"::F(k1 ,X1,k"). 

6. It is proceeded to the ( t + 1 )-th iteration of the algorithm, starting from the step 1. 

For the algorithm formulated in this way the following two theorems are valid. 

Theorem 8.2 On convergence of an algorithm in a finite number of steps. 
For any predefined positive value c: Algorithm 8.2 gets after a finite number of 
steps to the state in which the inequality ( 8. 88) is satisfied and the algorithm 
ends. • 
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Let F(P) denote the number 

· ( ) ~ p;(ki-1, X;, k;) ) 
F(P) = mm logpl(ko,XI,ki + L.,log """ """ ·(k· , k') 

(x,k)EL _ 2 L,., L,., p, 1-l, X , 
,_ x'EX k'EK 

which is to be maximised in the task. 

Theorem 8.3 On achieving an arbitrary predefined accuracy. Let P' be the 
result of Algor·ithm 8.2 and P* be the solution of a task concerning the minimax 
estimate of a statist-ical model. Then there holds 

F(P*)- F(P') ~E. 

The remaining part of Section 8.9 will be devoted to the proof of the properties 
of Algorithm 8.2, and to further important properties of the whole task. We will 
see that the task of the minimax estimate of a statistical model can be reduced 
to the sequence of easier tasks of the maximum likelihood estimate. Such 
reduction is possible not only in the class of Markovian models, but even for 
a far more general case. Because of their generality further results reach much 
beyond the scope of problems concerning Markovian sequences. Furthermore, 
removing dependance on the class of statistical models, we will see that the 
minimax estimate tasks will be reduced to special tasks of convex optimisation. 
This means that for the minimax estimate not only the algorithm mentioned 
above can be applied, but an abundance of methods which are provided by the 
widely developed theory of convex optimisation. 

We will quote, without a proof, known mathematical results which will be 
used by us. Let X be a convex subset of linear space and f: X --+ lR be a real 
valued function defined on this set. For this function the convexity is defined 
in the following three equivalent ways. 

1. The function f is convex if the following set 

{ (y, f(:r)) I Y 2: f(x)} 

is convex. 
2. The function f is convex if for any x1 EX, x 2 EX and n, 0 ~a~ 1, the 

inequality is satisfied, 

f(a XI+ (1- a) x2) ~ o: f(xi) + (1- a) f(x 2). 

3. The function f is convex if for each point x0 E X there exists such a linear 
function Lxa : X --+ IR, that the inequality 

L.r 0 (X- :ro) ~ f(x)- f(xo) (8.89) 

holds for each x E X. 

Let vector g(:ro) E X correspond to the linear function L,ro in such a way that 
L,r0 (x) is a scalar product (g(x0 ), .r). The vector g(x0 ) is referred to as the gen
eralised gradient f in the point :r: 0 . The generalised gradient is known to exist 
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in any point of a convex function. If the function f and the definition (8.89) 
unambiguously determine the linear function Lx0 , and thus also the generalised 
gradient g(x0), then the function f is called differentiable (or smooth) and the 
generalised gradient g(xo) is simply called gradient. 

Any convex function on a finitely dimensional set is continuous. This means 
that the difference f(x) - f(x0) approaches zero if x approaches xo. A linear 
function is a particular case of the convex function and therefore 
lirnx-+xo g(xo)(x- Xo) = 0. 

If, however, the function f is smooth and g(xo) :I 0 then 

lim f(x)- f(xo) = 1 . 
x-+xo g(xo) (x - xo) 

Such a situation is a special case of a situation in which two infinitely small 
quantities f(x)- f(x0) and g(x0)(x-x0) are of the same order. Let us recall the 
precise formulation of this concept. Let u1, u2, ... , Ui, ... and v1, v2, ... , Vi, ... 
be two infinitely small quantities in the sense that limi-+oo Ui = limi-+oo Vi = 0. 
These two infinitely small quantities are defined as infinitely small of the same 
order if there exists a limit 

l. Ui 
liD

i-+oo Vi 

which is neither zero nor infinite. The infinitely small quantities of the same 
order have the following important property. 

Let Ui and Vj, i = 1, 2, ... , oo, be two infinitely small quantities of the same 
order. In this case if a series of numbers ~~=lui, n = 1, 2, ... , oo, converges to 
a finite value then the series of numbers ~::: 1 Vi, n = 1, 2, ... , oo, also converges 
to a finite value (possibly different one). Further on, if limn-+oo L::~1 Ui = oo 
then also limn-+oo L:::~ 1 Vi = oo. 

The properties of a minimax task which result in the possibility of its con
structive solution are satisfied not only for Markovian models, but it is so even 
in more general cases. Furthermore, an analysis in the general case is easier 
since the important properties are not overshadowed by unnecessary details. In 
the following subsection we will examine a task for the general case, and then 
transfer the results of the analysis without difficulty to a more specialised case 
of Markovian models. 

8.9.2 Analysis of a minimax estimate 
The problem of the minimax model estimation has been formulated in the 
general form in Lecture 3. With respect to the present explanation we will 
redefine the task in a somewhat different form. 

Let X be a set for which a class P of functions of the form p: X -+ lR is 
specified. Let (xi, j = 1, ... , n) be a multi-set of elements from the set X. 
The task is to find a function p* from the class P which maximises the number 
rn~np(xi), i.e., 

J 

p* = argmax minp(xi). 
pEP J 

(8.90) 



8.9 Minimax estimate of a statistical model 357 

Since the solution of the task, i.e., the function p* does not depend on how 
many times an element has occurred in the multi-set (xi, j = 1, ... , n), and 
depends on a single occurrence in the multi-set at least, the input information 
can be regarded as a finite subset L C X, not as a multi-set (xJ, j = 1, ... , n). 
The task (8.90) assumes the form 

p* = argmax minp(x) , 
pEP xEL 

or in the equivalent expression 

p* = argmax min logp(x). 
pEP xEL 

(8.91) 

Let us recall the maximum likelihood estimate of the model p, i.e., seeking 

p* = argmax L:>l:(x) logp(x) . 
pEP xEL 

(8.92) 

This means that a function p* is being sought with which the probability of 
a multi-set is maximised and in which o:(x) is the relative occurrence of the 
element x. The function p* according to the relation (8.92) depends on the 
coefficients o:(x), and therefore the corresponding algorithm can be regarded as 
an operator which transfers the function o:: L --+ ffi. to the function o:M: X --+ ffi. 
in such a way that 

o:M = argmax L o:(x) logp(x). 
pEP xEL 

The number max I: o:(x) logp(x) is simply the number 
pEP xEL 

L o:(x) log o:M (x) 
xEL 

which depends on the function o:: L--+ ffi. and which will be denoted Q(o:). For 
the number Q(o:) according to its definition there holds that the inequality 

Q(o:) = L o:(x) log o:M (x) ~ L o:(x) logp(x) 
xEX 

is satisfied for any function p E P. As before in Section 8.8 the function 
o:M : X --+ ffi. will be referred to as an approximation of the function o: : L --+ ffi. 
in the class P, or simply approximation of o:. If P is a Markovian class of 
models then o:M is a Markovian approximation of a. 

The maximum likelihood estimate of the model (8.92) has been well exam
ined. There exist programmed solutions for a number of favoured classes P. 
Particularly, for the class of Markovian models the analysis of the maximum 
likelihood estimate has been performed in Section 8.8. Even when the minimax 
estimate has certain advantages, particularly the independence of the random 
form of the training set, this type of task has been examined far less. At first 
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glance it may seem much more difficult. It is therefore important that the min
imax estimate is reduced to the maximum likelihood estimate in the following 
sense. 

If there is a program for the maximum likelihood estimate (8.92) at our 
disposal then we can quite formally, that is, in a standard way, also create 
a program for the minimax estimate (8.91). The part solving (8.92) will be 
included in it as a subroutine. This trick is made possible because we are 
able to prove that independently on the sets X and P the solution of the 
task (8.91) must have the form aM for some function a. In other words, 
the minimax estimate is identical with the maximum likelihood estimate for 
certain coefficients a(x), x E L. The factors a(x) with which the two estimates 
become identical are extremal in the sense that they minimise the number 
Q(a) = L:xELa(x)logaM(x). Another important result is that for arbitrary 
sets X, L and P, the function Q(a) is always convex. It can therefore be 
minimised in various well known ways. 

The so far informally expressed statements will be exactly formulated and 
proved. 

lemma 8.1 On the upper-bound of the function min,eL logp(x). Let p 
be any function X -t JR. from the class P, a: L -t IR be any function for which 
there holds 

L:a(x)=1, } 
xEL 

a(x) ~ 0, x E L. 

In this case there hold.s 

min logp(x):::; L a(x) log aM (x). 
xEL 

xEL 

Proof. The inequality (8.94) results from the evident inequalities 

min logp(:1:) :::; L n(:r) logp(x), 
:rEL 

:rEL 

L n(:r) logp(:r) ~ L o(:r) log nM (:r). 
.rE/, 

(8.93) 

(8.94) 

• 
(8.95) 

(8.96) 

Tlw iw~quality (8.95) holds owing to tlH' couditiou (8.93). The value on the 
right-hand sidP of (8.95) is tlw weight.<'d aritlmwtic averag<! of tlw uumbers 
logp(:1:), the nmnber on t.IH' Jpft.-hand sid<' of (8.95) is th<' least of them. Of 
course, the least uumbPr is uot gr!'a!.<'r thau t.IJ<' awra.gP. 

The inequality (8.9G) imHH'diatd.v r<'slllts from tlw ddiuition of the function 
n 111 • From the iuequaliti<!S (8.!J5) and (8.!JG) W<' obtain (8.!).!). • 

The symbol .4 will denot<' tlw sd. of f11nct.ions n: L -t ~ which satisfy (8.93). 

Lemma 8.2 On convexity of the function Q. T/u: function 
Q(a) = L:xELa(x)logoM(:t:) is conve:r on the set A. 
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Proof. The symbol lin A will denote the linear closure of the set A. For 
an arbitrary point ao E A, i.e., for an arbitrary function a 0 : L --+ ~ we will 
determine the linear function G no : lin A --+ ~ 

Gao (a) = L a(x) log a~1 (x) . 
.rEL 

For the function G no there holds 

G no ( ao) = L ao ( x) log a~ ( x) 
xEL 

and for any a E A there holds 

Gn0 (a) :S L a(x) log aM (x) . 
xEL 

The function Gno is consequently just the function the existence of which ow
ing to (8.89) determines the convexity of the function Q(a). The following 
inequality is satisfied on the set A 

Gno (a- ao) :S L a(x) log aM (x) - L ao(x) log a~ (x). 
xEL xEL • 

Theorem 8.4 Necessary and sufficient conditions for the minimax estimate 
of a model. 

1. If there holds 

min loga*M(x) = """a*(x)loga*M(x) 
xEL ~ 

:rEL 

then there also holds 

and 

a*M = argmax minlogp(x), 
pEP xEL 

a* = argmin L a(x) log aM (x). 
etEA xEL 

(8.97) 

(8.98) 

(8.99) 

2. If the function Q(a) = L a(x) log aM (x) is smooth and it is satisfied that 
xEL 

then there also holds 

a*= argmin La(x)logaM(x) 
nEA xEL 

minloga*M(x) = """a*(x)loga*M(x). 
xEL ~ 

:rEL 

(8.100) 

(8.101) 

• 
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Proof. The first part of Theorem 8.4 can be proved quite easily. Thanks to 
Lemma 8.1 the inequality (8.94) holds for any p E P and a E A, and thus for 
any p E P and just for the a*, that satisfies (8.97). So we can write 

min logp(x) :S ""a*(x) loga*M (x), pEP, 
xEL ~ 

xEL 

which together with the condition (8.97) leads to the inequality 

min logp(x) :S min loga*111 (x), pEP, 
xEL xEL 

which is the relation (8.98) written in another form. 
We will write the inequality (8.94) for p = a* 111 and any a E A, 

min loga*M (x) :S ""a(x) log aM (x), a EA. 
xEL ~ 

xEL 

This inequality together with the condition (8.97) leads to the inequality 

L a*(x) loga*M (x) :S L a(x) log aM (x), a E A, 
xEL xEL 

which is the relation (8.99) expressed in another way. Therefore the first state
ment of Theorem 8.4 is proved. 

Now we will prove the second part of Theorem 8.4 by contradiction. The 
inequality 

is trivial. Assume that the result (8.101) does not hold, i.e., that a strict 
inequality occurs 

min loga*M(x) < l:a*(x)loga*M(x). 
xEL 

xEL 

We will prove that in this case there would exist a function a E A that 

.rEa xEa 

i.e., the relation (8.100) would not be satisfied. 

(8.102) 

We will denote x' = argminxEL a*M (x) and select the function a': L --+ lR 
such that a' ( x') = 1 and a' ( x) = 0 for all x E L except for x'. We can write 

min loga*M(x) = ""a'(x)loga*M(x), 
xEL ~ 

xEL 

and owing to (8.102) the following relation holds 

'I: (a'(x)- a*(x)) loga*M (x) < 0. (8.103) 
xEL 
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We will examine how the function Q(o:) = I:xEL o:(x) log o:M (x) behaves on 
the abscissa that connects the points a:* and a:', i.e., the dependence of the 
number Q (a:* ( 1 - /') + a:' /') on the coefficient /'. Let us regard the points a:* 
and a:' to be fixed, and the function Q (a:* (1 - ')') + a:' ')') to be a function of 
one variable I'· The derivative of this function according to the variable /' in 
the point /' = 0 is 

dQ = L (o:'(x)- o:*(x)) logo:•M (x). 
d')' xEL 

The derivative is negative because of (8.103). This means that for small values 
/' at least the number Q (a:* ( 1 - /') + a:' ')') is less than Q (a:*), and thus 

a:* f. argmin Q( a:) 
aEA 

which is in contradiction with the assumption (8.100). In this way the second 
part of Theorem 8.4 is proved. • 

Theorem 8.4 that has been proved shows the direction in which the solution 
of the minimax estimate task concerning the model p E P should be sought. 
It is necessary to find such weights o:*(x), x E £,which minimise the convex 
function Q(o:) = I:xEL o:(x) log o:M (x). From the second part of Theorem 8.4 
it will result that obtained weights o:*(x) satisfy the Equation (8.101). At the 
same time from the first part of Theorem 8.4 it results that the solution of 
the minimax task (8.91) is the approximation p* = o:•M, i.e., the maximum 
likelihood estimate 

p* = argmax L o:*(x) logp(x). 
pEP xEL 

Since the function Q(o:) is convex various procedures are at hand for its min
imisation. But for this minimisation standard procedures need not be used 
since from the very proof of Theorem 8.4 the following recommendations for 
creating minimisation algorithms result. 

So far a pair a: E A. and p E P has been found satisfying the relation 

min logp(x) ~ o:(x) logp(x),} 
xEL ~ 

.rEL 

p = argmax L o:(x) logp(x), 
pEP .rEL 

(8.104) 

and the task is solved. If the relation (8.104) is not satisfied then we can see in 
which way the weights o:(x) should be altered. We have to increase the weight 
a:( x) of such a pattern from the training set x E L the instantaneous probability 
p(x) of which is lowest, or one of the lowest. 

This intuition can be exactly expressed by means of the following algorithm. 



362 Lecture 8: Recognition of Markovian sequences 

Algorithm 8.3 Minimax estimate of the model p E 1' 
1. The user assigns the required accuracy of the task solution c > 0. He or she 

specifies the numbers n(x) = 1 for all patterns from the training set L and starts 
with the iteration t = 1. 

2. The following values are calculated 

t nt(x) 
a (x) = L:nt(x). 

X 

3. The maximum likelihood estimate is calculated 

4. If the inequality 

p1 = argmax L a 1(x) logp(x). 
pEP xEL 

~ n 1(x) logp1(x)- min Jogp1(x) < c £....... xEL 
:rEL 

is satisfied then the algorithm ends and p1 is the solution of the task. 

5. If the inequality (8.106) is not satisfied 

(a) It is denoted 
x' = argminp1(x). 

xEL 

(b) New values of the numbers n(x), x E £,are calculated such that 

n 1+1 (x') = n1(x') + 1, 

n1+1 (x) = n1(x), x E L, x # x'. 

(8.105) 

(8.106) 

6. It proceeds to the next (t + 1)-th iteration namely by going to step 2 of the 
algorithm. 

Algorithm 8.3 differs from the mentioned assumptions because the condition 
for ending the iterations is not Equation (8.104) which thanks to Theorem 8.4 
guarantees that the task has been solved. A weaker condition (8.106) was used. 
Using one's common sense one would assume that since the condition (8.106) 
is an approximate alternative of the condition (8.104) it could be considered as 
the condition of an approximate solution of the task. This correct assumption 
is confirmed by the following theorem. 

Theorem 8.5 On approximate solution of a minimax estimate task. If n E 
A and p E P satisfy the inequality 

and the relation 

then there holds 

~ n(x) logp(x) -min logp(x) < c ~ xEL 
xEL 

p = argmax L n(x) logp'(x) 
p'EP xEL 

min logp*(x) -min logp(x) < E: 
;rEL xEL 

(8.107) 
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where 
p* = argmax minp(x). 

pEP xEL 

363 

(8.108) 

• 
Proof. The inequality (8.94) which is proved by Lemma 8.1 is valid for any 
a E A and p E P. Therefore this is valid even for a which satisfies the condition 
(8.107), and for p* which satisfies (8.108). We can write 

~J2 logp)x)- L a(x) logp(x) :=::; 0. (8.109) 
. xEL 

By adding (8.109) and (8.107) we obtain 

min logp*(x)- min logp(x) <E. 
xEL xEL • 

We will demonstrate now that Algorithm 8.3 with any positive t: will undoubt
edly get to a state when the condition (8.106) is satisfied and so the model 
will be found which solves the task with a predefined precision in the sense of 
Theorem 8.5. This statement is proved on an additional and not very limiting 
condition. 

We will say that the training set L is not in contradiction with the class P if 
there exists such a model p E P for which p( x) "/= 0 for any x E £. It is naturally 
understood that if L is in contradiction with P then all models are wrong 
because minx E L p( x) = 0 for each model p E P and no optimisation can be 
thought of. From the assumption that the training set L is not in contradiction 
with the Pit directly follows that the function Q(o:) = LxELa(x)logaM(x) 
is bound from below by the set A. As before we assume that the function 
Q(o:) = LxEL a(x) log aM (x) is smooth. 

Theorem 8.6 On algorithm convergence of the minimax estimate of a 
model. If the set L C X is not in contradiction with the set P and the func
tion Q(a) = LxELa(x) ·logo:M(x) is smooth on the set A then Algorithm 8.3 
will converge in a finite number of iterations to the state in which the condition 
{8.1 06) is satisfied, and the algorithm finishes. • 
Proof. 
1. Let us assume that Theorem 8.6 is not valid and Algorithm 8.3 will not 

finish iterating. This would mean that in each iteration of the algorithm 
the following inequality was satisfied 

L a/(x) logp1(x)- min logp1(x) 2 t:. (8.110) 
xEL xEL 

We will prove that in this case and at a sufficiently large t the quantity 
Q(o:) = LxEL a1(x) logp1(x) could fall below any value. This is, however, 
impossible owing to the assumption that the set L is not contradictory in 
the class P. 

2. The proof will be performed according to the following scheme. 
(a) It will be proved that 

lim lo:t- O:t-tl = 0. 
I -too 

(8.111) 
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(b) A linear function Gt : A -7 lR is introduced 

Gt(a) = L a(x) logpt(x) 
xEL 

which is with respect to the function Q(a) = LxELa(x)logaM(x) in 
the relation 

The linear function Gt corresponds to the gradient of the function Q(a) 
at the point at. 

(c) A sequence of the numbers G1(at+l_at), t = 1, 2, ... , oo, and Q(a1+1 )

Q(at), t = 1, 2, ... , oo, is formed. If (8.111) is proved then also the 
following is proved 

lim Gt(at+l- at)= 0, 
t--+oo 

lim (Q(a1+1)- Q(a1)) = 0, 
I -too 

since in the finite-dimensional space any linear function is continuous 
which holds even for any convex function. 

(d) The function Q is according to the assumption smooth, and there
fore the convergence of sequences of the quantities Gt(at+l - a 1) and 
Q(at+l)- Q(at) toward zero are of the same order. If there holds that 

00 

L G1(o/+l - (/) = -oo, (8.112) 
1=1 

then there also holds 
00 

L (Q(al+l)- (J((/)) = -oo. (8.113) 
1=1 

The munber on the left-hand side of tlH' last (~quality is nothing else 
than limt-too(CJ(o:1)- Q(a1)). Thercfon' the relation (8.113) would 
mean that in spite of the lower-bound of tlw function Q(a) the number 
Q(a1) could fall below any negative numbn· at sufficiently great t. In 
this way, the theorem would be proved through contradiction. 

Thus, it is necessary to prove that the assumption (8.110) results in the 
relations (8.111) and (8.112) and Theorem 8.6 will be proved. 

3. We will denote by n1 = L.rEL n/(x), x1 = argmin,rELP1(x), and by alt the 
function L -7 lR for which there holds a't ( x) = 1 if :r = x 1 and o/1 ( x) = 0 if 
x ::/:- xt. With these notations the inequality (8.110) assumes the form 

L (n1 (:r)- a'1(x)) 1ogp1(x) ~ E, (8.114) 
.tEL 

and the weights a 1+ 1 ( :r) in the algorithm can be expressed as 

t+l ( I nl tt 1 
a x) =a (x) n' + 1 + n (x) nt + 1 . 
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The difference between the weights a in the two successive iterations is 

t+l( ) t( ) - a't(x)- at(x) a x -a x - 1 1 . 
n + 

4. The number n1 in the first iteration is ILl and it is increased by one in each 
iteration. Therefore there holds that n1 = ILl + t- 1, and therefore 

(8.115) 

The numerator is limited and therefore we can see that for all x E L 

lim la1+1(x)- a 1(x)l = 0 
t--+oo 

holds and the relation (8.111) is proved. 
5. The difference G1(a1+1 - a1) is 

G1(a1+1 ) - G1(a 1) = L ( at+1 (x) - a1(x) logp1(x)) 
xEL 

Owing to (8.115) we can write 

Gt (at+l) - Gt(at) = L a't(~L-+ ~~ (x) logpt(x) . 
xEL 

At last we can see, owing to (8.114), that the difference is negative and, 
moreover, 

Gt(a1+1 )- Gt(a1) < __ c:_. 
- ILl +t 

6. The sum L,[= 1 G1(at+l- a 1) is not greater than -c: L,[=1 td+t, and there
fore with increasing T the sum can fall below any negative number. The 
relation (8.112) is proved. • 

Thus we have proved that rather simple algorithm performs the minimax eval
uation of the statistical model of the object. Of course, this algorithm can be 
treated as a simple one only under the condition that a simple algorithm for the 
maximum likelihood estimate is available. If we already have such a program 
then the program for the minimax estimate is designed in quite a mechanical 
way. The existing program is extended by simple operations of adding up a 
one, and enclosing into a cycle which is not worth mentioning. This superstruc
ture does not depend on a concrete task, i.e., on the form of the observation 
set X and on the class of models P. In this way a close relationship of two 
extensive estimation tasks is revealed which would seem, at a cursory glance, 
to be different. 

The algorithm mentioned above is, because of its universal character, suit
able for using even when specific properties of the applied problem under con
sideration are not yet known. With increasing knowledge of the task even other 
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algorithms can be better suited, for example those of the gradient descent, or 
the methods of reciprocal gradients, and many others. The competence of 
using all these methods is based on the following two previously proved and 
universally true properties. 

• The minimax estimate of the model for some training set L is identical with 
maximum likelihood estimate of the model for some training multi-set L • 
where every member x E L occurs with relative frequency a(x). 

• The coefficients a(x), x E L, which provide the equivalence of these two 
estimates, minimise the well defined convex function. 

8.9.3 Proof of the minimax estimate algorithm 
of a Markovian model 

The general algorithm for the minimax estimate of a model described in Sub
section 8.9.2 is defined except for the operation 

pt(x) = argmax L at(x) logp(x) . 
pEP xEL 

The program implementing the operation was assumed to have been available. 
For the case in which P is a set of Markovian models, we defined this oper
ation by means of the formulce (8.85) and (8.86) and called it a Markovian 
approximation. 

It can be noted that including the calculations (8.85), (8.86) from Section 8.8 
in the general Algorithm 8.3 will lead to the particular Algorithm 8.2. It is 
not difficult to make certain that the set of Markovian models P satisfies the 
conditions on which Theorems 8.4, 8.5 and 8.6 are valid. These are only two 
conditions: consistence of the training set L with respect to the set P and 
the smoothness of the function L;a(x,k)logaM(x,k). The first property is 
satisfied because for any training set ((xi, ki), j = 1, ... , l) such a Markovian 
model exists in which each pair (xJ, kl) occurs with non-zero probability. It 
can also be noticed that for the set of Markovian models P the dependence 
of the value maxpEP L(x,k)EL a(x, k) logp(x, k) on coefficients a(x, k) is not 
only convex but also smooth, i.e., differentiable. Theorems 8.2 and 8.3 are 
thus special cases of proved Theorems 8.5 and 8.6, respectively. We need not, 
therefore, prove them. 

8.10 Tuning the algorithm that recognises sequences 
The task of tuning a pattern recognition algorithm was already formulated 
in Lecture 4 in the general form, and in the Subsection 8. 7.3 particularly for 
Markovian models. The objective of the task is to create for the training set 
L = ((xi, ki), j = 1, ... , l) the ensemble of functions fi: K x X x K --+ IR, 
i = 1, 2, ... , n, which fulfill the relation 

n 

ki = ~rgmax L f;(k;_ 1 , x{, k;), j = 1, ... , l. 
kEKn+l i=l 

(8.116) 
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Written in another way, the function values fi(k;_ 1 ,x;,k;) have to satisfy the 
system of inequalities 

" " 
Lf;(kf_1 ,xi,kf) > Lf;(k;-J,x{,k;), k =/: f.:J, j = 1,2, ... ,l. (8.117) 
i=1 1=1 

The system of inequalities (8.117) consists of an enormous number 
(1Kin+ 1 - l)l of linear inequalities which restrict n x IKI 2 x lXI variables 
j;(k',x',k"). In spite of an enormously great number of equalities, a solution 
of the system (8.117) can be found with the methods explained in Lecture 4. 
Naturally, the solution can be found by these methods only if such a solution 
exists at all. The main advantage of those methods, be it the Perceptron 
method, Kozinec's or similar ones, is that they do not require a check of all 
the inequalities in the system. It suffices to have at disposal a constructive 
way for checking whether the given ensemble of numbers J;(k', x', k") satisfies 
the system (8.117). If the system is not satisfied then it is sufficient to find a 
single inequality which is not satisfied. The current modification of numbers 
J;(k',x',k") depends only on this single found inequality. Such a constructive 
method exists for a system of linear inequalities of the form (8.117) and the 
procedure is represented by the system of relations (8.116). For each j = 
1, ... , l, it suffices to find out the sequence 

n 

f.:•J = arg~ax L J;(ki-1, xi, k;), 
k 

(8.118) 
i=1 

and then check if the following holds 

f.:•J = f.:J, j = 1,2, ... ,n. (8.119) 

The sequence (8.118) is obtained with the help of constructive algorithms seek
ing the shortest path in the graph which was introduced in Subsection 8.4.4. 
If the equation (8.119) is not satisfied for some j then it also determines the 
inequality from the system (8.117) which is not satisfied. Namely it is that in
equality the left-hand side of which corresponds to the sequence k6, k{, ... , kh 
and its right-hand side to the sequence k~1 , k?, ... , k~J. 

The advantage of perceptron and Kozinec algorithms is that it is not re
quired to know all unsatisfied inequalities from the system to change values 
fi (k', x', k"). It suffices to know just a single inequality out of them. If for 
some j the equation (8.119) is not satisfied then it leads immediately to mod
ification of values fi(k',x',k") for which the selected algorithm is used. If the 
perceptron algorithm is used, and it is the most easy one to formulate, then the 
rule performing the modification has very simple form. Numbers J;(k', x', k") 
are to be increased by one if kf_ 1 = k', xi = x', kf = k", and to be decreased 
by one if k;~ 1 = k', xi = x', k;.1 = k". Otherwise the values remain unchanged. 
In the case if k7~ 1 = kf- 1 = k' and simultaneously k;i = k{ = k", the men
tioned modification rule has to lw understood in such a way that the value 
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fi(k',x',k") is increased by one at first and decreased by one afterwards. The 
result is the same as there were no modification. 

The NovikoffTheorem 5.5 is valid for the algorithm formulated in a described 
way because it is not required that the number of inequalities were small. It 
is required only that the system has a solution. It follows from the Novikoff 
theorem that if such an ensemble of numbers exists that satisfies the system 
of relations (8.116) then in a finite number of steps the variables fi(k', x', k") 
assume values that fulfill the relation (8.116). 

8.11 The maximum likelihood estimate of statistical model 
in unsupervised learning 

Let xn be a set of sequences of the form X = (X)' :1:2' ... 'Xn)' Xi E X' of the 
length n. Let Kn+ 1 be a set of sequences of the form k = ( k0 , k1 , ... , kn), 
ki E K, of the length n + 1. The function p: X" x Kn+l --+ lR gives for each 
sequence x EX" and k E Kn+1 its joint probability p(x, k). We know that the 
function p has the form 

_ - Iln Pi(ki-1, Xi, k;) 
p(x,k)=pl(ko,xl,kl) "' "' ·(k· 'k'). 

i=2 L-k'EK '--x'EX Pt t-),X' 
(8.120) 

This means that the function p: xn X Kn+l --+ lR is uniquely determined by n 

functions Pi, i = 1, ... , n, of the form K x X x K --+ lit The set of functions 
p: xn x Kn+l --+ lR of the form (8.120) will be denoted by P and the ensemble 
(Pi , i = 1, ... , n) by P. 

Let (x1 , x2 , •.. , xi) be an ensemble of mutually independent sequences and 
let each of them be of the length n, i.e., x1 E xn, j = 1, ... , l. In addition, 
let us assume that each sequence xi is an instance of a random sequence the 
probability distribution of which is LkEKn+l p(x, k). In this case, the proba
bility of the ensemble (x1 , x2 , ... , xi) is given as Il~=l LkEKn+l p(xJ, k), and 
this probability depends on what the function p E P is like. The task of the 
maximum likelihood estimate of a model in the context of unsupervised learn
ing is defined as seeking the model p* E P which maximises this function, i.e., 

p* = argmax IT1 L p(x1, k) 
EP J=l -

p kEKn+l 

= argmax L 1 log L- . p(xi, k). 
pEP J=l kEKn+• 

(8.121) 

The similarity of this task to the task of unsupervised learning which was 
discussed in Lecture 6 is quite evident even if, strictly speaking, the tasks are 
different. Formerly we analyzed a case of supervised learning in which the 
sought model p(x, k) is decomposed into IKI + 1 independent tasks. The first 
of them is seeking a priori probabilities PK(k) for each value of the hidden 
parameter k. Other IKI tasks seek the distribution of conditional probabilities 
PXIk(x) under the condition k for each value k E K. It was assumed that the 
choice of functions PXik' from the known set P does not, in any way, affect the 
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choice of another function PXIk"· In other words it referred to a situation in 
which each function PXIk> k E K, was completely determined by its own value 
ak of the parameter a. The choice of the value ak' for some value k' affected 
in no way the choice of the value ak" for any other value k". The case we are 
dealing with now is different. If k' and k" are two fixed sequences then 

and 
11 (k" k") - II Pi i-1•Xi, i 

PX"Ik"(x)= " ·(k~' 'k~')" 
·-1 L...., Pz z-l•X' z 
'·- x'EX 

The functions Pi: K x X x K -7 IR, i = 1, ... , n, which determine these two 
probability distributions are to be the same in both the expressions. The ques
tion therefore is that the parameters of the model are given by the ensemble 
(P1, pz, ... , Pn) of the functions of three variables that affect simultaneously the 
probability distributions Pxn 1;.: _for all k E K 71+1. In_ addition, they also affect 
the a priori probability p Kn+I ( k) for each sequence k E Kn+l. 

In spite of this formal difference of the task (8.121) from the unsupervised 
tasks analysed in Lecture 6, these two tasks have a kind of affinity of thought. 
The task (8.121) can be solved through a slight modification of all considera
tions that we quoted for the unsupervised learning task before. We will briefly 
recall the considerations, but now it will be within the examined Markovian 
model. 

Fort= 1, 2, ... , oo we will create a sequence of models pt E P, i.e., these
quence of ensembles of the numbers p~(k',x', k"), i = 1, ... ,n, k' E K, x' EX, 
and k" E K. Each ensemble determines the following probability for each pair 
(x, k) E xn X K 11+1 ' 

(8.122) 

We denote by Ji(x') the subset of those indices j for which x{ = x' holds, and 
Ki(k', k") the set of those sequences k for which ki- 1 = k', ki = k" holds. 

Assume that we know the ensemble of numbers PH k', x', k"). A new en
semble of numbers p~+l (k', x', k") is being built in the following two steps. 

Recognition. For each sequence xi and each sequence k E K 11+1 we calculate 
the number 

(8.123) 

where the numbers pt(xi, k) are calculated according to the formula (8.122). 
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Learning. For each i = 1, 2, ... , n, k' 
numbers are calculated 

E K, x' E X, k" E K, the following 

t+l(k' I k") = ~ " P, ,x, l ~ 
jEJ;(x') 

(8.124) 

kEK;(k' ,k") 

The given algorithm is, of course, not suitable for use since the set Kn+l is ex
tremely extensive, and therefore the numbers a(xi, k) cannot be calculated for 
each sequence k E Kn+l. Similarly the sum over all sequences k E Ki(k', k") in 
the formula (8.124) cannot be computed. Later we will show how an algorithm 
is to be formed which is equivalent to the above quoted algorithm, but can be 
built in a constructive way. But now we will use the definition of the algorithm 
in the given non-constructive form to prove the following theorem. 

Theorem 8.7 On unsupervised learning in Markovian sequences. Let p~(k', 

x', k") and p:+ 1 (k',x',k"), i = 1,2, ... ,n, k' E K, x' EX, k" E K, be two 

ensembles calculated according to the relations (8.123} and (8.124}. Let p1, 

pt+l be two successive models, i.e., two functions of the form xn X Kn+l -+ ~ 
defined by the formula (8.122}. In this case there holds that 

l I 

II I: pt+l(xi,k) ~II I: pt(xi,k). 

Proof. Since there holds that 

L a1(xJ,k)=1, j=1, ... ,l, 
kEKn+l 

also the two following equations hold 

l 

L log L p1(xi,k) 
j=l kEKn+l 

l 

L log L pt+l(xi ,k) 
j=l kEKn+l 

According to (8.123) 
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holds for each j = 1, 2, ... , l. Consequently owing to Lemma 6.1 the inequality 

pt(i:i,k) pt+l(xi,k) L o/(xi,k)log L t(xi k) ~- L c/(xi,k)log L pt+l(xi,k) 
kEKn+! - p ' kEKn+! 

kEKn+! kEKn+! 

holds also for each j = 1, 2, ... , l. So we write 

(8.125) 
The numbers p:+l W, x', k") calculated according to (8.124) satisfy the condi
tions of Theorem 8.1 from which it follows that 

I l 

L L c/ (xi ,k) logp1+1 (xi, k) ~ L L ci(xi, k) logp1(xi ,k). 
j=l A:EKn+l j=l kEKn+! 

(8.126) 
The following inequality follows from the inequalities (8.125) and (8.126) 

l l 

Llog L p1+1(xi,k) ~ I:log L p1(xi,k), 
i=l j=l 

and the theorem is proved. 

• 
We will show how the above algorithm can be transformed to an equivalent 
algorithm which can be realised in a constructive way. The numbers o/(xi, k) 
and the probabilities p1 (xi, k) in the algorithm are only auxiliary data which 
facilitate the proof of Theorem 8.7. In the constructive application of the 
algorithm these numbers can be excluded and the algorithm can be expressed in 
such a way that it will operate only with parameters Pl ( k', x', k") and numbers 
al{k', ;z), k") which are defined as 

nJ ( 1 . .' ~) tJI) _ 
Ltj J\, '.l._,i' f\, -

The formula (8.124) assunws a quite simple form 

p:+ 1(J.:',:r',k") = ~ L n;(k',:rJ,J.:") 
jEJ;(.r') 

the calculation of which does not pos<' any unsunuountable obstacles lH'cause 
it requires only addition over the sequences which arc pr<'S<'nt in t hP training 
multi-set. 

The calculation according to the formula (8.123) is immediately replaced by 
the calculation of the sum n; (k', :l:J, J.:") on the basis of the numbers p:-l (J.:', :r', 
k"). The medmnism of this calculation was analysed in detail in Section 8.5 
since the nmnlH'r n; (k', :T·J, J.:") is nothiug else than the joint a postc7·i{J1"i prob
ability of the <'vent k;_ 1 = J.:', k; = J.:" for an observed sequence :I:J. 
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8.12 Discussion 
I have had an ambiguous impression from your lecture. On the one hand, I 
noticed that the Markovian model of an object, which you examined in detail in 
your lecture, allows us to solve precisely a number of pattern recognition tasks. 
I seem to understand the lecture to such an extent that I could solve the tasks by 
myself. And so I gather a self-confident feeling that in the sphere of structural 
recognition of sequences I can master many things. At the same time I assume 
that there exist treacherous pitfalls, into which I can fall more easily when I do 
not know about their existence. I would rather know them beforehand. I well 
remember Example 7.1 on recognising vertical and horizontal lines. The task 
seemed to be quite easy, but in fact it happened to be fantastically complicated. 
I would like to find a similar task even among Markovian models. 

You would naturally come across such a task if you had enough time for it. 
You would master one task after another and we estimate that after the tenth 
task at the latest you would come across what you are looking for. We will try 
to make the job easier for you by seeking it together with you. But anyhow, 
let us start from a simple task. 

Let us assume, as we did in the lecture, that x E xn and k E Kn+l are two 
random sequences the joint probability distribution p(x, k) of which is Marko
vian. We already know that a sequence k* = argmaxkEKn+l p(x, k) can be 
constructively created for any sequence x. How would you design an algorithm 
if you did not need to know the whole sequence k*, but only to find out how 
many times the certain value a E K occurred in the sequence? 

Here a kind of trouble is hidden and I did not reveal it. When I already have 
the sequence k* it is then easy to count how many times a occurs in it. I 
wonder what I passed over when I cannot see why it should not be a correct 
solution. 

Your suggestion is not incorrect. But a trouble is there in spite of all that. You 
think it self-evident that for solving the task it is necessary to find the whole 
sequence k*. But in formulating the task we pointed out that a whole sequence 
was not needed in your application. In your algorithm the whole sequence 
is only an auxiliary piece of information, from which you will select the final 
result. You have not suggested the best way. 

Yes, it was said that I did not have to create the whole sequence k*, but it was 
not said that I was not allowed to create it. Why would not I be able to find 
it as an auxiliary sequence? 

Since you would unnecessarily waste the memory and you may be later short 
of it. In creating this auxiliary information you must have enough memory for 
quantities indi(k) for each i = 1, 2, ... , n, and for each k E K, i.e., the memory 
of n !KI log IKI bits. Remember the procedure presented in Subsection 8.4.4. 
Do not forget that the length n of the sequence can be so large that you may 
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not have the necessary memory any more. In this case you were not able to 
realise your procedure. It does not mean, however, that the task cannot be 
solved by another algorithm which can find out how many times the value a 
has occurred in the most probable sequence without your having built up the 
most probable sequence. What should such an algorithm look like? 

I understand it now. Let the numbers indi(k) have the same sense as defined 
in the lecture. I will introduce other numbers hi(k), i = O,l, ... ,n, k E K, 
which mean how many times the value a occurred in the sequence kb, k~, ... , k~, 
which maximises the probability p(xl, kb) and in which k~ = k. The numbers 
hi(k) are calculated according to the following procedure: 

ho(k) = { 
1' 
0, 

if k=a, 

if k ::/; a . 

if k=a, 

if k ::/;a. 

(8.127) 

If k* = (k0, ki, ... , k~) is the most probable sequence then the number hn(k~) 
is the solution of the task. To find it we need not know the whole sequence k*, 
but it is sufficient to know only its last element. To find that last element I 
need not know the numbers indi(k), and therefore neither the memory for them 
is needed. The number indi(k), which occurs in the relation (8.127), is used 
for each i and k only once, immediately after its being calculated and therefore 
to remember it, only one log IKI-bit cell is sufficient. The numbers hi(k), 
k E K, which the algorithm has calculated, are also used only once, namely 
in calculating the numbers hi+ 1 ( k). To store the numbers hi ( k), k E K, the 
memory for 2JKJlogn bits is sufficient, which is far less than n JKJ!og IKI bits 
that would be necessary if I wanted to reconstruct the whole sequence k*. 

Now try to create an algorithm which, for a known stochastic automaton, finds 
out how many times the automaton got into the particular state a while it was 
generating the known output sequence (x1, x2 , .•. , Xn)· 

Have not I done that just now? 

Of course not. The most probable sequence need not be the real one. 

But, I do not know any real sequence. I cannot say that a particular sequence 
k is or is not the real one. At most, I can calculate the a posteriori probability 
of it being real. And so the question you are asking is similar to that which 
follows. There exists a random quantity with a known probability distribution. 
On this basis it is to find out what this quantity is equal to. Well, it is nonsense. 
A random quantity is not identical with any fixed quantity. 

We are glad that your criticism of us is so sharp. It is actually nonsense. Let 
us formulate the question in a proper way. For a known stochastic automaton, 
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for a given state rJ, and a given number lit is necessary to find the probability 
that the automaton passed the state fJ l times when generating the observed 
sequence of symbols (x1,x2, ... ,xn)· 

I have understood the assignment. I denote the sequence (x1 , x2, ... , x;) by xf 

and assume that x? is an empty sequence. I denote by the symbols g;(xf, l, k), 
i = 0, 1, ... , n, l = 0, 1, 2, ... , i + 1, k E K, the joint probability of the following 
three events: 
1. The first i elements in the output sequence which the automaton generates 

are the values xf. 

2. In the sequence of states k0 , k1 , ... , k; through which the automaton passes 
the state fJ occurs l times. 

3. The state k; is k. 

According to this definition there holds 

{ 
Po ( ko) , if l = 1 and ko = fJ , 

go(x?,l,ko)= Po(ko), if l=O and ko-:f.rJ, 

0 , in other cases . 

(8.128) 

I denote by the symbol g;(x\,l,k), i = 1,2, ... ,n, l = 0,1, ... ,i, k E K, the 
joint probability of somewhat different events than those whose probability is 
denoted by g. 

1. The first i elements of the output sequence which are generated by the 
automaton are xf. 

2. In the sequence of states (k0 , k1 , ... , k;_I) through which the automaton 
passes the state fJ occurs [-times. 

3. The state k; is k. 

From the definitions of g; and g; their mutual relation follows 

. { g;(xf,l,k), if k-j.rJ, 
g(x' l k)= 

l l > > I ( i l - 1 k) if k = (J • 
g, xl' ' ' 

(8.129) 

and the fraction 

L~=O LkEK 9n(xj'' l, k) 

is the conditional probability sought that the automaton passed l-times through 

the state fJ during the generation of the assigned sequence xj'. The algo
rithm which I am expected to create should gradually calculate the numbers 
go(),gl(), ... ,gn(), starting from the numbers g0 which are defined by (8.128). 
For the formulation of the algorithm I will further introduce auxiliary numbers 
g;'(xt, l, k', k") which mean the joint probability of the following four events. 

1. The first i elements generated by the automaton into the output sequence 
are the values xf. 
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2. In the sequence of states k0 ,k1, ... ,k;-1 through which the automaton 
passes the state a occurs l-times. 

3. The state k;_ 1 is k1 • 

4. The state k; is k 11 • 

The probabilities g1 and g11 must satisfy the following relation which holds for 
any probabilities: 

g';(xi,l,k) = L g;1(xi,l,k 1 ,k). (8.130) 
k'EK 

For the probabilities g;1 there holds, in addition, 

g;1(x1,l,k 1,k) =g;1 ((x~- 1 ,x;),l,k1 ,k) =g;_I(xl- 1,l,k1)p;(x;,klk1), (8.131) 

where p;(x;, k I k1) is the known probability which characterises the automaton. 
The relation (8.131) is correct because with the fixed state k1 in the (i- 1)-th 
instant the random quantity x; and k, which are realised subsequent to this 
instant, do not depend on the random events xi- 1 and l, which precede this 
instant. A.fter including (8.131) into (8.130) I obtain 

g;(xb,l,k)= L g;-t(x~- 1 ,Z,e)p;(x;,kW). 
k'EK 

I will rewrite the same using (8.129) 

{ 
L 9i-t(x~- 1 ,l,k1 )p;(x;,klk 1 ), 

· k'EK 
g;(x~,l,k) = . 

L 9i-1 (xl- 1 , l - 1, k1) p;(x;, k I k1) , 

k'EK 

if k -:f. a, 

if k =a. 
(8.132) 

One calculation according to the formula {8.132) assumes the complexity 
O(liKI 2 ) and the whole algorithm has the complexity 0(12 IKI 2 ). This com
plexity seems to me too high. Cannot it be made lower in some way? 

You have managed the task quite well. It does not seem to us that the algorithm 
could be made substantially faster. Notice, however, that if you did not have 
to calculate the whole probability distribution of the quantity l, but only some 
characteristics of the random quantity l, such as the mathematical expectation 
or variance, then the calculation could be made faster. If you were to calculate 
the probability of each value l when only the mathematical expectation of this 
value is needed you would make many superfluous calculations. 

Let us direct your attention to a more difficult task because the limit of your 
resources does not seem to have been attained yet. 

Let us assume that you are interested not only in the total number of 
states a in the sequence (k0 , k1 , ... , k11 ), but also in their positions. This 
means that you are interested in the set r of all instances in which k; = 
a has occurred. This task may be one of the simplest out of the class of 
tasks referred to as segmentation. In the given case it is the segmentation 
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of the time interval (0, 1, 2, ... , n) into subintervals which are separated from 
each other by the state a and inside them the state a does not occur. It 
is a task which, because of its treacherous character, is quite near to the 
task concerning vertical and horizontal lines you have remembered. At first 
glances it seems that it is a simple and common task, such as finding loca
tions in a text document in which a certain letter is placed. If the character 
sought is a space then it means a segmentation of the text into individual 
words. 

We will formulate the task exactly and you will see that it can be solved, but 
its solution will require some mental effort. The set I' C {0, 1, ... , n} will be 
called segmentation. Let us define a set K(I') of sequences k = (k0 , k1 , ... , kn) 
for each segmentation I'. The sequence k = (ko, k1, ... , kn) belongs to K(I'), 
if ki = a for all i E I' and, at the same time, ki -:f. a for all i rf. I'. The 
probability that the actual segmentation is I' is equal to the probability that 
the actual sequence k belongs to the set K(I'). Under the condition that the 
sequence xis known, the probability of the segmentation I' is given by the sum 
LkEK(I') p(k I x). The most probable segmentation I* is 

I* = argmax L p(k I x) = argmax L p(x, k) . 
I' kEK(l') I' kEK(/') 

(8.133) 

Try to design an algorithm which for each given sequence x yields the segmen
tation (8.133). 

I have mastered the task, but it may be the most diflicult task I can still manage. 
I have found that the task (8.133) can be transformed to a form in which it can 
be solved with dynamic programming. But in setting up the particular task of 
dynamic programming a quite complicated algorithm is needed. This algorithm 
calculates the data which are the input for the task of dynamic programming 
itself. 

First, I made clear what the function 

F(I') = L p(x, k) 
kEK(I') 

looks like which, according to the task (8.133), is to be maximised. 
Since I' is a subsequence of the ordered sequence I = (0, 1, ... , n), the 

subsequence I' is also ordered. Thus it can be expressed as a sequence of indices 

(io,il, ... ,iq,···,iQ), iq > iq-1, q = 1,2, ... ,Q, Q = II'I-1. Furthermore, 
I assumed that indices i 0 and iQ were known, i.e., i 0 = 0 and iQ = n. This 
means that the automaton began and finished the generating of the observed 
sequence in the state a. I do not intend to hold you back by explaining why 
I am entitled to have such an assumption. I claim that in this way I do not 
make the task narrower. 
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For some given segmentation I' = ( i 0 , i 1 , ... , iQ) the pair (x, k) can be ex
pressed as a concatenation of a certain number of subsequences in the form 

(i, k) = ko' 
-il kil-l 

k;l ' xl ' 1 ' 

i2 ki2-l 
ki2 ' xi1+I' iJ+l' 

iq ki.-1 k;. , X;•-1 +I' iq-1+1• 

Because the recognised object is Markovian and because a stochastic automaton 
is being analysed, it follows that at a fixed state k;. the variables x;, k;, i < iq, 
do not depend on the variables x;, k;, i > iq. Therefore the joint probability of 
the pair (x, k) has the form of the product 

Q 

p(x, k) = Po(ko) II p~ ( x;;_ 1 +I , k;;_:-11+1 , k;. I k;._ 1) . (8.134) 
q=l 

In this product the number p0 (k), k E K, means. the probability that the 
initial state of the automaton is k. The number p~(x~;_ 1 +I, k;;_:-11+ 1 , k;. I k;._ 1) 
means a conditional probability of the event which under the condition that the 
automaton was in the state k;._ 1 in the (iq_I)-th instant, the further iq- iq-1 

output symbols will be x~;_ 1 + 1 and the automaton will pass through iq- iq-1 

states k;;_ 1 +I· _ 

In the sum LkEK(l'l p(x, k), ~hich depends on the segmentation I' = (i0 , 

i1, ... , iQ), only such sequences k occur in wl1ich k;. = ri, q = 0, 1, ... , Q, and 
k-i =f. r7 for other indices i. Therefore the product (8.134) assumes tl1e form 

Q 
( - k-) ( ) II I ( iq k; .• -1 I ) P x, =Po r7 Pq xi.-1+1' iq-1+1' fJ fJ · 

q=l 

(8.135) 

This product is to be summed over all sequences of the set K(I'). This means 
that the summation LkEK(l') must be performed, i.e., the multi-dimensional 
sum 

L L L L (8.136) 
kil-l 
1 Ah-1 

'it+l 
kiq-1 

iq-1 +I 
kn-1 
'Q-1+1 

This summation of the products (8.135) has the same form as, e.g., the sum 

111 

L II cp;(z;) 
Zm i=l 
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of products TIZ:,1 (j?;(z;) which expresses the same as the product 

f1Z:, 1 l:z, 4?;(z;) of the sums 2:::, 4?;(z;). The equality 

m 11l 

is universally correct for any functions 4?i, i = 1, 2, ... , m. Therefore the func

tion F(I') which is expressed as the sum (8.136) of the products (8.135) will 
assume the form 

F(I') L p(x, k) 
kEK(l') 

Q 

= Po(a) II L p~ ( x::_ 1 +I> k;;~11+I> a I a) . 
q=1 k;q-l 

'tq-1 +1 

(8.137) 

We will introduce a more general denotation p;1 (x{+ 1 , kf;1
1 , a Ia) for the proba

bility that under the condition k; = a the automaton will generate the sequence 
. . 1 

xi+ I and will pass through the sequence of the states (kf;1 , a). Therefore the 
denotation p'q used will now be written asp',· i • Each factor in the product 

q-11 q 

(8.137) has now the form 

L P;j ( x{+1' kf;11' a I a) 
kitl1 

(8.138) 

and depends only on indices i and j. The sum (8.138) evidently does not 
depend on the subsequence k{;f because the sum is taken over the set of 
these subsequences. The sum (8.138) does not depend on the subsequence xi+1 
because in each calculation this subsequence is fixed. The denotation cJ>( i, j) 
will be introduced in (8.138), i.e., 

cJ>(i,j) = LP;j (xi+1, kf;11, ala)· 

ki+i 
(8.139) 

In the previous sum the summation is taken over all sequences k{;{, in which a 
does not occur. The expression (8.137) for F(I') can be written more concisely 
by using the introduced symbol cJ>(i,j), 

Q 

F(I') = Po(a) II cJ.>(iq-1, iq). (8.140) 
q=l 

In this way I have succeeded in decomposing the original task into two 
separate tasks. In the former the value cJ>(i,j) for each pair of indices (i,j), 
i = 0, 1, ... , n -1, j = 1, 2, ... , n, i < j, is calculated according to the definition 
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(8.139). In the latter task the segmentation I* is found, i.e., the sequence 
i0, ii, ... , i'Q (with Q not known beforehand) which minimises (8.140), 

I * ( .• .• "* .• .• ) = t0 ,t1 ,t2 , ... ,tQ_1 ,tQ 

Q 

= _argmax Il<I>(iq-l,iq) (8.141) 
ll,'l2, ... ,lQ-1 q=l 

under the condition 0 = io < i1 < iz < · · · < iQ-1 < iQ = n. 
The calculation procedure for the first task is similar to the procedures you 

quoted in the lecture. Let <I>'(i,j,k) be auxiliary values defined by the expres
sion 

<I>'(i,j,k) = LP~j(x{+ 1 ,k{+11 ,kla). 
ki+i 

The values <I>(i,j) sought are <I>'(i,j, a). The values <I>'(i -1, i, k) are calculated 
according to the following recursive formula 

<I>'(i,j, k) = L <I>'(i,j- 1, k') Pj(Xj, k I k'). (8.142) 
k'#u 

The calculation begins with the values <I>'(i - 1, i, k) which for each i are the 
known probabilities Pi(x;, k I a) characterising the automaton. The calculation 
of the collection of numbers <I>' ( i, j, k) for all triplets ( i, j, k) according to the 
formula (8.142) has a complexity O(n2 IKI2). The values <I>'(i,j, k) have been 
calculated, thus we know the numbers <I>(i,j) = <I>'(i,j,a). 

Now I will search for the segmentation I* satisfying the requirement (8.141). 
Let i* > 0 be the chosen index and J(i*) be a set that contains all sequences 
of the form 

io, i1, iz, · · · , iQ, 0 = io < i1 < i2 < · · · < iQ-1 < iQ = i*. 

Each sequence of this type is characterised by the number TI~= 1 <I>(iq-1, iq). I 
will denote the largest of them F* ( i*), 

Q 

F*(i*) = max IT <I>(iq-1, iq). 
(io,i,, ... ,iq)EJ(i•) 

q=l 
(8.143) 

Let i0,ii, ... ,i'Q_1,i'Q be a sequence which maximises (8.143). I will denote 
the last but one index i'Q_ 1 in the sequence by the symbol ind(i*). The last 
index i'Q is, as was said, i*. I define F* ( i*) = 1 fori* = 0. The following holds 
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for i* > 0 in the general case, 

Q 

F*(i*) = max · · · max II <I>(iq-1, iq) 
it iQ-1 '---....---' q==1 

O<i1 < ... <iQ-1 <i* 

= max max max · · · max 
iq-2 

Q-1 

<I>(iQ-1,i*) II <I>(iq-1,iq) 
q==1 

The previous expression will be written in a briefer manner 

F*(i*) =max <I>(i,i*) F*(i). 
i<i* 

I will define the index ind( i*) as 

ind(i*) = argmax <I>(i, i*) F*(i). 
i<i* 

(8.144) 

(8.145) 

By means of expressions (8.144) and (8.145) I gradually calculate F*(1), F* (2), 
... , F*(n) and ind(1), ind(2), ... , ind(n) with complexity O(n2). The index 
ind(n) will be the last but one index iQ_ 1 in the sought result of the segmen
tation. The index ind(iQ_1) determines iQ-2, and so by means of indices in 
the array ind I am passing to smaller indices, and this I am doing until I come 
across the index 0. 

I believe that I have managed the task, at last. But I am sure that I have 
now really reached the limits of my capabilities. 

Well, you wished so yourself. We wonder if you are able to formulate a task 
that you probably will not be able to master. 

I realise quite clearly now that we dealt with the most primitive variant of 
the segmentation task. For actual applications the tasks should be formulated 
with far greater care. From these lectures I have learned that seeking the most 
probable value of a hidden parameter of an object seems to be natural only at 
first glance. In the first, usually evident, serious plunge into the application 
task the roughness of such an attitude is already obvious. 

Seeking the most probable segmentation would result from an unmentioned 
assumption that all deviations of the estimated segmentation from the actual 
one are equally significant. This is, however, an unforgivable simplification of 
a task. For example, if the algorithm has wrongly decided that the automaton, 
at a certain instant, has passed through the state a, this error has smaller or 
greater significance according to what the actual state of the automaton was, 
or whether the automaton was in the state a at a not distant time, etc .. 

So the solution of an applied problem must begin with the careful definition 
of penalties d(I', /"), which estimate how dangerous the situation is when the 
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segmentation I" is assumed instead of actual segmentation I'. I can guess that 
a mere calculation of the penalty for the given pair of the segmentations I', I" 
will be devilishly difficult. The mathematical expectation of such reasonably 
defined penalties, i.e., the risk, must be thoroughly analysed. Even this may 
mean considerable effort. When it is done then the optimisation problem that 
seeksthe segmentation minimising risk can be solved. The algorithm obtained 
in such a way could be considered as quite a good achievement. 

At last we can see you to be such as we were used to. Before, it seemed to us for 
a while that somebody else was discussing instead of you. You may, sometime, 
manage to master even the tasks you see now. 

I doubt it. Not because I would underestimate myself. There is a more serious 
reason here, which lies in my respect for the community who are engaged in 
pattern recognition (especially in image segmentation) and who do not go into 
these highly interesting tasks. This may not be just by chance. 

In the core of all the difficult tasks you quoted in the lectures, as well as 
of those we came across together in our discussions, there appears to be an 
irrefutable fact that the most probable value of a random variable is not iden
tical with its actual value. Should a certain feature of the random object be 
estimated, not only the most probable object is to be taken into consideration 
but also other objects having smaller probabilities. Even when you have been 
repeating this idea since the first lecture, I have actually understood it only 
now. 

Why, in the great majority of research work and application tasks, is nothing 
else done than seeking the most probable sequences of hidden parameters? The 
sequences found are then manipulated as if they were real ones. In the case in 
which this starting point was correct, all tlle tasks we have analysed, including 
the difficult segmentation task, would then be reduced to a single task seeking 
the most probable sequence. But such a procedure is erroneous. But when 
nearly everybody does so there must be a more serious explanation than merely 
stating that it is a wrong procedure. Lacking a proper explanation, I do not 
dare to leave the smooth path along which everybody walks, and take up other 
paths, along which nobody has walked so far. You may think me to be too 
conservative, but anyhow, conservatism is not always the worst virtue. In the 
present case it is respect for the well known ways in pattern recognition and a 
fear of that being destroyed which has already been achieved. 

Your respect for the established views impresses us, and therefore we were 
thinking about your question for rather a long time, but we have not arrived 
at anything convincing. But we recalled an old joke which comes from the 
Ukrainian city of Odessa. In addition to its many beautiful sights, this city 
is known for the famous brilliance of spirit of its inhabitants. Among many 
stories coming from Odessa you could find this one also. 

A person had a pair of trousers made at a tailor. The tailor finished the work 
ordered only after a week's time. It seemed to be too long for the customer and 
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he reproached the tailor saying that one week had been enough for Almighty 
God to create the whole world. The tailor could only defend himself by saying: 
'But, look at the world and look at these trousers'. 

Well, now look at the lot of algorithms for segmentation and ... 

Thank you. I would also like to discuss with you the second part of the lecture 
devoted to learning. I am fascinated by the level of the universality and ab
stractness at which the tasks were examined, and by the relation between the 
plentiful classes of tasks being successfully revealed without creating algorithms 
for solving them. My attention was attracted by the relation between the min
imax and the maximum likelihood estimate of the statistical model. Later, 
I was captivated by the quite unexpected relation between tuning the algo
rithm recognising Markovian sequences, on the one hand, and the perceptron 
or Kozinec algorithms on the other. 

I do not even mention the relation between learning and unsupervised learn
ing which I had already understood in Lecture 6. Now I have again made sure 
of its fruitfulness when I saw how the task estimating the Markovian object in 
unsupervised learning can be reduced from astonishing complexity to a task of 
supervised learning the complexity of which is not worth mentioning. When 
I see how the extensive classes of tasks start cooperating and fusing into one 
river, I start imagining that, at last, we hold a pneumatic drill in our hands 
to cope with the rock representing pattern recognition. Certainly, it is not dy
namite yet, but it is already not a nail flle, with which we jabbed at the rock 
before. 

We are pleased at your enthusiasm. As we know you, we expect that now a 
kind of damned 'but' must follow. 

Yes, you are right. It seems to me that you have thoroughly discussed a certain 
aspect of building up the statistical model of an object, but from my point of 
view, it is not the most important one. The question has remained aside of how 
to find the structure of a complex object. It seems to me that it is the most 
significant question in structural pattern recognition. I am going to explain 
what I mean. When we know that an object is composed of parts and we want 
to apply a method for recognition which was explained in the lecture, we have 
to order the known set of the parts so that it may become a sequence. Such an 
ordering is sometimes not known beforehand. 

The ordering may be unknown even in the cas(' if the sequence ko, k1 , k2 , 

... , ki, ... is a process which rlevelops in time. The index i then represents 
time. For example, let ki denote the behaviour of a person on the i-th day. 
Only at a rough glance one can assume that the behaviour of a person today is 
entirely dependent on his behaviour of yesterday. Let us imagine that a person 
has two ranges of interest. On week days he is at his place of work and on 
Saturdays and Sundays he is at his holiday home. In this case his behaviour 
at his lwliday home on Saturday will be less affected by what he did at his 
work on Friday, but rather by what he had done on the previous Sunday. In 
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addition to the natural ordering according to time known beforehand, there is 
another ordering, which represents the dependence between parts of the object 
and which can be unknown beforehand. In the learning theory in the lecture, 
you stressed too strongly the estimate of numeral parameters of the statistical 
model of the object and entirely ignored the estimate of mutual dependencies 
between parts of the object. It seems to me that the structure, which has not 
been considered, is the most significant matter in structural pattern recognition. 

Naturally, I tried to fill the hiatus in your explanation by myself, but I arrived 
at pessimistic conclusions. When formulating the task I learned that the task 
is equivalent to the travelling salesman problem. The number of destinations 
the travelling salesman is to visit is equal to the number of parts of a complex 
object which I would like to order into a sequence. This classic task from the 
theory of algorithms is known to be NP hard and so hopeless to solve exactly. 
The total outcome of my effort is apparently negative. I would like to ask you if 
the situation is really so hopeless or whether I can still hope that our tasks are 
specific in some aspect so that they do not correspond to the general travelling 
salesman problem, but to its particular case which can be mastered in practice. 

We are afraid that the situation is quite hopeless. We will not even ask you 
how you formulated the task that you have arrived at in the travelling salesman 
problem. We have tried ourselves to solve the task many times, but not a single 
time did we manage to avoid either the travelling salesman problem or the task 
seeking the Hamiltonian cycle in the graph which is, from the point of view of 
its solution, also hopeless. 

Forgive me, I do not know what the Hamilton cycle is. Could you explain it to 
me? 

A task is usually formulated by a simple example. Assume that you are inviting 
a set I of people to a banquet. You know about each pair of guests whether 
they are acquainted with one another. This knowledge can be expressed by an 
unoriented graph whose vertices are formed by the set I. Two vertices in a 
graph are connected by an edge if and only if they represent a pair of guests 
who are acquainted with each other. You are to seat the guests around a round 
table so that each guest is acquainted with the guest on left-hand, as well as 
with his or her right-hand neighbour. In terms of graphs, you are to find if 
the graph contains a cycle which passes through each vertex just once, and 
along each edge at most once. The graphs containing such a cycle are called 
Hamiltonian graphs. 

Such a trifle cannot be solved? 

It is even worse. So far, nobody has solved the task yet in polynomial time, but 
nobody has proved that it is not solvable in the polynomial time either. But 
we frankly advise you, do not try to solve it. It is an abyss similar to Fermat's 
last theorem. 
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With the important difference that Fermat's last theorem has already been 
solved. 

We did not even know that. Well, let us wait about three hundred years until 
the situation with NP-complete problems is cleared up. 

And what connects the travelling salesman problem with Hamilton cycles? 

Let us assume that a non-negative real function is defined on a set of edges 
of the graph. The value of that function indicates the length of the particular 
edge. The travelling salesman problem represents seeking the Hamilton cycle 
which minimises the sum of the lengths of the graph edges from which it is set 
up. At first glance the travelling salesman task seems to be far more difficult 
than the Hamilton cycle task, but in fact they are tasks of the same order of 
complexity. 

But I have come across a quite different task. My task is not reduced to seek
ing a cycle but to seeking for a chain which passes through all graph vertices. 
Maybe, in this case, the task is not hopeless from the point of view of complex
ity. 

These two tasks are, from a complexity point of view, equivalent. 

I resent it extremely. The reduction of the original task concerning the structure 
of a complex object to the travelling salesman problem was not simple. The 
blown bubble has at last burst. 

You would resent it even more if you learned that you had been within reach 
of a very beautiful task concerning an estimate of the complex object structure 
which is solvable. From the beginning you have been tied up to an idea that 
the structure sought must be a chain. Recall that in the lecture a whole section 
was purposely devoted to a more general structure ... 

I have got it now! All results of the lecture come in useful even in the case in 
which the object sought has the structure of an acyclic graph. Now, I should 
generalise the tasks even more, so that with respect to the training multi-set 
not only numerical parameters of the statistical model of the object, but also its 
structure, i.e., the mutual relations of the parts, may be estimated. When I do 
not require that the structure should correspond to the chain then I probably 
may come to a solvable task. 

Yes, that is right. Now, do not hurry because you have come across a task 
the solution of which is made possible thanks to a nearly hundred years effort. 
In 1968 the American Chow [Chow, 1965; Chow and Liu, 1968] formulated 
a task which we now understand as an estimate of the structure of mutual 
dependences between parts of a complex object. He also demonstrated that the 
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task was equivalent to a task formulated in 1889 by the mathematician Cayley 
in graph theory [Cayley, 1889]. Cayley task was, for a long time, considered 
a difficult one. Nearly forty years later it was cleverly solved by the Moravian 
mathematician Otakar Boruvka [Boruvka, 1926]. Unfortunately his solution did 
not become generally known, and even long after the appearance of Boruvka's 
article other algorithms for solving Cayley task were published. Today, the 
three streams which are formed by the research work of Cayley, Boruvka, and 
Chow, are fortunately united. But yet, not before long, we could see articles 
which showed that some authors did not know the results mentioned above. 

And now, carefully formulate and examine the proposed task, i.e., repeat 
what Chow had done. 

Let I be a finite set of indices by which individual parts of the complex object 
examined are indexed. The index i E I is understood as the number of a 
particular part. Each part is described by two parameters: k; is the hidden 
parameter and x; is the observable parameter of the i-th part of the complex 
object. The ensemble k = (ki, i E I) is the unobservable state of the object 
and the ensemble x = (xi, i E I) is the result of its observation. As before, we 
assume that the parameters ki, i E I, take the value from the finite set K, and 
the parameters Xi, i E I, do so from the finite set X. 

The set I is understood as a set of vertices on which an unoriented acyclic 
continuous graph is created. The set of the graph edges will be denoted G. The 
notation (i, j) E G means that the vertices i and j, i E I, j E I, are connected by 
the edge from G. We assume that with a fixed parameter k;, corresponding to 
the i-th part, the observable parameter does not depend on any other parameter 
of the object. This means that Xi is conditionally independent (at fixed value 
ki) on any other paramete.! of the object. So, p(x I k) = niEI p;(x; I k;). The 
probability distribution p(k) is assumed to be Markovian with respect to the 
graph the edges of which are formed by the set G, 

(k) = IT(i,j)EGYiJ(k;,kj) 

p niEI(g;(k;))h;- 1 ' 
(8.146) 

where hi denotes the number of edges that pass through the vertex i. The joint 
probability p(x, k) is 

p(x, k) = n(i,j)EG 9ij(k;, kj) niEI p;(x; I k;) 

niEI(g;(k;))h;- 1 

TI(i,j)EG 9ij(k;, kj) niEl p;(x; I k;) g;(k;) 

niEI(g;(ki))h; 

TI(i,j)EG 9ij(ki,kj) niElp;(x;,ki) 

niEI(g;(ki))h; 
(8.147) 

In the formulre (8.146) and (8.147) the value 9ij(k, k'), k E K, k' E K, means 
the joint probability that the i-th hidden parameter will assume the value k 
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and the j-th parameter the value k'. The probability Pi(x, k), x EX, k E K, 
represents the joint probability of the value x of the i-th observable parameter 
and the value k for the i-th hidden parameter. And eventually, gi(k), k E K, 
is the probability that the i-th hidden parameter will assume the value k. This 
means that 

9i(k) = L 9ij(k, k') 
k'EK 

for all such j, that (i,j) E G, and 

gi(k) = L Pi(x, k). 
xEX 

The statistical model of the object examined is characterised by the ensemble 
of functions (Pi, i E /), the set of edges G forming the acyclic structure, and 
the ensemble of functions (9ii, (i, j) E G). If the statistical model is not 
known then it is to be estimated on the basis of experimental examining of the 
object. I will be concerned with the task of the maximum likelihood estimate 
of the statistical model on the basis of experiments with the object, i.e., on 
the basis of random data (xi, ki), j = 1, ... , l, the probability distribution of 
which is p(x, k). This means that I am solving the easiest task of those which 
were formulated in the lecture. As soon as I create an algorithm for solving 
this easiest task I can then, quite formally, build algorithms for the minimax 
estimate and for unsupervised learning. 

Let the number n(x, y) denote how many times the pair (x, k) occurs in the 
experiment, i.e., in the training multi-set. Let 

(- _) _ n(x, y) 
a x,y - l . 

The task solved requires me to find a set of edges of the graph G, which forms 
an acyclic structure, and the ensembles offunctions (gij , ( i, j) E G), (Pi , i E I) 
which maximise the probability of the results of the experiment given by the 
multi-set ((xi,ki), j = 1,2, ... ,l), i.e., 

(G*, (pi, i E I), (gi1, (i,j) E G*)) (8.148) 

= argmax max max L a(x, k) logp(x, k) 
G (p;,iEI) (YUiJ•(i,j)EG) 

x.k 

D 9iJ(ki,kJ)DPi(xi,ki) 
"'"'(X-, k-) log (i,j)EG iEI = argmax max max L..., .... 

G (p;,iEI) (g;j.(i,j)EG) x,k n (gi(ki))h; 
iEI 
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I will make several equivalent modifications of the function which is to be 
maximised in the formulated task (8.148) 

"" - - TI(i.J)EG YiJ(k;, kj) TiiEI p;(x;, k;) 
~a(x,k)log TI· (r·(k))h, 
_ - 1El g, 1 
x,k 

La(x,k)log IT YiJ(k;,kJ) 
x,k (i,j)EG 

+ La(x,k)logiTp;(x;,k;)- I:n(x,k)logiT (g;(ki))h; 
x,k iEI :r,k iEJ 

I: 2: I: a;j(k;,kj)logg;j(k;,kj) 
(i,j)EG k;EK kjEK 

+ L L L ,B;(x;, k;) logp;(x;, k;)-L h; L a;(k;) logg;(k;), 
iE/ .c;EX k;EK iEJ k;EK 

(8.149) 

where 

a(x,k), 
(.r,,, i'EJ) (k;', i'EI\{i,j}) 

I: L a(x,k), 
(.c;', i'Ef\{i}) (k;', i'El\{i}) 

2: L n(x,k). 
(.r,,, i'EJ) (k;', i'El\{i}) 

The last three fommlre are presented only to demonstrate the rightfulness of 
the last step in deriving the (8.149). In fact, the numbers a;J, n; and ,8; are 
not calculated according to the formulre quoted, but it is done in a far simpler 
way. The number niJ ( k, k') means merely the relative frequency of the situation 
occurring in the experiment when the i-th hidden parameter assumed the value 
k and the j -th one the value k' . .4. similar sense is assigned also to the numbers 
a; and ,8;. 

On the basis of similar considerations as those in Theorem 8.1 from the 
lecture, it can be proved that the numbers YiJ (k;, ki), p; (x;, ki) and g; (k;), which 
maximise (8.149), are to be equal to the corresponding numbers n;j(k;, kj), 
,B;(x;, k;) and a;(k;). This means that the expression (8.148) assumes the form 

c· = arg~ax ( I: I: I: aij(k;,kj)logau(k,,kj) 
(, ( i.j)E(; k; EK k 1 E /\' 

+ L L L ,B;(x;, k;) log(3;(.T;, k;)- L h; L n;(k;) loga;(k,)) . 
tEl x,EX k;EK tEl k;EK 

(8.150) 
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In the preceding expression the first summand depends on the set G since the 
addition is done according to those pairs (i,j) which belong to G. So does the 
third summand, too, since the numbers hi depend on the set G. The second 
summand does not depend on the set G, and thus the expression (8.150) can 
be rewritten to 

G* = argmax ( L L L O:ij(ki,ki)logo:ii(ki,ki) 
G (i,j)EG k;EK kjEK 

-L: hi L: o:i{ki) logo:i{ki)) 
iE/ k;EK 

If I introduce the entropies 

and 

then I obtain 

Hii =- L L O:iJ(ki,kJ)logo:iJ(ki,kJ) 
k;EK kiEK 

H; =- L o:i(ki) logo:i(ki) 
k;EK 

G* = argmax (L hi Hi - L Hii) 
G iE/ (i,j)EG 

= argmax L (Hi+ Hj- Hij) . 
G (i,j)EG 

(8.151) 

(8.152) 

At last, I arrived at the following procedure by which the set G is created, i.e., 
the structure of mutual dependencies between the parts of a complex object. 

1. With respect to the training multi-set (ki, j = 1, ... , l) (the data xi are not 
used at all) the numbers O:;j(k;, kj) and o:i(ki), i E /, j E /, i ::j:. j, ki E K, 
ki E K, are calculated. 

2. For each pair (i,j), i E /, j E /, i ::j:. j, the entropy Hii is calculated 
according to the formula (8.151) and for each i E I the entropy Hi is 
calculated according to the formula (8.152). 

3. The set I is understood as a set of gTaph vertices on which a complete 
graph is created. In this graph each vertex is connected to each vertex by 
an edge. The length of the edge connecting the vertices i and j is given as 
Hi+ Hi- HiJ· 

4. In the graph obtained a connected acyclic subgraph (i.e., a tree) is to be 
found which contains all the vertices of the original graph and which max
imises the sum of the graph edges that belong to the subgraph. 

A.nd now I would like to know your opinion on whether this is Cayley task or 
not. 



8.12 Discussion 389 

Yes, it is. 

Could you, please, explain to me the Boruvka algorithm for solving Cayley 
task? 

It is so simple that we can but admire its cleverness and we are astonished that 
people were not able to fall upon that simple solution for such a long time. 
In addition, we are surprised at how it may have happened that even after 
Boruvka's article it was not known for quite long a time that Cayley task had 
been solved. 

Let M be a set of graph edges, i.e., pairs (i, j) of the form i E I, j E I, i f j. 
Let us order the set M according to the edge lengths; if the edge ( i 1 , j 1) occurs 
in the array M prior to the edge ( i", j") then the length of the edge ( i 1 , j 1) is 
greater than or equal to the length of the edge ( i", j"). We seek a subset of 
edges which forms a connected subgraph G* containing all the vertices I and 
maximises the sum of the edge lengths. The subgraph G* is formed in the 
following way. One edge after another is examined in the order given by the 
array M and a decision is made about each current edge whether it belongs to 
the subgraph G* or not. 

Let the edge (i 1,j1) from the array M be examined at a certain instant and 
let the subset of edges G1 to have been constructed at the preceding instant. 
They are the edges about which the decision has already been made that they 
belong to G*. If there exists a path in the subset G1 from the vertex i 1 to 
the vertex j 1 then the decision is made that the edge does not belong to G*, 
i.e., the subset G1 does not change. If the subset G1 contains no path from 
the vertex i 1 to the vertex j' then the decision is made that the edge ( i 1 , j 1) 

belongs to the set G*, and so the set G1 is changed into the set G1 U {(i 1, j 1)}. 

The array M is examined as long as there is less than III - 1 edges in the 
subset G1• 

The simplicity of the algorithm is incredible. Could not you, please, explain 
the most important ideas of Boruvka's proof to me? 

We could, but we do not want to. You should master the proof on your own. 
Of course, it does not mean that we can equal Boruvka. Imagine it so: we are 
dwarfs who have climbed onto a giant's shoulders. This statement was neither 
invented by us nor do we remember who said it, but he must have been a clever 
man. 

For simplicity, I dealt with the task only for the case in which the lengths of 
graph edges differed from each other. The proof of Boruvka algorithm is based 
only on two rather obvious statements. 

Assertion 8.1 Let ( io, io) be the greatest edge and G* be the set of edges sought 
which is the solution of Cayley task. Then (i0 ,j0 ) E G* holds. • 
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Proof. I will prove the assertion by contradiction. I will prove that if(i0 ,j0 ) f/. 
G* then the set G* is not a solution of Cayley task. Since the set of edges G* 
forms a connected graph there exists a path from the vertex i 0 to the vertex )o. 
Each edge within this path is shorter than is the length of the edge ( io, j 0 ). Let 
( i', j') be an arbitrary edge within this path. The path from i0 to j 0 together 
with the edge (i0 , j 0 ) creates a cycle. If I take out the edge (i', j') from the 
set G* and include the edge (io,jo) in it then the new graph remains to be 
connected and will, as it was before, contain all vertices. But the total length 
of its edges will increase since the length of the edge ( i', j') is less than the 
length of the edge ( io, j 0 ). From that it follows that the set G* was not the 
solution of Cayley task. • 

Assertion 8.2 Let G* be a set of edges that solves Cayley task and G' be its 
subset. Let ( io, j 0 ) be an edge that satisfies two conditions: 

1. There is no path in the set G' from the vertex i 0 to the vertex j 0 . 

2. Among all edges that satisfy the first condition, the edge (i0 ,j0 ) has the 
greatest length. 

In this case ( io, Jo) E G* holds. & 

Proof. Assume that (i0 ,j0 ) f/. G* (I prove it by contradiction again). Since 
the edges G* constitute a connected graph there is a path from the vertex io to 
the vertex )o. Because of the first condition at least one edge within the path 
does not belong toG'. Owing to the second condition this edge is less than the 
edge ( io, j 0 ). All other considerations are the same as those in Assertion 8.1. • 

I believe that Bonlvka algorithm itself is an interesting object for studying 
regardless that is solves Cayley task. How should it be arranged from the 
computational point of view? The question about its complexity should be 
asked, etc., should it not? 

Boruvka algorithm has been thoroughly examined, particularly within graph 
theory and computational geometry. 

We are pleased that you have mastered this not very easy lecture. 

But still I have not yet made dear for myself a question that is important for 
me. I am not sure if I have understood tlw importance of the matrix notation 
which is the main thread of all the first part of tlw lecture. According to 
how you stress tlw clpplication of tlw ma.trix notation, I am afraid tha.t you 
see something in it I have not noticed. On account of the lecture I l1ave not 
been convinced that the matrix notation is indispensable for solving the tasks. 
I understand and I cllll CHlHtiJle of solving a.ll tasks analysed in the lecture 
without knowing anything ctiJCmt tlw matrix notation. Am I right that it is 
only the matter of concisely expressing something that is dear anyhow? And 
is it so essential what language or wlwt matlwnli:ltical symbolism is used for 
expressing knowledge? It is tlw knowledge itself tlwt is important, i.e., that 
invariant something, whid1 does not depend 011 tlw f(mn in which it is written. 
For wlmt do I need something new wlwn I uwlerstmul all I need even without it? 
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Your question can be understood both in a narrower and a broader sense. 
The matrix expression of tasks and algorithms of their solution was used by 
us as one of the possible ways. After all, we write our lectures not only for 
you, even though we are very pleased by the collaboration with you. We are 
going to publish the lectures and we would like them to be understood by 
the largest possible body of readers. Some one better understands a graph 
interpretation of the task, another is fond of a statistical interpretation, the 
third may think the matrix notation to be most understandable. And it is the 
matrix expression in which we can see at least something common to all the 
tasks analysed. 

Unlike you, we consider it very important in what language the knowledge 
is expressed. Perhaps, the main attribute of the immaturity of today's pattern 
recognition, and perhaps even the cause of the immaturity, is that recognition 
has not yet created a language of its own. We are getting now to your question 
in the broader sense, whether it is important at all what language the knowledge 
is expressed in. You yourself answer this question definitively in negative. We 
have long thought about it and the result is that we do not agree with you. We 
would be pleased if we could convince you, and you moved your views closer 
to ours. 

Let us have an example which is quite closely related to us now. For writing 
Boruvka algorithm to solve Cayley task we needed not even one half of a page. 
Your correct proof of their algorithm took less than a page. Approximately as 
briefly as that, this subject matter is explained in modern textbooks on graph 
theory as well. And now an interesting question arises. What is it in the article 
by Boruvka that he needed 16 pages for interpreting the results? We have 
read his article and we also advise you to do so, as it is instructive. First, you 
will find that there is nothing more in the article than the algorithm described. 
Second, and this is most important, when you start reading you will get the first 
impression that we were mistaken and referred you to another article, which 
has nothing in common with Cayley task and the beautiful algorithm for its 
solution which you are acquainted with now. The reason for it is that in not 
a single case in the whole article is the word graph used, and entirely different 
apparatus is applied in writing it behind which it is not easy to see the results 
that are essential for the article. 

It is important that it might have been because of that particular fact that 
the results had been written in an inconvenient language (of course, we do not 
mean by it Czech or any other natural language) that the results remained 
hidden for such a long time. These results recurred, eventually, with other 
scientists. When Boruvka's article was rediscovered its importance was more 
historical than scientific. It is a situation similar to that in discovering America, 
which was mentioned in Lecture 6. 

In the development of any scientific branch a period sometimes appears 
when acquiring new knowledge is quite impossible. The reason for it is that 
no corresponding symbolics is created, or, if you choose, an adequate language 
is still missing for a concise interpretation of the knowledge already available. 
At this stage, creating a new language tool for the interpretation of the old 



392 Lecture 8: Recognition of Markovian sequences 

knowledge may be more important than acquiring new knowledge. Only when 
the old knowledge is expressed in a new terminology and people get used to 
the new terms do they begin wondering why such simple things had seemed so 
complicated before. 

Your negative attitude to matrix notation reminds us of another circum
stance which necessarily accompanies the creation of new tools for interpreting 
old knowledge. The mere existence of the language might affect the range of 
knowledge which becomes generally known. Before new language tools are cre
ated the greatest popularity is attained by that knowledge which had proved 
successful in being expressed in the old language. All of that shows a certain 
infirmity of new language tools, since what has been known best does not sound 
very familiar in the new language. And, in addition, we have to take into con
sideration the effort which is needed for mastering the new language. You have 
nicely expressed this situation in your words 'why do I need anything new when 
I understand everything I need even without that'. 

We have also thought about how it could happen that only not very long 
ago, perhaps about a thousand years ago, that people were not able to add 
and multiply arbitrary integer numbers. It was not because the overall level 
of education would have been low and therefore the majority of population 
would not have known how to multiply. The situation was more complex. No
body could operate with arbitrary integer numbers. The capability of adding 
some large numbers was regarded as an attribute of the highest intellect. The 
tasks concerning the addition and multiplication of individual numbers or of 
some number classes became respected scientific research. From the present 
day point of view it can hardly be understood how it could happen that people 
were capable of adding and multiplying some numbers but others not. Though, 
in fact, the procedure through which these operations are performed is the same 
for all numbers. The explanation that our ancestors were less intelligent than 
we are would be wrong. Even though the human society is, as a whole, a bit 
more educated than a thousand years ago, there is no evidence that every in
dividual today would be more capable of mental activity than were his grand 
or great grandparents. Let us recall the brilliant outcomes of European an
cient mathematics from which such concepts as the prime number, the highest 
common devisor, the lowest common denominator, etc. have their origin. All 
this gives tribute to a deep understanding for the nature of the integer number. 
And in spite of all that, people did not know how to add and multiply for long 
after the time when the concept of the number had been understood rather 
clearly. 

It was because that people did not represent numbers in the unified form to 
which we are accustomed now and know as the Arabic notation of numbers. The 
mode of notation was different with different nations, and even with different 
classes of numbers. Of the earlier forms, Roman numerals are used up to today. 
In such a mess and disorder in the number representation itself, hardly anybody 
got the idea that there might be a universal way of manipulating numbers. Well, 
all the numbers seemed to bear no resemblance to one another. Does not this 
situation remind you of the present day state of affairs in pattern recognition? 
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It does, a little, but I wonder what all these historical considerations lead to, 
all the more so that they are not quite correct. As early as many thousands of 
years ago, in ancient Mesopotamia, people could manipulate integer numbers 
quite correctly. It was far earlier than you say. 

Do not be very strict this time. The matter is that you and we are not doing 
historical research, but something quite different. It is important that only 
not very long ago, about one thousand years ago, people could not manipulate 
integer numbers in quite extensive territories (when once you are so strict to 
us). 

The mess concerning integer numbers prevailed even in the Central Asian 
science center, Samarkand, until about a thousand years ago Muhammad from 
the neighbouring Khwarizmi carne to Samarkand and notified them that a new 
way of number representation was used in Khwarizmi. Thanks to it, the ca
pability of performing mathematical operations ceased to be regarded as an 
exceptional gift of Nature for some intellectuals and became accessible for any 
young boy of the street. Muhammad ibn Musa al-Khwarizrni explained the 
way of representing numbers and calculating with them which has been used 
in the world up to now. In addition to the facility to calculate, which af
fected the development of science all over the world for centuries, there was 
another outcome. The manner started by Muhammad al-Khwarizmi, by which 
ingenious intellectual inventions can be replaced by disciplined executing of un
ambiguously formulated regulations, was quite new. In honour of al-Khwarizmi 
(perhaps also in honour of the country where he came from) the formulated 
rules began to be called the Khwarizmian way, or the al-Khwarizmi method. 
Owing to later distortions of the expression the word algorithm originated. You 
can see in what way significant outcomes in the history of science can originate 
even because the objects known before were newly expressed or given a new 
name. And therefore we cannot agree with you that it is of no significance in 
which formalism the new, as well as the old, knowledge is expressed. 

And there is something else we would like to add. The personality of Muham
mad al-Khwarizmi is so great that a mere ambition to make him one's example 
could be regarded as an unforgivable immodesty. In spite of that, try to imag
ine yourself in his place. If you put yourself in his situation in a quite realistic 
way, and in all inevitable details then you will find that from the standpoint of 
al-Khwarizmi, his situation appeared more than ugly. The poor al-Khwarizmi 
must have listened to a pretty large amount of foolishness in his life. 

Someone may have disliked the representation of numbers. For example, 
the representation of the number 24 7 seemed to be far less illustrative than 
CCXLVII. Well, even from the notation CCXLVII one can see that it is a sum 
C + C +(L-X)+ V +I+ I, but the number 24 7 does not say anything as that. To 
find out what it means, it is necessary to calculate 2 · 102 + 4 ·101 + 7. 10°. Well 
now, our colleague al-Khwarizmi, instead of multiplying only when we need it, 
we will now have to multiply every time when we want only to know what the 
number means! To some other person, the new way of adding seemed to be far 
more complicated than the preYious one. The fact that the sum of the numbers 



394 Lecture 8: Recognition of Markovian sequences 

V and II is equal to VII is far more understandable than stating that the sum 
of 5 and 2 is 7. The numeral 7 itself does in no way include the numerals 5 
and 2. Yet another person in turn criticised the new way because it needed 10 
numerals, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, whereas for the old way only VII numerals I, 
V, X, L, C, D, M had been sufficient. It is true, though, that by means of Roman 
numerals the numbers greater than, e.g., MMDCCCLXXXVIII are difficult to 
express, but for a great majority of practical applications it is sufficient. 

Furthermore, nobody can remember the rules of multiplying numbers. To 
multiply, one has to know by heart about 100 rules, i.e., the multiplication 
tables. When it is necessary to know 100 rules then any additional rules seem 
to be useless since the products of numbers which occur in practice can be 
easily calculated by common sense. If the poor al-Khwarizmi asked in a shy 
manner how much to pay for CCLXXIV rams when each costs XLIX ducats 
then everybody would wonder how it was that al-Khwarizmi was so silly and out 
of touch of the real life. Has anybody seen CCLXXIV rams for sale? In practice 
there are always either CC or CCC, or CCL rams, at worst. I wonder where 
you saw such a silly price, XLIX ducats for one ram? In practice it is always 
L ducats, and therefore these fine and rather complicated considerations are 
unworkable. In practice, I am to multiply CC times L, and without all wisdom 
of yours, my colleague al-Khwarizmi, I know that it will be C times C ducats. 
At last, colleague al-Khwarizmi, come to see that we cannot reckon on being 
able to retrain all the merchants in Samarkand to use the new way of writing 
numbers only for the purpose of making their addition and multiplication easier 
for you. The whole scientific community of ours is kept by virtue of taxes and 
charity benefits from the merchants. They are here not for the sake of us, but 
we are here for the sake of them ... 

We could continue ad infinitum. We need not even invent silly stories like 
that. Each of us can hear a lot of them around. 

I admit that I was wrong saying that it was of no importance in which formalism 
knowledge was expressed. 

But I would like, in a similar way like you, to add something. The first part 
of your answer sounded like a beautiful poem. But I understood the second 
part of it as an irony directed towards me. My attitude is, in fact, nearer to 
those imaginary blockheads, who did not understand al-Khwarizmi, than to 
his views. I am not very proud of it, but I do not feel like opposing it either. 
Therefore, I am saying again that all tasks the solution of which was expressed 
by you by matrix products can be proved by me even without using them. 
Could you quote an example of a task that is solved within the formalism 
mentioned, but is difficult to solve without it? 

We know one of such tasks. You yourself may guess that it must be a pretty 
difficult task. We are planning it for our next lecture. 

April 1998 
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8.13 Link to a toolbox 
The public domain Discrete Hidden Markov Models Toolbox was written by 
J. Dupac as a diploma thesis in Spring 2000. It can be downloaded from the 
website http: I I cmp. felk. cvut. czl cmpl cmp_software. html. The toolbox is 
built on top of Matlab version 5.3 and higher. The source code of the algorithms 
is available. 

The part of the toolbox which is related to this lecture implements algorithms 
for recognition, supervised and unsupervised learning, which work with Discrete 
Hidden Markovian Models of sequences and acyclic structures. 

8.14 Bibliographical notes 
The lecture has dealt with hidden Markovian processes. The idea of this sim
plified statistical model was introduced by Markov [Markov, 1916]. He first 
analysed 20,000 words of Pushkin's novel in verse Eugen Onegin. The ba
sic tool used in the lecture was dynamic programming [Bellman and Dreyfus, 
1962]. Kovalevski formulated and solved a task of recognising a non-segmented 
row of letters and used dynamic programming for recognising image sequences 
[Kovalevski, 1967], [Kovalevski, 1969]. Chazen (she) [Chazen, 1968] was en
gaged, in the general form, in recognising Markovian sequences by means of 
dynamic programming. Vincjuk [Vincjuk, ] used the Markovian sequence for 
speech recognition. 

The recognition algorithm yielding the sequence of most likely states for a 
sequence of observation assuming a Markovian statistical model is also known 
under the name of Viterbi algorithm [Viterbi, 1967]. The training of the sta
tistical model is known as Baum-Welsh algorithm [Baum et al., 1970]. 

The formalism of generalized matrix products was used by [Aho et al., 
1975] for a unified analysis of algorithms. Seeking the best approximation 
of a multi-dimensional random variable by an acyclic graph was published by 
Chow [Chow, 1965; Chow and Liu, 1968]. He took into consideration common 
dependencies of an object, he posed the questions of what the tree should look 
like and how to find it. Chow reduced this task to the known task of the least 
continuous subgraph of a graph, i.e., to Cayley task [Cayley, 1889]. The solu
tion of this task belongs to the mathematician Bon1vka [Boruvka, 1926] from 
Brno. Later this solution was many times repeated by other authors, probably 
the best known work is the work by Kruskal [Kruskal, 1956]. 

We are not aware of studies which would bring statistical and structural 
pattern recognition methods together. A certain space is devoted to these 
problems in Chapters 5, 6 and 7 in the book by Fu [Fu, 1974]. 



Lecture 9 

Regular languages 
and corresponding pattern recognition tasks 

9.1 Regular languages 
The previous lecture has been devoted to the analysis of the following model 
of a recognised object. 

Let X and K be two finite sets. The first of them is an alphabet of output 
symbols and the second is a set of states of an autonomous stochastic finite 
automaton. The automaton is characterised by the function p: K x X x K -r !R, 
which describes its behaviour in the following way. The automaton passes 
through a sequence of states ko, k1, ... , k;, ... and it produces a sequence of 
symbols x1 , x2 , ... , x;, ... at the output. The initial state of the automaton k0 

is random and in agreement with the probability distribution 

L L p(ko.x,k). 
kEK xEX 

If the automaton is in the state k;_ 1 in the (i -1)-th instant, i = 1, 2, ... , then a 
random pair (x;, k;) is generated in agreement with the probability distribution 

L L p(ki-I 'x, k) ' 
xEX kEK 

the symbol x; appears at the output, and the automaton passes to the state 
k;. The function p characterises the stochastic automaton and it defines the 
probability distribution on the set of the output sequences of the automaton. 
Among all possible sequences of the length n, the probability of the sequence 
x1 , x2, . .. , Xn is given by the sum 

"'"' "' ( /. k III1 p(ki-1' X;, k;) ) L L ... L ])(1\;Q,X], I) L L . 
k k k -·) p(k,_j' x, k) 

0 ·I . ., , __ .rEX ~·E K 

397 

M. I. Schlesinger et al., Ten Lectures on Statistical and Structural Pattern Recognition
© Springer Science+Business Media Dordrecht 2002



398 Lecture 9: Regular languages and corresponding pattern recognition tasks 

At the same time the automaton described defines a more rough characteris
tic of the set of sequences which may occur at its output, i.e., the set of the 
sequences with non-zero probability. If we are interested only whether the se
quence x1 , x2 , ... , Xn may occur at the automaton output, and the probability 
of that sequence is of no interest, such a detailed characteristic, as that de
scribed by the function p: K x X x K ---+ lR, is not needed. It is sufficient to 
know if the probability p(k', x, k") of the triplet k' E K, x E X, k" E K is zero. 
The automaton can be described in less detail by the function P of the form 
K x X x K---+ {0, 1} the value P(k', x, k") of which is 0 if p(k', x, k") = 0, and 
1 if p(k', x, k") ::J. 0. Thus the subset of the sequences is determined by a simple 
binary function of three variables. Naturally, some sequence subsets cannot be 
defined in this way. It only concerns subsets of a certain form known as regular 
languages. We will introduce this concept more precisely. 

Let X be a finite set which will be called an alphabet. Its elements are 
symbols. The finite sequence of symbols from the alphabet X is referred to as 
a sentence in the alphabet X. The set of all possible sentences in alphabet X 
will be denoted X*. The subset of sentences L C X* is called a language in 
the alphabet X. 

Let K be a finite set which will be called the alphabet of the automaton 
states. Let the function r.p: K ---+ {0, 1} define the subset of states which are 
regarded as the initial states of the automaton. If r.p(k) = 1 then it means that 
the state k is one of the initial states (it can be a single one). Let the function 
1/J: K ---+ { 0, 1} define a set of target states in a similar way. Let the function 
P: K x X x K---+ {0, 1} be the state transition function of an automaton that 
has the following sense. If the automaton in the instant (i- 1) occurred in 
the state ki-l then in the succeeding i-th instant it can produce only such a 
symbol Xi at its output, and be in such a state ki for which P(ki-l, Xi, ki) = 1 
holds. 

The automaton is given by the five-tuplet A = (X, K, cp, P, '¢•). This five
tuplet unambiguously determines the sets of sequences which may occur at 
the automaton output. This sequence set will be called the language of the 
automaton A and denoted L(A). A sentence x1 ,x2 , ... ,xn belongs to the 
language L( (X, K, cp, P, 1/J)) if 

1. Xi EX, i = 1,2, ... ,n; 

2. a sequence ko, kt, ... , kn exists for which the following holds: 
(a) ki E K, i = 0, 1, . .. ,n; 

(b) cp(ko) = 1; 
(c) P(ki-t,Xi,ki) = 1, i = 1,2, ... ,n; 
(d) 1/J(kn) = 1. 

The following equation defines the membership of the sequence to a language 
in a brief form 

F(xt, X2, ... , Xn) 

= V V ... V (cp(ko)"(AP(ki-t,xi,kd)"'l/J(kn)), (9.1) 
koEK k1 EK kn EK ~=1 
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where F(x 1 ,x2 , ... ,xn) is the statement 'The sequence x = (xl,xz, ... ,xn) 
belongs to the language L( (X, K, (j), P, '1/J)) '. 

The definition (9.1) can be written in a briefer way if we accept the following 
interpretation of the functions (/), P and '1/J. The function (/) will be understood 
as a row vector of dimension IKI the k-th component of which is '{J(k), k E K. 
The function 'ljJ is a column vector of dimension IKI the k-th component of which 
is 1/J(k). For a given sequence x1 , x2 , ... , Xn, the matrix Pi, i = 1, 2, ... , n, will 
be introduced. The element in its k'-th row and k"-th column is P(k', xi, k"). 
Using this denotation we can express the definition (9.1) as the matrix product 

(9.2) 

on a semi-ring on the set { 0, 1} with operations V (it corresponds to addition) 
and 1\ (it corresponds to multiplication). 

Furthermore the definition of the regular language by Equation (9.1) there 
is a number of other equivalent definitions which will be presented later to 
complete our explanation. Equation (9.1) and particularly its form (9.2) are 
preferred for pattern recognition purposes because they immediately give rise 
to an algorithm which recognises if the sentence x1, xz, . .. , Xn belongs to the 
given language L( (X, K, (j), P, '1/J) ). 

The language is defined as a set of sentences for which the product (9.2) as
sumes the value 1. The recognition algorithm will simply calculate this product. 
The complexity of the calculation is O(jKj2 n). 

9.2 Other ways to express regular languages 

9.2.1 Regular languages and automata 
Let X be an alphabet of input symbols (not of the output ones as in the 
previous paragraph) which are led to the input of a finite state automaton. Let 
K be a set of states of this automaton and k0 be one of the initial states. Let 
q: K x X -+ K be a transition function which determines behaviour of the 
automaton in the following manner. If the automaton was in the (i- 1)-th 
instant in the state k and in the i-th instant the symbol x appeared at its input 
then the state of the automaton in the i-th instant will be q(k,x). Therefore 
if an initial state of the automaton was k0 and the sentence x1 , x2 , ... , Xn 

appeared at its input then the sequence of states k1 = q(k0 , x1), k2 = q(k1 , xz), 
... , kn = q(kn-1, Xn) is unambiguously determined. 

In this way the automaton implements the mapping of the set X* of se
quences to the set of states K so that only a single state corresponds to each 
sequence x E X*. The automaton traverses to this state because the sequence 
x appeared at its input. The mapping will be denoted Q: X* -+ K. The map
ping Q is uniquely determined by the sets X, K, by the initial state ko, and 
by the state transition function q: K x X -+ K. 

Let K' C K be a subset of states. The subset of sentences x E X* for which 
Q(x) E K' is called the language which is accepted by the given automaton. 



400 Lecture 9: Regular languages and corresponding pattern recognition tasks 

The language is given by the automaton, i.e., by the five-tuplet (X, K, ko E K, 
q: K x X -t K, K' C K). 

Only the languages of a certain kind can be defined in this way, not arbitrary 
ones. It could be proved that a class of all languages which can be expressed 
in the way mentioned includes all regular languages, such as were defined in 
the previous paragraph, and does not include any language that is not regular. 
We do not intend to prove this assertion because our lecture should be mainly 
based on the definitions (9.1) and (9.2). 

Let us point out an important circumstance. We have defined the regular 
languages in two different ways and both definitions have been based on the 
automaton. Even if both definitions are equivalent then the automata corre
sponding to them are quite different. In the first case it is an autonomous non
deterministic automaton which generates sentences belonging to the selected 
language. In the second case it is a deterministic automaton to the input of 
which arbitrary sentences are led. The automaton then separates the sentences 
into two classes: (a) the sentences belonging to the selected language and (b) 
all other sentences. 

Both definitions have become a basis of extensive research. In this explana
tion, we exclusively use the first definition in which the language is determined 
by the automaton generating sentences, and not by the automaton recognising 
them. If we did not clearly realised this property then it could bring a lot of 
misunderstandings. 

9.2.2 Regular languages and grammars 

Let us consider an automaton A = (X, K, r.p, P, '¢) and the corresponding reg
ular language L(A). The five-tuplet (X, K, r.p, P, '¢) need not be understood as 
an automaton and the elements X, K, r.p, P, 1/J can have other names and other 
interpretations than that in Subsection 9.2.1. This interpretation corresponds 
to regular grammars. We will now present the concept of the regular language 
by means of different terminology and see that the equivalence of the new and 
the previous definitions of the regular language are almost evident. 

The set X and the set K will be called a terminal alphabet and a non
terminal alphabet, respectively. The function r.p will be expressed by a subset 
K 0 = { k E K I r.p( k) = 1} which is called a set of axioms. The functions P 
and 1/J will be expressed by the subset of triplets of the form ( k', x, k"), k' E K, 
x EX, k" E K, and pairs of the form (k,x), k E K, x EX. These triplets and 
pairs are usually called substitution, assignment, grammar rules, etc .. We will 
use the term rule. 

A set of rules is created according to the automaton by which the language 
was originally defined. If for some triplet (k', x, k") the equality P(k', x, k") = 1 
holds then the triplet (k', x, k") becomes one of the rules which is written in 
the form k' -t xk". Furthermore if in addition to P(k', x, k") = 1 the equation 
1/J(k") = 1 is also satisfied then along with the rule k' -t xk" a further rule 
k' -t x is introduced. The set. of rules obtained in this way will be denoted R. 
Therefore the five-tuplet (X, K, r.p, P, '¢) which was called an automaton before 
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has been now expressed by means of a regular grammar given by the quadruplet 
(X, I<, I<0 , R), where 

X is a terminal alphabet, 

I< is a non-terminal alphabet, 
!{0 is a set of axioms, 

R is a set of rules. 

The regular grammar determines the language, i.e., the subset L C X* in the 
following manner. 

1. The sentence consisting of one single symbol which corresponds to one of 
the axioms is considered to be proved in the given grammar. 

2. If some sentence xk', x E X*, k' E I<, is proved in the grammar and the set 
of rules contains the rule k' -+ x' k" then the sentence xx' k" is considered 
to be proved. 

3. If a sentence xk', x E X*, k' E I<, is proved in the grammar and the set of 
rules contains the rule k' -+ x' then the sentence xx' belongs to the language 
defined by the given grammar. 

Once we have obtained the grammar (X, I<, I<0 , R) from the automaton (X, 
I<, t.p, P, 'l/J) in the above manner then the language defined by the grammar is 
just the set of sentences that can occur at the output of the automaton. We will 
not prove this assertion because it is almost obvious. Also a converse transition 
is possible, i.e., from a regular grammar to an automaton which will generate 
all sentences belonging to the language of the given grammar and only them. 
The autonomous finite automaton and regular grammars are two equivalent 
means for defining sets of a certain kind, namely, regular languages. 

9.2.3 Regular languages and regular expressions 
We will introduce the following three operations on a set of languages. 

1. Iteration of the language L is the language denoted L * which originates as 
follows. 

(a) An empty sentence, i.e., a sentence of zero length belongs to L*. 
(b) If the sentence x belongs to L • and the sentence y belongs to L then 

the sentence xy belongs to L * as well. 
2. Concatenation of languages L 1 and L2 is a language which will be denoted 

Lr Lz and which contains all the sentences of the form xy, x E L1 , y E L2 , 

and no other sentence. 

3. Union of languages Lr and L2 is the language L1 U L2. 

Let X be a finite set of symbols. Some languages in the alphabet X can be 
written by means of regular expressions in accordance with the following rules. 
1. The symbol 0 is one of the regular expressions and denotes an empty set of 

sentences. 

2. The symbol # is a regular expression for a set that contains one sentence 
only, which is an empty sentence, i.e., a sentence of zero length. 
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3. For each symbol x E X the regular expression x means a language which 
consists of a single sentence containing a single symbol x. 

4. Let a be a regular expression of the language L. Then (a)* is a regular 
expression for the iteration of the language L. 

5. Let a 1 and a 2 be regular expressions of the languages L1 and L2. Then the 
expression a 1 a 2 denotes the concatenation L 1 L2 of these languages and the 
expression a 1, a2 denotes the union L1 U L2 of these languages. 

For example, the expression a(b, c)* is a regular expression of a set of sen
tences which begins with the symbol a followed by a sequence composed of the 
symbols band c of any length (it can even be an empty one). 

A basic well known fact about the relation between regular expressions and 
regular languages is that any regular language can be expressed by means of 
a regular expression. Similarly, any language expressed by means of a regular 
expression is regular. 

9.2.4 Example of a regular language 
expressed in different ways +x 

We have presented four ways of how 
to express regular languages. We will 
now discuss an example which illus
trates these four ways. First we will 
define in an informal and perhaps 
easy-to-follow form the language we 
intend to deal with. Let an alpha
bet X consist of symbols a, b, c, +, 
x, =. We want to express a set of 
sequences which can be understood 
as commands in a program written 
in a programming language. The se
quence (i.e., the command) is to be 

0 abc 1 

2 

abc 
abc abc 

4 

abc 

Figure 9.1 Nondeterministic autonomous au
tomaton corresponding to the regular ex
pression (a, b, c)(a, b, c)• = ((a, b, c) (a, b, c)• 
(+,x))* (a,b,c)(a,b,c)*. 

composed of two parts, the left one and the right one, which are separated by 
the symbol = . The left part is to be an identifier, i.e., a nonempty sequence 
formed by the symbols a, b or c. The right part is to be composed of a se
quence of identifiers which are separated by the symbols + or x. For example, 
the sentence a = ab + c x a + aba belongs to the language we want to express. 
The sentences be = or a + b or a = a + x b do not belong to the language. 

A regular expression of the language is 

(a,b,c)(a,b,c)* = ((a,b,c)(a,b,c)*(+, x))*(a,b,c)(a,b,c)*. 

The same language can be expressed by means of a non-deterministic au
tonomous automaton shown in Fig. 9.1. 

The output alphabet r:onsists of the symbols a, b, c, =, +, x. The alphabet of 
states is the set {0, 1, 2, 3, 4} which is expressed by a set of graph vertices. The 
initial state is 0 and the target state is 4. The function P is represented in the 
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0 
4 

abc+ x = 
Figure 9.2 Deterministic automaton recognising the language from the example. 

graph by means of edges and symbols assigned to the edges. If an edge starts 
from the vertex k' and points toward the vertex k" and a symbol x labels the 
edge then it means that P( k', x, k") = 1. For all other triplets the function P 
assumes the value 0. This means that the function P assumes the value 1 with 
the following triplets: 

(0, a, 1), (0, b, 1), (0, c, 1), 

(1,a,1), (1,b,1), (1,c,1), 

(1, =, 2)' 

(2, a, 3), (2, b, 3), (2, c, 3), 

(3, a, 3), (3, b, 3), (3, c, 3), 

(3,+,2), (3, x,2), 

(2, a, 4), (2, b, 4), (2, c, 4), 

(4,a,4), (4,b,4), (4,c,4). 

The table aud graph can be understood as grammar of the following form. Its 
terminal alphabet is {a, b, c, =, +, x}, the nonterminal alphabet is {0, 1, 2, 3, 4 }, 
the axiom is 0, and the set of rules is as follows 

0 --+ al, 0--+ bl, 0--+ c1, 

1 --+ a1, 1 --+ b1, 1 --+ c1, 

1--+=2, 

2 --+ a3, 2 --+ b3, 2 --+ c3, 

3 --+ a3, 3 --+ b3, 3 --+ c3, 

3--+ +2, 3--+ x2, 

2 --+ a4, 2 --+ b4, 2 --+ c4 , 

4 --+ a4, 4 --+ b4, 4 --+ c4 , 

4 --+ a, 4 --+ b, 4 --+ c. 

And finally, the automaton which recognises sentences of the given language 
is shown by the graph in Fig. 9.2. The input symbol alphabet is {a, b, c, = 
, +, x }. The set of states K is {0, 1, 2, 3, 4, 5}. The initial state is 0 and the 
target state is 3. The automaton recognises if a sentence is correctly formed. 
Each correct sentence traverses the automaton to the state 3. Each incorrect 
sentence takes it to some other state. It is achieved by a proper choice of the 
transition function q which controls transitions of the automaton from state 
to state according to the input symbol. The transitions between the states 
are marked by an arrow in Fig. 9.2. If the arrow starts from the vertex k' 
and points toward the vertex k:" and the symbol x is attached to it then the 
transition q( k', x) = k" is expressed with it. 
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9.3 Regular languages respecting faults; 
best and exact matching 

In section 9.1 we have introduced regular languages as a way to define sets of 
sentences of a certain form. If we look at a problem from a pattern recogni
tion point of view then an algorithm is to be created that will decide for each 
sentence and for each regular language if the sentence belongs to the given lan
guage. The solution of the problem is almost trivial, especially if the regular 
language is expressed by an automaton generating sentences of the given lan
guage. In this case the language is defined as a set of sentences for which the 
matrix product (9.2) yields the number 1. Such a way of expressing a language 
immediately provides an explicit recognition algorithm as well. 

In addition to the positive features mentioned previously another disadvan
tage of regular languages is obvious for practical tasks. We are intuitively aware 
of difficulties in assigning an object to beforehand given classes in the recogni
tion procedure if our decision has to be exact, i.e., yes or no. Such recognition 
seems to be an overly great simplification for common tasks, such as asking if 
a person is in good health or if the weather is going to be OK on the following 
day. We expect that the recognition outcome should have a more complicated 
form than that of one single bit. The outcome should be a number, at least, 
providing the measure of certainty with respect to the statement that the recog
nised object possesses the property examined. Many tasks in applied pattern 
recognition should not be formulated on the basis of the set of correctly formed 
sentences, but on the basis of a proper real-valued function defined on the set 
of all possible sentences. 

The first idea might be that the real function sought should be understood as 
a probability distribution on the set of all possible sentences X*. That would, 
of course, mean going back to our previous lecture where alternative tasks were 
discussed which were based on the assumption of a stochastic mechanism for 
generating random sentences. 

This approach, however, is not the only possible way beyond the scope of a 
discrete two-valued model of a recognised object. In pattern recognition other 
methods have originated, primarily the two following classes. 

The first class is based on direct generalisation of the regular language. Formal 
constructions do not determine a subset L of acceptable sentences, but a 
non-negatively defined function F: X* -+ lit Its value F(x) determines 
for each sentence x E X* the measure of acceptability of the particular 
sentence. The recognition of the sentence x is understood in this case as 
the computation of the number F(x). 

The second class of tasks beyond the scope of pure discrete models defines 
the function d: X* x X* -+ lR (usually also a non-negatively defined one) 
which for each two sequences x1 and x2 determines to what extent these 
two sequences differ. The actual concept of the regular language is by no 
means modified. Pattern recognition tasks are formulated on the basis of 
two concepts: the regular language L and the function d. Recognition is 
then understood as a computation of a 'distance' x of the observed sentence 
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from the language L, i.e., the computation of the number 

min d(x, y). 
fiEL 

Such tasks are called best matching problems. The tasks checking the valid
ity of the relation x E L are called exact matching problems. 

The following subsection is devoted to pattern recognition tasks in which 
the fundamental concept is not the language as a subset of a sequence, but as 
a function defined on a set of sequences. 

9.3.1 Fuzzy automata and languages 
The concepts of fuzzy automata and languages are constructed on the basis of 
fuzzy sets and operations of their union and intersection, and are defined in the 
following way. 

Let X be a set, it need not be only an alphabet of symbols. The subset 
X' C X can be considered as a function f: X --t {0, 1} which assumes the 
value 1 for the subset X' and assumes the value 0 outside the subset X'. The 
fuzzy subset of the set X is regarded as the function f: X -+ lR which assumes 
values in the interval 0 to 1. Let !I and fz be two fuzzy subsets of the set X. 
Their intersection is defined as the function f: X -+ lR the value of which at 
the point xis f(x) = min(JI(x),fz(x)). The union of !I and fz is defined as 
the function f: X-+ lR the value at the point xis f(x) = max(JI(x),fz(x)). 

In section 9.1 the automaton has been defined as a five-tuplet (X, K, cp, P, 'lj;), 
where X and K are two finite sets. The function cp determines the subset of 
initial states, the function P denotes the subset of triplets (k', x, k"), k' E K, 
x EX, k" E K, and 'lj; defines the subset of target states. A fuzzy automaton 
is defined by a similar five-tuplet. The difference lies in considering cp, P and 
'lj; as fuzzy sets. 

The automaton (X, K, cp, P, 1/J) (which is not a fuzzy one) determines the 
language as a subset of sentences in the form x1 , x2 , ... , Xn, n = 1, 2, 3, ... for 
which the following equation holds, 

The fuzzy automaton (X, K, cp, P, 1/J) defines the fuzzy language as the function 
X* -+ lR which is determined by the left-hand side of Equation (9.3) with 
the operation V understood as a union of fuzzy sets, and the operation 1\ 
as an intersection of fuzzy sets. Thus, the language of the fuzzy automaton 
(X, K, cp, P, 1/J) is defined as a fuzzy subset defined by the function 

max max··· max min (cp(ko),minP(k;-l,x;,k;),'lj;(kn)) . (9.4) 
koEK ktEK knEK l 

The pair of operations (max, min) constitutes a semi-ring on a set of real 
numbers from 0 to 1, where max .is considered as addition, and min as multi-
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plication. Thus the expression (9.4) can be written as a matrix product 

(9.5) 

where c.p is a row vector, P;, i = 1, ... , n, are matrices, and '1/J is a column vector. 
The above quantities are constructed in a similar way as those in the analysis 
of earlier problems, e.g., in writing Equation (9.2). Matrix multiplication in 
the formula (9.5) is to be performed in a relevant semi-ring, i.e., with operation 
max as an addition and operation min as a multiplication. In calculating the 
product in (9.5) keep in mind that matrix multiplication is not commutative. 

We can see that fuzzyfication of the concepts-the automaton and the reg
ular language-has kept the pattern recognition task on a trivial level. The 
expression (9.5) formulates the task as a calculation to what extent the sen
tence x1, x2, ... , Xn belongs to the given fuzzy language. At the same time, an 
algorithm for this calculation is defined by the same expression (9.5). Com
plexity of this calculation is evidently O(IKI2 n). 

9.3.2 Penalised automata and corresponding languages 
Let X and K be two finite sets and c.p: K -t JR, P: K x X x K -t JR, '1/J: K -t lR 
be three functions determining the behaviour of a finite automaton. For the 
initial state of the automaton any state k E K can be chosen, but any such 
choice is penalised by c.p(k). If the automaton was in the (i- 1)-th instant in 
the state k;-1 then it can generate the symbol x;, traverse to the state k; and 
pay a penalty P(k;-1, x;, k;) for this step. And eventually, the automaton can 
interrupt its operation at any instant i and declare the generated sentence as 
finished. For finishing it the automaton will pay a penalty '1/J(k;) which depends 
on the state k; in which the operation was finished. 

The five-tuplet (X, K, c.p, P, '1/J) and the number c define the language as a set 
of sentences which can be generated with the total penalty being less than or 
equal to c. The set of languages which can be defined in this way contains all 
regular languages, but it contains the languages that are not regular too. They 
will be called penalised languages. 

The pattern recognition task questioning if the given sentence x1, x 2 , ... , Xn 

belongs to a penalised language can be reduced to calculating the number 

and comparing it with the number c. The calculation (9.6) can be expressed 
as the matrix product 

c.p8 (9pi) 8'1/J 

in which the matrix is multiplied in a semi-ring with the operation min as an 
addition and the operation + as a multiplication. 
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We can see that even in this formulation the pattern recognition task is trivial 
because its formulation directly results in the algorithm of its calculation. The 
complexity of the algorithm remains O(\K\2n). 

9.3.3 Simple best matching problem 
Let d: X x X -t ~be a function the value d(x',x11 ), x' E X, x11 E X, of 
which means the penalty for replacing the symbol x' for x11 • This function also 
determines the value for the pair of sequences x~, x~, ... , x~ and x~, x~, ... , x~, 
as the sum 

n 

Ld(x~,xn. 
i=l 

In a special case in which the variables Xi assume only two values, and with 
a relevant choice of the function d, the given sum is the Hamming distance 
known in the theory of coding. Let L c X* be a regular language (neither 
fuzzy, nor penalised) which corresponds to the automaton (X, K, '{), P, '1/J). In 
the simple best matching problem the given sequence x1 , x2 , ... , Xn is to be 
substituted by the sequence YI, Y2, ... , Yn from the language L to obtain the 
minimal distance L:~1 d(yi, Xi). This means that it is necessary to solve the 
minimisation task 

n 

min min··· min L d(yi, Xi), under the conditions: 
Y1 Y2 Yn i=l 

'P(ko) = 1, (9.7) 

P(ki-I,Yi,ki) = 1, i = 1, ... ,n, 
'1/J(kn) = 1, 

with the known sequence x 1 , x2, ... , Xn and given functions d, '{), P and '1/J. 
This problem can be transformed on the basis of the following considerations. 
Let 

M = max max d(y, x) . 
yEX xEX 

We will introduce new functions '{)1 , P' and f' which are defined as follows 

'{)1 ( k) = M n + 1 , if '{J(k) = 0' 

'{J1(k) = 0' if '{J(k) = 1' 

'1/J' ( k) = M n + 1 , if ~~(k) = 0' 

·¢/(k) = 0' if '1/J(k) = 1' 
P' ( k', y, k11 ) = M n + 1 , if P(k',y,k 11 ) = 0, 

P'(k',y,k 11 ) = 0, if P(k',y,k 11 ) = 1. 
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Using the new functions 'f!1 , P' and f' we will rewrite the task (9.7) as 

min··· min min··· min ('P' (ko) + t ( P' (ki-1, Yi, ki) + d(yi, Xi)) + 1/J' (kn)) 
ko kn Yl Yn i=l 

(9.8) 
For arbitrary values k0 , ... , kn, y1 , ... , Yn which satisfy the conditions of the 
problem (9.7) the sum minimised will not be greater than Mn. For val
ues which do not satisfy the conditions of the problem (9.7) the sum will 
not be less than M n + 1. The result is that the minimum in the prob
lem (9.8) can occur only in the points k0 , ... , kn, Y1, ... , Yn which satisfy 
the conditions (9. 7). For points satisfying the conditions (9. 7) the functions 
which are minimised in the problems (9.8) and (9.7) assume the same val
ues. 

The number (9.8) obviously is 

":~n "l:n · · "i:n ( ~· ( ko) + t, ":!" ( P' (k,_,, y;, k;) + d(y;, x;)) + ,P' ( kn)) 

If the notation 

(9.9) 

is introduced then the value (9.8) can be written as 

Note that the preceding expression is of the same form as that of the expression 
(9.6) which had to be calculated in the recognition task based on the penalised 
language. It follows that even this simple best matching problem can be reduced 
to a calculation of the matrix product 

(9.10) 

In the previous tasks the relevant matrices and vectors were taken directly 
from input data. The examined best matching problem differs from the pre
ceding tasks in creating the matrices PJ' as several, not very difficult, optimi
sation tasks (9.9). The computational complexity of calculating matrices PJ' 
is O(IKI2 lXI n). After the matrices have been computed the product (9.10) 
is to be calculated the computational complexity of which is O(IKI 2 n). It 
is clear that the expression (9.9) need not be computed only if the sequence 
x1,x2, ... ,xn is already known. The numbers P"(k',x,k") can be computed 
in advance for all k' E K, x E X, k" E K according to the formula 

P"(k',x,k") =min (P'(k',y,k) +d(y,x)). (9.11) 
yEX 
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In this way the analysed best matching problem (9. 7) is directly reduced to 
a task for recognising a language defined by the penalised automaton (X, K, 
cp', P", '¢'). Then for each sequence x1 , x2 , ... , Xn preliminary calculations of 
(9.9) need not be performed since they are substituted by other preliminary 
calculations of (9.11) with calculation complexity O(JKI 2 JXI2 ). 

9.4 Partial conclusion after one part of the lecture and 
introduction to further explanation 

We have discussed a quite extensive group of problems connected with recog
nising sequences. We have found that computational procedures for their so
lutions are similar and lead to the computation of matrix products in some 
semi-rings. Computational algorithms for various problems differ only in the 
semi-ring needed for the given problem. 

1. The calculation of a probability that a stochastic automaton will generate a 
given sequence requires multiplication of matrices in a semi-ring (+,product) 
i.e., the matrix is multiplied in a usual sense. 

2. The search for the most probable sequence· of states through which the sto
chastic automaton has passed requires multiplication of matrices in a semi
ring (max, product). 

3. The decision if the sentence belongs to the given regular language requires 
matrix multiplication in a semi-ring (v, /\). 

4. The decision on the extent of how much the given sentence belongs to a 
fuzzy regular language can be transposed to multiplication of matrices in a 
semi-ring (max, min). 

5. The decision if the sentence belongs to the given penalised language requires 
multiplication of matrices in a semi-ring (min,+). 

6. The solution of the simple best matching problem with the given regular 
language requires multiplication of matrices in a semi-ring (min,+) similarly 
as in previous item. 

The uniformity of algorithms for solving problems the original formulations of 
which seemed to differ should attract our attention for several reasons. First, 
algorithms for solving diverse tasks are easier to remember because they are 
similar. Second, the uniformity of algorithms offers a purely pragmatic advan
tage of saving effort in writing problem-solving programs. The algorithms differ 
in several parameters only, i.e., in the selected operations from the respective 
semi-rings. 

Last but not least by understanding the common features of the given prob
lems, a subjective feeling is achieved that all the mentioned tasks are easy. 
Some tasks seemed to be far more difficult than some others at first glance 
in their original varied formulations. The task answering the question if the 
given sentence belongs to a certain regular language, i.e., an exact matching 
problem, seems to be much easier at first glance than seeking a sentence which 
is most similar to the given one. But if it is found that both tasks are solved 
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by the same algorithm then the second task does not appear to be in any way 
so fantastically complicated either. 

Let us give another example concerning a pair of problems of seemingly 
different complexity, and being closely related to our explanation. Seeking 
a path between two vertices of a graph does not substantially differ from a 
seemingly more complicated task which seeks the shortest path between these 
two vertices. 

We have seen that transformation of the original problems to a matrix form 
has not, so far, required complicated calculations. Only with the best matching 
problem the transition from the original formulation to a matrix form requires 
a certain, but not very complicated transformation of input data. In all other 
tasks no transformation of input data has been needed. The matrices to be 
multiplied are stored in the initial data. Extracting matrices from the initial 
data does not require any transformation of the initial data. They only have 
to be interpreted in another way. If we use the chess terminology then the 
problem is in winning position from the very beginning. 

We also know how to solve the simplest best matching problem in which a 
simple transformation of initial data is required to convert the problem in a 
matrix form which makes the solution evident. If we continue with the chess 
analogy then the winning position can be achieved in a single move. In our 
explanation we have now worked our way to a task in which we will need 
multiple modifications to transpose the task to the form of a matrix product. 
The winning position will be achieved in several moves and a certain auxiliary 
task is solved with every move. This more complicated problem is Levenstein's 
well known approximation of the assigned sentence by means of a sentence of 
the given regular language. The analysis of this task will be dealt with in the 
remaining part of Lecture 9. 

9.5 Levenstein approximation of a sentence 
by a regular-language sentence 

9.5.1 Preliminary formulation of the task 
We are going to analyse a task belonging to the class of the best matching 
problems which has the following form. Let L be a regular language determined 
by the automaton (X, K, r.p, P, '¢), and let the function d: X* x X* -t IR be 
given which for each pair of sentences xi E X*, x2 E X* provides the number 
d( XI, x2) called the dissimilarity between a sentence x2 and a sentence XI. The 
dissimilarity is not necessarily symmetrical and need not have other features of 
metrics either. The objective is to create an algorithm which will compute the 
number 

D(x) =min d(y, x) , 
iiEL 

(9.12) 

for each sentence x EX* and for each regular language L c X*. The number 
D(x) will be called the dissimilarity between the sentence x and the language L. 

We will deal with the problem (9.12) for the case in which the function dis 
defined in a special way known as the Levenstein function. 
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9.5.2 Levenstein dissimilarity 
We will introduce three edit operations by which a sentence can be rewritten to 
another sentence, and show how to penalise these operations. The operations 
will be denoted by two-letter abbreviations which represent the first two letters 
of their names. 

INsert transforms the sentence x1x2, x1 E X*, X2 E X*, to the sentence 
x1 xx2, x E X. The penalty for this operation is determined by the function 
in: X --+ JR. the value in ( x), x E X, of which corresponds to the penalty for 
inserting the symbol x to the sentence. 

CHange (also replace) transforms the sentence x1 xx2, x1 E X*, x E X, 
x2 E X •, to the sentence x1 x' x2, x' E X. The transformation is penalised 
according to the function ch: X x X --+ JR. The number ch ( x, x'), x E X, 
x' E X, is the penalty for changing the symbol x for the symbol x' in the 
sentence. 

DElete transforms the sentence x1 xx2, x1 E X*, x E X, x2 E X*, to the 
sentence x1 x2 . The delete transformation is penalised by the function 
de: X --+ JR. The number de ( x), x E X, is the penalty for deleting the 
symbol x from the sentence. 

The penalty for the sequence of the above mentioned edit operations is defined 
as a sum of penalties for individual operations. The penalty for an empty 
sequence of edit operations is zero by definition. 

Let us have two sentences, x1 and x2 . There is an infinite number of se
quences of edit operations transforming the sentence x1 to the sentence x2 . The 
price of the cheapest sequence of edit operations transforming the sentence x1 
to the sentence x2 defines the Levenstein dissimilarity between the sentences 
x2 and x1 . The Levenstein dissimilarity is denoted by d(x 1 , x2 ). Sometimes 
the same concept is called Levenstein function or edit distance or Levenstein 
deviation, too. 

Levenstein dissimilarity is determined by the triplet of functions in: X --+ JR., 
ch : X x X --+ JR., and de : X --+ JR. The set of such functions states the class of 
functions x· X x· --+ JR. which will be dealt with in this lecture. Some functions 
of this class can be understood as definitions of metric relations on the set X*, 
but in the general case Levenstein dissimilarity need not possess properties of 
a distance. We will analyse tasks which are based on Levenstein dissimilarity 
in their general form. We will be supported by one single assumption that the 
functions in, ch and de are positive-semidefinite. 

The presented definition of Levenstein dissimilarity is somewhat treacherous. 
Its calculation induces us to use additional features of Levenstein dissimilarity 
which seem to be natural but actually do not result from its definition. Al
gorithms based on such seemingly self-evident assumptions (which are in fact 
additional) solve the task only in particular cases. In the general case their 
correct performance cannot be guaranteed. 

Nothing serious happens when some algorithms fail to solve a task in its 
complete generality, but solve only a subset of the possible tasks. But it can be 
disastrous when this subset is not precisely determined and the algorithm starts 
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Figure 9.3 Graph of transitions illustrating the performance of an algorithm for calculating 
Levenstein dissimilarity. 

to be used even for tasks for which its correct performance is not guaranteed. 
The well known and favoured algorithm for calculating Levenstein similarity is 
a glowing example of such a pseudo-solution of tasks. We intend to mention it 
in our explanation for completeness and will show where it is in error. 

9.5.3 Known algorithm calculating Levenstein dissimilarity 
Let us have two sentences from X*, namely .t = (x 1,x2, ... ,xi, ... , xm) and 
y = (Yl, y2, ... , YJ, ... ... , Yn)· A commonly used algorithm for calculating 
Levenstein dissimilarity d(y, x) between the sentences x and y is represented 
by a graph in Fig. 9.3. 

Fig. 9.3 shows a rectangle composed of m x n squares which are arranged 
in m rows and n columns. To the left of the i-th row the i-th symbol of the 
sentence x is written. Above the j-th column the j-th symbol of the sentence 
y is written. Horizontal, vertical and diagonal abscissas in the figure represent 
graph edges. The set of graph edges defines the set of admissible paths from 
the left-hand upper corner of the rectangle to its right-hand bottom corner. 
The edges are so oriented that the admissible motion along different edges is 
only downward in the vertical direction, to the right in the horizontal direction, 
and from Northwest to Southeast in the diagonal direction. 

To each path in the graph a sequence of edit operations corresponds which 
transforms the sentence y to the sentence x. The path along the vertical edge 
in the i-th row corresponds to insertion of the symbol x; into the sentence. The 
path along the horizontal edge in the j-th columns of the graph corresponds 
to deletion of the symbol YJ from the sentence. At last, the path along the 
diagonal edge in the i-th row and j-th column expresses the change of the 
symbol YJ for the symbol x; in the sentence. 
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Let each edge be weighted by the length which will correspond to the penalty 
for the respective edit operation in the sentence. The length of each vertical 
edge in the i-th row represents the penalty in(xi) for inserting the symbol Xi· 

The length of the horizontal edge in the j-th column is the penalty de(yj) for 
deleting the symbol Yi. Finally, the length of the diagonal edge in the i-th row 
and j-th column is the penalty ch(yj, Xi) for changing the symbol Yi to the 
symbol Xi· In so defined lengths of the edges, the length of each path in the 
graph will be equal to the total penalty for using the respective edit operations. 
Therefore (watch out, an error will follow!) the search for the best sequence of 
edit operations which transform fj to the sentence x is reduced to the known 
task of seeking the shortest path in the graph from the top left vertex to the 
bottom right vertex. The error in reasoning mentioned above will be seen from 
the following counterexample. 

Example 9.1 Undermining the often used algorithm for calculating Leven
stein dissimilarity. Let the alphabet X be {a, b, c, d}, let the sentence jj consist 
of one single symbol a and let the sentence x consist of one single symbol b. 
Levenste·in dissimilarity between the sentence b and the sentence a is to be cal
culated. The corresponding graph is shown in Fig. 9.4. Only three paths exist 
from the top left vertex to the bottom right vertex in the graph. These three paths 
correspond to three possible transformations of the sentence a to the sentence b. 

1. possibility. 

• Changing a to b. 

2. possibility. 

• Deleting a. 
• Inserting b. 

3. possibility. 

• Inserting b. 
• Deleting a. 

a 

Figure 9.4 Counterexample. Com
puting Levenstein di.~similarity. 

In seeking the shortest path, i.e., in seeking the best of these three alterna
tives, we will arrive at the r·esult that Levenstein dissimilarity between b and a 
is min ( ch(a, b), de(a) + in(b)). However, the factual mismatch of b and a can 
be far less because the graph 9.4 has shown only three possible ways of trans
forming the sentence a to the sentence b. The factual number of possibilities is 
much larger. For example, consider the following. 

• Changing a to c. 
• Deleting c. 
• Inserting d. 
• Changing d to b. 

There are many other possibilities. The graph in Fig. 9.4 shows only a small 
por·tion of possible sequence.~ of edit operations of a sentence. Therefore the 
quoted procedure can solve the task only if there is an a priori certainty that 
the cheapest sequence of the edit operations belongs to just that small portion. 
There is, of course, no snch certainty in the geneml case. .A 
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Our ascertainment that the generally applied procedure seeking Levenstein dis
similarity solves the task only in particular cases would not necessarily have 
disastrous consequences. As soon as the hitch has been discovered and under
stood, an algorithm for correct calculation of Levenstein dissimilarity can be 
immediately created. We have dwelt on this example just to show one of the 
many treacherous traps in which a person handling the task without due care 
can be easily trapped. We note at the same time that we are not interested in 
the calculation of Levenstein dissimilarity between a given sentence and some 
other sentence which is also given. We are interested in the dissimilarity be
tween a given sentence and an extensive, actually infinite, set of sentences, i.e., 
between a sentence and a regular language. Even at first glance this is a much 
more difficult task. There are far more such hidden traps as we will see later. 

9.5.4 Modified definition of Levenstein dissimilarity 
and its properties 

We will offer another definition of Levenstein dissimilarity which seems more 
complicated only at first glance. Let X be a finite alphabet and X* be a set of 
all sentences composed of symbols of the alphabet. We will regard the set X* 
to be vertices of a graph. In a strict sense we should not speak about a graph 
since it consists of an infinite number of vertices. But we will not take into 
consideration the non-constructiveness of the mentioned graph because it has 
been introduced for another purpose than for computational manipulations. 

Let us consider three functions in : X -t IR, ch : X x X -t IR and de: X -t JR. 
In the graph arrows (transitions) of three types will be introduced, in, ch and 
de. Let two vertices of the graph correspond to two sequences x1 x2, x1 xx2 , 

where x1 E X*, x2 E X*, x E X. This means that these two sequences can be 
obtained from one another with insertion or deletion of the symbol x. We will 
introduce an arrow in which leads from the vertex x1 x2 to the vertex x1 xx2 , 

and declare its length to be in(x). Similarly we will introduce an arrow de 
which leads from the vertex x1xx2 to the vertex x 1x2 , and state its length to 
be de(x). 

Let two vertices of the graph correspond to two sequences x1 yx2 and x1 xx2 

in which x1 E X*, x2 E X*, x E X, y E X. We will introduce an arrow 
ch which begins in the vertex i1YX2 and passes toward the vertex x 1xx2 , and 
state its length to be ch(y,x). We will also introduce an arrow in the opposite 
direction, i.e., from the vertex x1xx2 to the vertex x1yx2 , and declare its length 
to be ch(x, y). 

Levenstein dissimilarity is defined as a function d: X* x X* -t IR the value 
d(fj, x) of which is given by the length of the shortest path in the created graph 
from the vertex that represents the sentence y to the vertex corresponding to the 
sentence x. The following lemma states an important property of Levenstein 
dissimilarity. 

Lemma 9.1 On the ordering of edit operations within the shortest path. 
For any two sentences y E X* and x E X* one of the shortest paths from the 
~ertex y to the vertex x has the following form. It begin.s with a sequence (it 
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can even be an empty one) of arrows of the type in. It is followed by a sequence 
(it can even be an empty one) of the type ch. Finally it ends with a sequence 
{it can even be an empty one) of arrows of the type de. A 

Proof. Let fi, x1, x2, ... ,xn, x be the shortest paths from the vertex fi to the 
vertex x which does not possess the property stated by the lemma to be proved. 
Failure in this property can be revealed in one of the triplet of vertices Xi- I, Xi, 
Xi+!, i.e., in a pair of arrows Xi- I, Xi and Xi, Xi+!. There are only three cases 
in which the failure in the property being proved can occur. Each of them will 
be discussed separately, and the causes of the failure will be examined. 

1. The arrow (xi-t,Xi) is of the type de and the arrow (xi,xi+I) is of the 
type in. This means that the sentences Xi-J,Xi,Xi+! can assume one of the 
following forms, 

Xi-1 ~ X'yX"X"', } Xi-1 ~ X' X" yX"' , } 

either Xi = x' x" x111 , or Xi = x' x" x111 , 

Xi +I = x' x" xx111 , Xi+t = X1 XX 11 X111 , 

where x' E X*, X11 E x·, X111 E X*, X E X, y E X. 

In the first case the sentence Xi = x' x" x111 will be changed to the sentence 
x~ = x' yx" xx111 • In the second case it will be changed to the sentence 
x~ = x' xx" yx111 • In both cases we will obtain a new path from the sentence 
fi to the sentence x which has exactly the same length as that of the original 
path. With the new path the arrow (xi-l, xD will be of the type in and the 
arrow (x:, xi+1) will be of the type de. 

2. The arrow (xi-l, xi) is of the type ch and the arrow (xi, xi+ I) is of the type 
in. Two alternatives can occur, 

Xi-! = x'yx"x'" Xi-1 = x'x"yx111 , 

either Xi ~ X' xX" X"' , } or X; ~ X'X"xX"', } 

Xi+ I = x'xx"z x'", X;+! = X1Z X11 XX 111 • 

In the first case the sentence Xi = x' xx" x'" will be changed to the sentence 
x; = x' yx" zx'". In the second case the sentence xi will be changed to the 
sentence x~ = x' zx" yx'". In both cases we will obtain a new path from the 
sentence fi to the sentence x which has exactly the same length as that of 
the original path. With the new path the arrow (xi-l, x;) will be of the 
type in and the arrow ( x:, xi+ I) will be of the type ch. 

3. The arrow (xi-1, xi) is of the type de, and the arrow (xi, xi+ I) is of the 
type ch. Two alternatives can occur again, 

either 

xi-1 = x'xx"yx111
,} 

xi = x'x"yx'", 

xi+ 1 = x'x"z x'", 

or 

xi-1 = x'yx"xx111 ,} 

xi = x' yx" x111 , 

xi+ 1 = x'z x"x111 • 
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In the first case the sentence x; = x' x" yx"' will be changed to the sentence 
x: = x' xx" zx"'. In the second case the sentence x; = x' yx" x"' will be 
changed to the sentence x: = x' z x" xx"'. The obtained new path from y 
to x will have exactly the same length as that of the original path. The 
arrow (x;_ 1 ,x;) will be of the type ch and the arrow (x:,xi+l) will be of 
the type de. 

We have seen that by gradually changing the original path from y to x we 
will find a path where none of the three quoted situations will occur. For 
the resulting paths, the property stated in the Lemma being proved will be 
satisfied. • 

Thanks to the proved lemma we can see that one of the shortest paths from 
the sentence y to the sentence x consists of three sections. Note that each of 
them can be empty. The first section of the path passes through the arrows 
in, the second section is formed by the arrows ch, and finally the third section 
consists of the arrows de. 

If we take this property into consideration then we can define Levenstein 
dissimilarity in one more way. We will introduce three partial Levenstein dis
similarities which will be denoted d; 11 , dch and dde· The number d;n(Y,x) is 
defined as the length (the shortest one) of the path from the vertex y to the 
vertex x which passes through the arrows in. In this definition, the word 
'shortest' is redundant. The path from y to x exists only if the sequence y is a 
subsequence in the sequence x. If such a path exists then the length of all the 
paths from y to x are the same. If such a path does not exist then we consider 
d;n(Y, x) = 00. 

The number dde(Y, x) determines the length (the shortest one) of the path 
from the vertex'[} to the vertex x which passes arrows de. If such a path does 
not exist then we declare dde(Y, x) = oo. The adjective 'shortest' is redundant 
here too as the lengths of all possible paths from y to x are the same. 

Similarly dch (Y, x) is the length of the shortest (the adjective is needed here) 
path from '[} to x, that passes through arrows ch. If such a path does not exist 
then we define dch(Y, x) = oo. The previous case occurs if the lengths of the 
sentences '[} and x are not the same. If the sentences are identical, i.e., y = x 
then we define d;n(Y,x) = dch(y,x) = dde(fi,x) = 0. 

The concept of the arrow has been used so far for representing admissible 
edit operations. Now we will supply additional arrows which will denote a 
repeated application of the same edit operation, and will be called long arrows. 
We intend to distinguish them from the hitherto used arrows which will be 
called short arrows. Let y and x be two sentences and let the sentence x be 
obtained from the sentence y by inserting symbols. We will introduce a long 
arrow in which starts from the vertex y and leads toward the vertex x. Its 
length will be stated as d;n ('[}, x). Let '[} and x be two sentences of the same 
length. We will introduce a long arrow ch which leads from y towards x and be 
of the length dch(Y, x). Let y and x be two such sentences, the sentence x can 
be obtained from the sentence y by deleting symbols from it. We will introduce 
a long arrow de which leads from y toward x and be of the length dde(Y, x). 
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After the concepts have been introduced it is clear that the length of the 
shortest path from fi to x along the short arrows, i.e., Levenstein dissimilarity 
between the sentences x and fj, is given by the length of the shortest path from 
fj to x along the long arrows. This path consists of three long arrows in, ch 
and de at most, in the respective order. Some arrows can also be missing. The 
mathematical representation of the previous assertions is the relation 

(9.13) 

Though the preceding relation is not suitable to a constructive calculation of 
Levenstein dissimilarity d(y, x) between the sentences x and fj, it decomposes 
Levenstein dissimilarity into three partial, more understandable concepts. It 
can be seen that in the calculation two auxiliary sentences z1 and z2 are used on 
which three summands depend. The sum is to be minimised by these two sen
tences. Each of the summands can be found by other, more detailed concepts. 
We will do it later at a more suitable time. 

9.5.5 Formulation of the problem and comments to it 
Let us have two finite sets X, K, three functions cp: K -t {0, 1}, P: K x X 
xK -t {0, 1}, '¢: K -t {0, 1} which determine the regular language L C X* 
as a set of sequences x1, x2, ... , Xn for which the following logical proposition 
holds 

v v 
koEK k1EK 

Let us also have three functions in : X -t JR, ch : X x X -t lR and de : X -t lR 
which define Levenstein dissimilarity d: X* x X* -t JR. 

The task is to create an algorithm which for each sequence x E X* and for 
each six-tuplet of functions (cp, P, '¢, in, ch, de) calculates the number 

D(x) = min d(y, x) . 
iiEL 

(9.14) 

This task substantially differs from all previous tasks recognising sequences. 
The previous tasks were stated as seeking the optimum on a set of sequences. 
Roughly speaking the best sequence was to be found. From the nature of 
the task the length of the sequence was known beforehand. Even if such a 
defined set was extremely extensive then it was only a finite set after all. The 
task (9.14) which has now been formulated requires seeking the best sentence 
in the whole regular language. The length of the sequence sought is not limited 
beforehand and the respective regular language is infinite. Therefore it is a 
type of optimisation in an infinite domain. 

This specificity of our task can be expressed in another way. In the pre
vious cases we were dealing with multi-dimensional optimisation tasks. The 
dimension of the optimisation space was usually quite large, but it was known 
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beforehand at least. The number of variables according to which optimisa
tion was performed was known. The task (9.14) is more complicated than 
the multi-dimensional optimisation task because the number of variables is not 
predetermined and moreover it can be arbitrarily large. 

We will see another specificity of the task analysed when compared with the 
previous ones. The criterion functions (qualities) which were optimised in pre
vious tasks were simple in a sense. We wish to say that if the sequence sought 
was already known then its calculation would not pose any computational re
straints. This is because the quality was explicitly expressed by a mathematical 
formula which was to be simply calculated. In other words, minx f(x) was to 
be found in a situation in which the procedure computing the value f(x) for 
each x was known. The task (9.14) is substantially different. The minimised 
function d(fj, x) is unambiguously determined, but is not explicitly expressed. 
Moreover, strictly speaking, we have not known the algorithm so far which 
would calculate the number d(fj, x) for each pair (f), x) and for each Levenstein 
dissimilarity. The algorithm quoted before does not calculate that number cor
rectly. However, its complexity is O(nynx) where ny and nx are the lengths of 
the sentences '[j and i, respectively. The complexity of the correct algorithm 
will hardly be less. The task (9.14) which we try to solve requires finding 
the smallest number out of infinitely many numbers. This is to be done in a 
situation in which a mere calculation of some numbers may take an arbitrar
ily long time because the respective regular language includes arbitrarily long 
sentences. 

We erect a pedestal for the formulated problem not only because it deserves 
it, but also to point out beforehand that its analysis may not be very simple 
if easy-going negligence is excluded. To simplify our further explanation in the 
following subsection we present without proof the basic results and assertions 
on the solvability of the task. Proofs will be quoted in the next subsection. At 
the end of the lecture, explicit formulre for solving the task will be given. We 
do not recommend using formulre without knowing what they mean. 

9.5.6 Formulation of main results and comments to them 
Let (X, K, tp, P, 1/J) be a penalised automaton, i.e., X and K be two finite sets, 
tp: K -+ IR, P: K x X x K -+ IR, 1/J: K -t lR be three non-negatively defined 
functions. The quoted five-tuplet determines the function F: X* -+ lR the 
value F(x), i E X*, of which means the minimal penalty for generating the 
sequence x, 

F(x) =min min··· min (tp(ko) + ~ P(ki-l, xi, ki) + 1/J(kn)) . 
ko k1 k ~ 

n i=l 
(9.15) 

The function F is simple in the sense that its calculation has a complexity 
0(/K/ 2 n), where n is the length of the sequence i. In the same sense all tasks 
analysed so far have been simple ones. 

The most important outcome will be that for any function D: X* -t lR of 
the form (9.14) there exists its equivalent expression in the form (9.15). The 
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calculation of the function D has therefore the same complexity as all the 
previous tasks have. Let us put aside for the time being an important question 
about complexity of the transition from the expression (9.14) to the expression 
(9.15). Let this outcome be formulated in a precise way. 

Theorem 9.1 Equivalent expression of Levenstein dissimilarity. Let X and 
I< be two finite sets, ip: J( --t {0, 1}, P: J( x X xI< --t {0, 1}, ·1/J: K --t {0, 1} 
be three functions which define a regular language L containing the sentences 
x 1 , x2 , ... , X 11 for which there holds 

Let us consider· three non-negatively defined functions in: X --t IR, ch: X x X 
--t IR, de: X --t IR which determine Levenstein dissimilarity d: X* x X* --t IR 
and Levenstein dissimilarity D: X* --t R 

D(i:) = min d(fj, i:) . 
fiEL 

(9.17) 

For each six-tuplet ( ip, P, 'ljJ, in, ch, de) which determines the function D with 
respect to {9.17) there is a pair· of functions P', 'lj/ such that the equality 

(9.18) 

is satisfied for· each sentence x = (x1, x2, ... , Xn) E X*. ~ 

The above stated theorem claims that the analysed task is in the same complex
ity class as the preceding tasks. The computation complexity of the number 
D(x) is, despite all its complicated expression, O(IKI 2n), where n is the length 
of the sentence x. It is, therefore, of the same complexity order as determining 
if the sentence x belongs to a regular language (an ordinary one, neither fuzzy, 
nor penalised). Thus Theorem 9.1 has expressed such an incredibly convenient 
property that it deserves to be more thoroughly thought over ... 

The same attention should be paid to the following property. Assume that 
we are now not interested in the calculation of D(x) according to (9.18), but 
in manipulating a pair of fixed sentences fj, x, i.e., (a) in making clear whether 
fj belongs to the language L, and (b) in calculating d(y, x). The answer to 
the first question is provided by the relation (9.16) verification of which is of 
complexity O(IKI 2ny), where ny is the length of the sentence fl. Even if we 
have not yet formulated the algorithm for calculating d(Y, x), we can assert 
that its complexity is not less than O(nynx)· The total complexity is then 
O(li<l2ny + nynx). Theorem 9.1 actually asserts that a complexity of the 
calculation minyEL d(fj, i:) is O(IKJ 2nx)· This complexity does not depend on 
the length of the sentence fj which provides a minimum, and moreover the 
complexity of the calculation of minyEL d(y, x) is less than the complexity of 
the mere calculation d(y, x) for the given sentence fj E L. 
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The features quoted in Theorem 9.1 are not intuitively understandable and 
therefore their proof should satisfy the most demanding requirements possible 
for formal correctness. 

Theorem 9.1 will be proved within the scope of formalism which is similar 
to the formalism of generalised matrices used in this and the previous lecture. 
Since the calculus of generalised matrices will not be used now only for a more 
concise expression of relations already known, but for a proof of a hitherto not 
proved theorem, we are formulating this calculus more precisely than before. 

9.5. 7 Generalised convolutions and their properties 
Let W be a set. Let E9 and @ be two operations which assign each pair of 
elements x E W and y E W with the respective results x E9 y and x ® y which 
also belong to the set W. Let the operations E9 and ® along with the set W 
have the following properties: 

1. X E9 y = y E9 X. 

2. (xE9y)E9z=xE9(yE9z). 

3. x®y = y®x. 

4. (x ® y) ® z = x ® (y ® z). 

5. x®(yEBz)=(x®y)EB(x®z). 

6. The set W contains a zero element which will be denoted QE!l. For each 
x E W the equalities x ffi QE!l = x and x ® QE!l = QE!l are valid. 

7. The set W contains a unitary element which will be denoted 1 ®. For each 
x E W the equality x ® 1181 = x is valid. 

The set W along with the operations EB and 0 which satisfy the above 
conditions form a semi-ring with commutative multiplication. 

It is decisive for our task that the operation min used as E9 along with the 
operation + used as ® also form a semi-ring on a set that contains all non
negative real numbers and a particular 'number' (denoted oo) which is greater 
than all real numbers. The introduced oo has the following features 

x+oo=oo, 

min(x, oo) = x. 

After extending the set of non-negative numbers by oo, all the above quoted 
properties of the semi-ring are satisfied, and therefore the set R U { oo} along 
with the operations min as addition and + as multiplication form a semi-ring. 
Indeed, there holds that: 

1. min(x, y) = min(y, x). 

2. min (min(x,y),z) =min (x,min(y,z)). 

3. X+ y = y +X. 
4. (x +y) + z = x + (y + z). 

5. x + min(y,z) = min(x + y,x + z). 



9.5 Levenstein approximation of a sentence 421 

6. The set R U { oo} contains the 'number' oo, so that for each x the equality 
min(x, oo) = x and x + oo = oo. The 'number' oo is then a zero element 
with respect to the operation EB. 

7. The set R U { oo} contains the number 0, so that for each x the equality 
x + 0 = x is valid. The number 0 is then a unitary element with respect to 
the operation ®. 

We will deal with functions that are defined on finite sets and assume their 
values on a commutative-multiplication semi-ring. The denotation ![x, y] will 
be interpreted as a function in total, i.e., a mapping from one set to the other. 
Inside the square brackets identifiers of variables are written on which the 
function depends. The denotation f(x, y) in round brackets will not mean a 
function, but it will be the value which the function f[x, y] assumes with certain 
values of the argument. For example, f(a, b, c) is a value which the function 
![x, y, z] assumes when x =a, y = b, z =care substituted. 

Let X be a set { x1, x2, ... , Xn}. The expression El1xEX f (x) will be used for 
a brief expression of the sum f(xt) EB f(x2) EB ... EB f(xn)· 

Let X, Y, Z be three finite sets, (W, EB, ®) be a commutative semi-ring, and 
ft[x,y]: X x Y--+ W, h[y,z]: Y x Z--+ W be two functions. The expression 

ft[x,yJQS}h[y,z] 
y 

will be used for a brief denotation of the function f[x, z]: X x Z--+ W values 
of which are defined by the expression 

f(x,z) = E9 (ft(x,y) ®h(y,z)). {9.19) 
yEY 

The function ft[x, y] ®Y h[y, z] will be termed the convolution of functions 
Jt[x, y] and h[y, z] with respect to the variable y. 

Identifiers x, y, z in the definition (9.19) can be understood not only as a 
denotation of one variable but also as a denotation of groups of variables. A 
group of variables, say, x,y,z, where x EX, y E Y, z E Z, can be considered 
as one variable that assumes its values from the set X x Y x Z. For example, 
the convolution It [x, y, z] ®z h[z, y, u] is a function f[x, y, u]. In the general 
case, the convolution of two functions ft and h is dependent on all variables 
on which the functions It and h are dependent, except for the variables ac
cording to which the convolution is performed. The identifiers x, y, z in the 
definition {9.19) can be understood as empty groups of variables, and thus 
they need not be present in (9.19) at all. Therefore we regard as understand
able also the convolution ft [x, y] ®Y h[y] which is a function of one variable 
x, as well as the convolution It [x] ® h[Y] which is a function of two variables, 
x and y, and finally the convolution It [x] ®x h[x] which is no function at all 
and which is simply an element from the set W. 

We can see that convolution expressions are generalised expressions of linear 
algebra which also include matrix products as a particular case. The defini
tion (9.19) can thus also be understood as multiplication of the matrix It of 
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dimension lXI x IYI by the matrix h of dimension IYI x IZI. The result of 
the product is the matrix f of dimension lXI x IZI. Note however that con
volution expressions have a certain preference over a matrix product because 
convolution expressions in a commutative semi-ring m·e cornnmtative, i.e., the 
following equation is valid 

h [x, y]@ h[y, z] = h[y, z]@ ft [:r, y] . 
y y 

Matrix products are not commutative. In matrix multiplication the variable 
with respect to which the convolution is performed is implicitly defined. Actu
ally it is always the second variable on which the first function depends, and the 
first variable on which the second function depends. In a convolution expres
sions, the respective variable is defined explicitly. Furthermore, convolution 
expressions can be expressed even for functions which depend on three, four, 
or more arguments; whereas by means of matrix products only the convolution 
of functions that depend on two arguments at most can be expressed. And last 
but not least, convolution expressions are meaningful not only for addition and 
multiplication in a common sense, but for any pair of operations that form a 
commutative semi-ring. 

Despite all the generality, convolution expressions possess features owing to 
which they can be equivalently transformed, simplified, and the like. Further
more the above mentioned commutativity, these are 
• associativity 

(tdx, Y] qp J,]y, z]) ~ J,[z, u] ~ It ]x, y] qp ( f,]y, z] ~ j, [z, u]) , 

(9.20) 
• distributivity 

h[x, y]@ (h[y, z] E9 !J[y, zJ) 
y 

• and one more property, which has no name, and results from commutativity 
and associativity 

Let X be some set and <5[x, y] be a function of the form X x X-+ W for which 
o(x,y) = 1<81 if X= y, and o(x,y) = QE!l if X =I y. The function will be referred 
to as a Kronecker function. For a Kronecker function 

f[x, y]@ 8[y, z] = f[x, z] 
y 
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also holds, i.e., convolution with a Kronecker function does not transform the 
function itself and changes only the denotation of its argument. 

If the semi-ring is formed by the operations min in the sense of addition, 
+ in the sense of multiplication then the convolution expressions assume addi
tional features resulting from the idempotent property of addition which means 
fEB f =f. Let f[x, y] be a function of the form X x X--+ (JR U { oo} ). For any 
function f of this form we will define the function f 0 [x, y] as the Kronecker 
function, and the function J'l[x, y] as the convolution f[x, z] ®z r-1 [z, y]. 
Lemma 9.2 Convergence of a sum. Let the set X contain k elements. In 
such a case the sum 

f 0 [x, y] EB l [x, y] EB f 2 [x, y] EB ... EB r[x, y] 

at n--+ oo converges to the function (6 EB J)k-l, i.e., 

n 

lim E9 fi[x, y] = (6 EB f)k- 1 [x, y]. 
n-too i=O A 

Proof. We will prove first that for an arbitrary n the following equality holds 

n 

EB fi = (6 EB Jt . (9.22) 
i=O 

Equation (9.22) is evidently correct at n = 0 and n = 1. If n = 0 then the left
hand side is 6 and the right-hand side is (6 EB !)0 which is also 6 since according 
to the definition, any function with the zero power is 6. If n = 1 then both the 
left-hand side and right-hand side of Equation (9.22) are equal to 6 EB f. We 
will prove that if Equation (9.22) holds for some n then this holds for n + 1 too. 

From idempotent property, i.e., from f EB f = f the following derivation 
follows, 

~t[x,y[ = (~f'[x,y]) EJ1 (~J'[x,y]) 

(P,t[x,y]) EJ1 (f[x,z]~@!'[z,y])) 

(o[x,z]~(~!'[z,y])) EJ1 (f[x,z]~(~t[z,y])) 

= (o[x, z] EJ1J[x,zJ) ~ (~ J'[z,y]) 

(6[x,zJE9f[x,zJ)@ (6[z,yJEB![z,yJ)" 
z 

( )
n+1 

6[x, y] E9 f[x, y] 
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So the relation (9.22) is proved for each integer n. 
We will now prove the main assertion of Lemma 9.2. The set X will be iden

tified with the graph vertices. The value f(x, y), x E X, y E X will be identified 
with the length of the oriented edge (arrow) that starts from the vertex x and 
points toward the vertex y. The number f(x, y) is the length of the shortest 
path from the vertex x to the vertex y under the condition that the path consists 
of a single arrow. The number f ( :r, z) ® = f ( z, y) is the length of the shortest 
path from the vertex x to the vertex y under the condition that the path consists 
of two arrows. In the general case f 11 ( x, y) is the length of the shortest path 
from the vertex x to the vertex y under the condition that the path consists of n 
arrows. This statement has its sense even when n = 0. The shortest path from 
x toy, which does not consist of any arrow, is evidently 0 = 1181 if x = y, and it is 
oo = 0181 if x "I y. Thus it is c5(x, y), i.e., f 0 (x, y). The sum ffi~=o fi[x, y] is the 
length of the shortest path from x to y which consists of n arrows at most. This 
path cannot pass through more than k-1 arrows. In the opposite case this path 
would contain a cycle, and this cannot happen with a non-negatively defined 
function f. From this it follows that at n ~ k the following equation holds 

ll k-1 

ffifi[x,y] = ffit[x,y]. 
i=O i=O 

As a result of the already proved Equation (9.22) we have 

ll 

lim ffi fi = (c5 ffi f)k-1 
11-H)Q w 

i=O 

• 
The lemma proved shows a constructive way of calculating an infinite polyno
mial ffi~o fi. Later on this infinite polynomial will be denoted f* which will 
be used for an arbitrary function f: X x X ---+ W. 

Based on Lemma 9.2 a constructive way can be shown of calculating con
volutions with respect to a variable which assumes values from an infinite set. 
For example, these may be convolutions with respect to a variable that has the 
form of a sequence. 

Lemma 9.3 Calculating infinite convolution expressions. Let K and X be 
two finite sets, X* = U~o Xi, f: K x X x K ---+ W, and r.p: X ---+ W be two 
functions. Let# represent an empty sentence, i.e., a sentence of zero length. 

Let the function F: K x X* x K ---+ W satisfy the conditions 

F(k',#,k")=c5(k',k"), k'EK, k"EK, (9.23) 

F(k',xx,k")=F(k',x,k)Q!jf(k,x,k"), k'EK, k"EK, xEX*, xEX. 
k 

Let the function <P: X* ---+ W satisfy the conditions 

<P(#) = 1181' 
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<I>(xx) = <I>(x)@ cp(x), x EX*, x EX. (9.24) 

In this case the convolution 

is 

F[k',x,k"J@<I>[x] 

) 
IKI-1 

(o[k', k"J Ell (tik', x, k"J ~ ~(x)) 

(9.25) 

~ 

Proof. Immediately from the definition of convolution there follows that the 
convolution (9.25) is only a brief designation for the function of two variables, 
k' and k" the value of which for the given pair (k', k") E K 2 is the sum 

00 

EB EB F(k', x, k") 0 <I>(x) , (9.26) 
n=O xEX" 

where xn is the set of sequences Xl' X2, ... 'Xn, Xi E X' of length n. This 
assertion will be repeated in the proof of this lemma several times. That is 
why we will express it in the form of equality 

00 

F[k', x, k"] ® <I>[x) = EB EB F(k', x, k") 0 <I>(x) . (9.27) 
X n=O XEX·n 

Strictly speaking the preceding relation is not correct because on the left-hand 
side of the equality the function K x K --+ W is stated, and on the right-hand 
side of the equality the value appears which this function assumes for the pair 
k', k". In spite of this incorrectness we will use the denotation of (9.27) so that 
after this explanation no misunderstanding should occur. 
The sum 

EB F(k', x, k11 ) 0 <I>(x) 
xEX 0 

is evidently 

F(k', #, k") 0 <I>(#) = c5(k', k") ® 1° = c5(k', k") . 

According to the definitions (9.23), (9.24) and according to the definition of 
convolution, the sum 

EB F(k', x, k") 0 <I>(x) 
;cEX 1 

has the form 

E9 F(k', x, k") 0 <I>(x) = f[k', x, k"]@ cp(x) . (9.28) 
xEX 1 X 
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We will prove that at any n = 1, 2, ... the following equality holds 

(9.29) 

For n = 1 the equality is valid because it is identical with the equality (9.28). 
We will prove that if the equality (9.29) is valid for some n then it is also valid 
for n + 1. This statement is proved by the following derivation 

E9 F(k',x,k")(Z)<I>(x)= E9 EBF(k',xx,k")(Z)<I>(xx) 

= EB EB EB F(k', x, k) (2) f(k, x, k") (2) <I>(x) (2) 'P(x) 
xEX" xEX kEK 

~! c~. F(k',x, k) ® ~(>')) ® ( ~ f(k,x,k") 0 <p(x)) 

(Jik',x,kJ~"'IxJ)" ~ (Jik,x,k"J~"'IxJ) 
( ) 

n+l 

= j[k',x,k"Jq?'P[x] . 

We will insert (9.29) in (9.26) and find that the convolution (9.26) is 

As a result of Lemma 9.2 there holds 

• 
We can see that a mere formal analysis of convolution expressions provides rules 
of their equivalent transformation. It is important that two of the rules quoted 
in Lemma 9.2 and Lemma 9.3 enable transformation of infinite convolution 
expressions to their finite equivalents. In the task on Levenstein approximation 
one of the major difficulties is the requirement for minimisation on the set of 
all possible sequences of arbitrary length. (Roughly speaking, a function is to 
be minimised which depends on an infinitely large number of variables.) Such 
sets cannot be coped with by any computational procedure in a finite number 
of steps. Therefore in solution of that task we will make use of the last two 
results which reduce the infinite convolution expressions to finite ones. The 
task has to be expressed in a convolution form for this purpose. Its previous 
nonconvolution formulation was given in Subsection 9.5.5. 
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9.5.8 Formulation of a task and main results 
in convolution form 

Let X and K be two finite sets and let three functions cp: K -t { 0, oo}, P: K x 
X x K -t {0, oo }, 'ljJ: K -t {0, oo} determine the language L C X* in such a 
way that the sequence x = ( x1, x2, ... , Xn) belongs to L if and only if 

F(x) = min min · · · min (cp(ko) + t P(ki-1, Xi, k.i) + 'ljJ(kn)) = 0 (9.30) 
koEK k1 EK k., EK i=l 

which is equivalent to the property that there exists a sequence ko, k1, ... , kn 
for which there holds 

cp(ko) = 0, } 
P(ki-!,Xi,ki) = 0, i = 1,2, ... ,n, 

'1/J(kn)=O, 

(9.31) 

because the sum cp(ko) + L~~1 P(ki-1, Xi, ki) + 'ljJ(kn) for an arbitrary sequence 
k0 , k1, ... , kn can be either 0 or oo. This sum is 0 if a system of conditions (9.31) 
is satisfied; and is oo if at least one condition from (9.31) is not satisfied. 
It is evident that the language L created in this way belongs among regular 
languages. And vice versa each regular language can be expressed in the form 
of (9.31). 

Let us have Levenstein dissimilarity d: X* x X* -t Ilt The task (9.14) 
which has to be solved requires for each given sequence x E L calculation of 
the number 

D(x) =min d(y, x) 
iiEL 

(9.32) 

which is Levenstein dissimilarity between the sentence x and the language L. 
The number (9.30) which depends on the sequence x E X* will be denoted 

F(x). Since F(x) can be either 0 or oo, the number D(x) defined by the relation 
(9.32) can be expressed as 

D(x) = min (F(Y) + d('f}, x)) . (9.33) 
iiEX• 

The function D: X* -t lR defined by the relation (9.33) can be expressed as a 
convolution over the set of all possible sequences f) E X* 

D[x] = F[fJ] @d[y,x] 
ii 

in a semi-ring with operations min and + on a set of non-negative real numbers, 
enlarged by the 'number' oo. According to (9.30) the function F: X* -t lR can 
be defined as a convolution 

F[y] =F[yl, Y2, ... , Yn] (9.34) 

=cp[ko] @P[ko,YI, ki] @P[kl,Y2, k2] ®· · ·@P[kn-!,Xn,kn] @'1/J[kn]· 
ko 
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The relation of the preceding expression to an expression used before in the 
form of a generalised matrix product is obvious. If the function <p[k] of the 
variable k E K is understood as a IKI-dimensional row vector then the function 
P[k', Yi, k"] of two variables k' E K, k" E K will be interpreted as a square 
matrix Pi of the dimension IKI x IKI, and if the function 1/l[k] of one variable 
k E K is understood as a IKI-dimensional column vector then the convolution 
(9.34) can be expressed as the matrix product 

The main expected outcome of this part of the explanation which was stated 
before as Theorem 9.1 can be now expressed in the convolution form. 

Let X and K be two finite sets and let us have three functions <p: K ---+ 
{0, oo }, P: K x X x K ---+ {0, oo }, 1/1: K ---+ {0, oo }. Let the function f: K x 
X* x K ---+ IR be defined in the following manner. 

If x is an empty sentence # then 

f(k', x, k") = f(k', #, k") = 6(k', k"), k' E K, k" E K. 

f[k',x,k"] = f[k',x1x,k"] = f[k',xi,k]Q9P[k,x,k"]. 
k 

Let the function F: X* ---+ IR have the form 

F[x] = <p[k]Q9 f[k, x, k']Q91/J[k']. 
k k' 

Let us have three functions in: X ---+ IR, ch: X x X ---+ IR, de: X ---+ IR which 
determine Levenstein dissimilarity d[y, x]: X* x X* ---+ IR between the sentences 
x and y and Levenstein dissimilarity D[x]: X* ---+ IR between the sentence x 
and the set of sentences y E X* for which F(Y) = 0 holds, i.e., 

D[x] = F[yJQ9 d[x, y] . 
jj 

(9.35) 

Theorem 9.2 Convolution form of Levenstein similarity. For each six-tuplet 
of functions ( <p, P, 1/J, in, ch, de) there exists a pair of functions P': K x X x 
K ---+ IR and 1/1': K ---+ IR such that the function D: X* ---+ IR defined by the 
relation {9.35}, will assume the form 

where 

D[x] = <p[k] Q9 f'[k, x, k'] Q91P'[k'], 
k k' 

/'(k,#,k')=J(k,k'), kEK, k'EK, 

f'[k',xx, k"] = f'[k',x,k] Q9P'[k,x,k"]. 
k 

(9.36) 
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Theorem 9.2 states that Levenstein dissimilarity D for the sentence x = (x1 , x2 , 

... , Xn) can be calculated as the matrix product 

PIP.' P' P' •I 'P 1 2 ''' n-1 n '1/J • 

where the vectors cp and 1/J' express the functions cp and 1/J' of one variable 
k E K and matrices Pf, i = l, ... ,n, represent functions P'[k,xi,k'] of two 
variables k E K, k' E K. It results from the Theorem 9.2 that the calculation 
of Levenstein dissimilarity between the sentence x and the language L has a 
complexity O(JKJ2 n), where n is the length of the sentence x. In this way 
the Levenstein dissimilarity problem has been transferred to simpler problems 
analysed before. 

Validity of the declared main result will be proved in the following subsection. 

9.5.9 Proof of the main result of this lecture 
Based on the property (9.13) the Levenstein dissimilarity d(y, x) between the 
sentences x and f) can be expressed in the form of convolution 

iii ii2 

Let us incorporate the function d[Y, x] in this form into the definition (9.35) of 
Levenstein dissimilarity D[x] between the sentence x and the language L, 

D[x] = F[y] ~ (din[Y, t11] ~ dch[Y1, t12] ~ dde[t12, x]) . (9.37) 
Y Yt Y2 

Owing to the associativity of convolution the expression (9.37) can be written 
as 

The proof of Theorem 9.2 can be reduced to a proof of the next three lemmata 
by decomposing the problem on optimal sentence transformation into three 
independent simpler problems of optimal insertion, changing and deleting of 
symbols. 

Lemma 9.4 Optimal transformation of a sentence by inserting symbols. Let 
us have two finite sets X, K and three functions cp: K -+ R, P: K x X x K 
-+ R, ·¢: K -+ R determining the function F: X* -+ R so that 

F[y] = cp[k'] Q9 f[k', y, k"] Q9 1/J[k"] , (9.38) 
k' k" 

where 
l[k,#,k"] = 6[k',k"], } 
f[k', xx, k"] = l[k', x, k] ® P[k, x, k"]. 

k 
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Let the function in: X -+ IR define the function din: X* x X* -+ IR the value 
din (y, 'fh) of which is the minimal penalty for transforming the sentence 'fj to 
the sentence y1 by repeatedly inserting symbols from X to the sentence y. 
In this case such a function P1 : K x X x K -+ IR exists that the function 

F1 [yl] = F[Y]@ din['fl, 'il1J 
ii 

(9.39) 

is identical with the function 

'P[k'] ® h[k', 'f}l, k"] ® 1/l[k"]' 
k' k" 

where 

11 [k', #, k"J = o[k', k"J , (9.40) 

fl[k','iJ1Y1,k"] = fl[k','iJl,k]@Pl[k,yl,k"]. (9.41) 
k • 

Lemma 9.5 Optimal sentence transformation by changing symbols. Let us 
have two finite sets X, K and three functions 'P: K -+ IR, P1 : K x X x K -+ IR, 
1/1: K -+ IR determining the function F1 : X* -+ IR so that 

F1 [Y1] = 'P[k']@ h [k', 'il1, k"]@ 1/l[k"] , (9.42) 
k' k" 

where 
!I[k', #, k"J = o[k', k"J, } 

fl[k',:ihYl,k"] = fl[k','fll,k]~Pl[k,yl,k"]. (9.43) 

Let the function ch: X x X -+ IR define the function dch: X* x X* -+ 1R the 
value dch ['ill, 'il2J of which is the minimal penalty for transforming the sentence 
'il1 to the sentence 'iJ2 by repeatedly changing symbols in the sentence 'ih . 

In this case such a function P2 : K x X x K -+ IR exists that the function 

F2['il2J = Fl[yl]@dch['iJl,'iJ2] (9.44) 
iil 

is identical with the function 

'P[k'] ® h[k'' 'iJ2, k"] ® 1/l[k"] ' (9.45) 
k' k" 

where 

h[k',#,k"J = o[k',k"J, (9.46) 

/2[k','iJ2Y2,k"] = /2[k','iJ2,k]@P2[k,y2,k"]. (9.47) 
k • 
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Lemma 9.6 Optimal sentence transformation by deleting symbols. Let us 
have two finite sets X, K and three functions tp: K ----t R, P2 : K x X x K ----t R, 
'1/J: K ----t R determining the function F2: X* ----t R so that 

F2[172] = tp[k'J Q9 h[k',fh, k"J @'1/J[k"J, (9.48) 
k' k" 

where 
h[k',#,k"J = 8[k',k"J' } 

h[k',ihY2,k"J = f2[k',y2,k]~P2[k,y2,k"]. (9.49) 

Let the function de: X ----t R define the function dde: X* x X* ----t R the value 
dde[Y2, x] of which is the minimal penalty for transforming the sentence Y2 to 
the sentence x by repeatedly deleting symbols from the sequence y2 • 

In this case such functions P': K x X x K ----t R and '1/J': K ----t R exist that the 
function 

D[x] = F2[Y2J@dde[Y2,x] 
ii2 

is identical with the function 

where 

tp[k'] ® J'[k'' x, k"J ® '1/J'[k"J ' 
k' k" 

J'[k'' #, k"J = 8[k'' k"J, 
f'[k',xx,k"] = !'[k',x,kJ@P'[k,x,k"J. 

k 

Proof. (to lemma 9.4) 

(9.50) 

(9.51) 

(9.52) 

& 

1. For the numbers d;n (y, fh) following relations are valid. If both y and y1 

are empty then d;n ( #, #) = 0 = 1 ®. If y is empty and y1 is non-empty 
then evidently 

or in the convolution form 

(9.53) 

If a sequence y consists of a single symbol y and a sequence y1 consists of 
a single symbol Y1 then d;n (y, Yl) = oo if (y =f Y1) and d;n (Y, Y1) = 0 in 
opposite case. This means in the convolution form 

(9.54) 

If neither y nor Yl is empty then value d;n (y, Yl) results from the following 
considerations. The optimal transformation of the sequence fj = y'y to the 
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sequence fh = Y~Y1 with insertions can be performed only in two possible 
ways: either the symbol y1 was inserted during the transformation or not. 
In the first case the penalty of transformation will evidently be 

din(y'y,yD +din(#,yl) · 

In the second case the penalty will be 

din (y', iJD + din (y, yl) · 

The value din (y'y, y~yl) will evidently be the smaller value of these two 
numbers, 

or in the convolution form 

2. Let us now derive a more detailed expression for the function 

F1[y!] = F[y]@din[y,y!] 
y 

which existence states Lemma 9.4. Let us use the expression (9.38) for F[y] 
and obtain 

F![y!] = cp[k']@ f[k', y, k"]@ '¢[k"] Q9 din[Y, yl]. 
k' k" y 

Based on the property (9.21) the equivalent expression 

is valid. In this way we have proved that the function F1 [ill] is of the form 

where 

cp[k'JQS)h[k',yl,k"J@-¢[k"J' 
k' k" 

h[k',jh,k"] = f[k',y,k"J@din[Y,Yl]· 
y 

(9.56) 

Now it is to be proved that the function .ft [k', y1, k"] defined by Equa
tion (9.56) satisfies conditions (9.40) and (9.41). 

3. The property (9.40) is quite obvious. If Y1 = # then din (Y, th) = 0 = 1181 
only when y = #. It is because a nonempty sequence cannot be changed 
into an empty one by inserting symbols. Equation (9.56) in this case will 
obtain the form 

h[k',#,k"] = f[k',#,k"J. 
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In Lemma 9.4 the condition f[k', #, k"J = 8[k', k"J is given and thus also 
h[k',#,k"J = 8[k',k"] holds. 

4. Let us write a more detailed expression for Equation (9.56) if the sequence 
'fh is non empty and consequently is of the form ih Y1, 

fi (k', 'fhY1, k") = EB J(k', '[}, k") ~din('[}, Y1YI) · 
fiE X* 

Summation over all possible sequences '[} will be expressed as a summation 
over two classes of numbers. The first of them consists of a single number 
f ( k', '[}, k") ~ d;n ('[}, iJ1 Y1) for the empty sequence '[} = #. The second class 
of numbers corresponds to all other nonempty sequences of the form 'fjy. So 
we can write 

JI(k',iJlYl,k") = J(k',#,k")~din(#,iJlyi) 

63 EB EB J(k',yy,k") ~ d;n(iJy,iJlYd. 
fiEX* yEX 

Using expressions (9.53) for d;n ( #, iJ1Y1), (9.39) for f(k', 'fjy, k"), and (9.55) 
for d;n (Yy, iJ1 yi) , we obtain 

fi (k', YlYl, k") = f(k', #, k") ~ d;n( #,'[}I)~ d;n(#, yl) (9.57) 

63 EB J(k', fi, k") ~ d;n (fi, fil) ~din ( #, yl) 
fiEX*\{#} 

63 EB EB (J(k',y,k)~d('f},fil)~ ( ffiP(k,y,k")~din(y,yi))) 
fiEX* kEK yEX 

The first and the second lines in the preceding expression can be written 
in one line using the summation over all possible sentences y including the 
empty sentence #. So Equation (9.57) can be rewritten in the form 

fi(k',filYI,k") = EB J(k',y,k") ~din(fi,fii) ~din(#,yi) (9.58) 
fiE X* 

63 EB EB (J(k',y,k)~d(fi,fii)~ ( ffiP(k,y,k")~din(y,yi)\). 
fiEX* kEK yEX J 

5. The first line in (9.58) can be written owing to the distributive property of 
multiplication as 

in which the sum in round brackets is /I ( k', fi1 , k") according to the defini
tion (9.56). The first line in Equation (9.58) is then 

JI(k',f}I, k") ~ d;n(#,'[JI). (9.59) 
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Based on the property of the Kronecker function 6[k, k'] we can write the 
number (9.59) as 

EB JI(k','fh,k) 06(k,k") 0din(#,yl). (9.60) 
kEK 

6. We will examine the second line in (9.58). Owing to Equation (9.54) we can 
write 

EB P(k, y, k") 0 din (y, yl) = EB P(k, y, k") 0 6(y, yl) = P(k', Yl, k") 
yEX yEX 

and the second line in the expression (9.58) becomes 

EB P(k,y1,k") 0 ( EB J(k',y,k) 0din(Y,'fh)). 
kEK yEX* 

On the base of the definition (9.56) the sum in round parenthesis is equal 
to 

( EB J(k',y,k) 0din('fj,yl)) = JI(k',y1,k) 
yEX* 

and for the second line in (9.58) we can write 

EB !I (k'' Yl' k) 0 P(k, Yl' k") . (9.61) 
kEK 

7. If we substitute (9.60) instead of the first line of (9.58) and substitute (9.61) 
instead of the second line then we obtain 

JI(k',yly1,k") = EB !I(k',y1,k) 0 (s(k,k") 0din(#,yl) !IJP(k,y1,k")). 
kEK 

This proves that 

JI[k',yly1,k"] = JI[k',y1,k] Q9 PI[k,y1,k"], 
kEK 

where 

P1 [k, Y1, k"] = P[k, Y1, k"] ffi (6[k, k"]0 din[#, Y1]) . 

So it has been proved that the function fi defined by the relation (9.56) 
satisfies the condition (9.41). • 

For completeness we note that din[#,yi] is in[yi], and thus the function P1 
which is referred to in the Lemma can be expressed in the following simple 
way, 

PI[k',y,k"] =P[k',y,k"]ffi (6[k',k"]0in[y]). 

The preceding relation explicitly provides a constructive way for creating the 
function P1 at the known functions P and in. 
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Proof. (of Lemma 9.5) 
1. As with the proof of the previous Lemma 9.4 we will substitute the expres

sion (9.42) for the function F1 [171] into (9.44). We will obtain the expression 
for the function F2 [:ih] 

F2[172] = ~t~[k'] Q9 !l[k', ih, k"] Q9 '1/J[k"] Q9 dch[Yl, Y2J 
k' k" !11 

which owing to the property (9.21), can be written as 

F2 [172] = ~t~[k'] Q9 (!1 [k', Y1, k"] Q9 dch [y1, Y2l) Q9 '1/J[k"] . 
k' ih k" 

The previous expression implies that the function F2 is of the required form 
(9.45). The function h[k',y2,k"] is the convolution 

h[k',y2,k"] = !l[k',yl,k"JQ9dch[Yl,Y2]· (9.62) 
ih 

It is to be proved now that the function defined in this way satisfies the 
conditions ( 9.46) and ( 9.4 7) . 

2. The property (9.46) is evidently correct. If Y2 = # then the convolution 
(9.62) assumes the form 

h[k', #, k"] = fl[k', #, k"]® dch[#, #], 

because no non-empty sentence y1 can be transformed to an empty one by 
changing symbols. The number !1 (k', #, k") is c5(k', k") according to the as
sumption. The number dch(#, #) is clearly 0 = 1181 • Therefore h(k', #, k") 
is equal to c5 ( k', k") and the function h has been proved to satisfy the 
condition (9.46). 

3. Let the sentence Y2 be non-empty and of the form y2y2. Let us write in 
detail the number h(k', y2y2, k") defined by (9.62), 

h(k',Y2Y2,k")= EB ft(k',yl,k")®dch(Yl,Y2Y2)· (9.63) 
:!hEX* 

In the preceding sum only sentences y1 the lengths of which are equal to the 
length of the sentence y2y2 can be considered since no sequence of symbol 
changes can change the length of a sentence. For the sentences of the form 
Y1Y1 the lengths of which are equal to the length Y2Y2 the following holds 

For the sentences of the form Y1Y1 according to assumption (9.43) the fol
lowing is valid 

!1 (k'' YlYl' k") = EB !1 (k'' Yl' k) 0 pl (k, Yl' k") . (9.65) 
kEK 
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We will include (9.64) and (9.65) into (9.63) and obtain 

h(k', fhY2, k") = ED ED ( ED /I (k', f)l, k) 181 pl (k, Yl, k")) 
ihEX* Y1EX kEK 

181 dch(f}l,j}2) 181dch(Yl,Y2) · 

In the preceding sum the order of summation will be altered and we obtain 

The sum Ef)iiiEX• /I(k',f}l,k) 181dch(ih,ih) is h(k',fh,k) according to the 
definition (9.62). We will denote 

P2(k,y2,k") = ED P1(k,y1,k11 ) 181dch(Y1 7 Y2) (9.66) 
Y1EX 

and express h(k', fhy2 , k") in the form 

h ( k', fh Y2, k") = ED h ( k', ih, k) 181 p2 ( k, Y2, k") . 
kEK 

This means that the function h satisfies the condition (9.47). The function 
P2 is defined by expression (9.66). • 

For completeness we will express P2 directly by means of functions that are 
known. The number dch(y1 , y2 ) is the penalty for the cheapest sequence of 
symbol changes which transform the symbol YI to the symbol Y2. This number 
can be calculated as the length of the shortest path between two vertices of 
the graph consisting of lXI vertic(!S that correspond to the symbols x E X, 
and in which the length of the arrow from the vertex y1 to the vertex Y2 is 
ch(yi,Y2)· This length dch: X x X~ IRis equal to the sum 6:)~0 chi. The 
sum was proved to equal the function (IS f}, ch)IXI-l, which was denoted by 
means of ch *. 

The function P2 which was stated before by means of (9.66) can be thus 
expressed in the form 

P2[k, Y2, k"] = PI[k, Yh k"]@ ch*[yi, Y2J 
Y1 

which shows an explicit way of constructively creating the function P2 provided 
the functions P1 and ch are already known. 

Proof. (of Lemma 9.6) We will analyse a function D[x] which is defined 
by the expression (9.50). Let x be a sequence x1 ,x2 , ... ,xn. The value of the 
function D for this sequence is 

D(x) = F2[772] @dde[;th,x], 
ii2 

(9.67) 



9.5 Levenstein approximation of a sentence 437 

where dde [y2, x] is now understood as a function of one variable Y2 since in all 
further consideration x will be a fixated sequence. In this sum the addition 
need not be performed over all possible sequences y2, but only over those that 
have the form 

(9.68) 

where x1, x2, ... , Xn+l are sequences. In other words the addition is to be 
performed only over those sentences y2 that can be transformed to the sentence 
x by merely deleting some symbols, i.e., sentences that include the sentence x 
as a subsequence. For the sentence in the form of (9.68) the function F2 [y2] 

has in agreement with (9.49) the following form 

F2[Y2] = <p[ko]@ h[ko, x1, kb]@ P2[kb,x1, kt]@ h[k1,x2, k~] 
ko 

The number dde[Y2,x] will be 

k' 0 

(9.69) 

If we substitute (9.70) into (9.67) and take into consideration that convolution 
is calculated only for sentences fh of the form (9.68) then we will obtain 

F2 [Y2] @ dde [Y2, x] F2[X1X1X2X2X3 · · · XnXnXn+d@ dde(Xl, #) 
1}2 Xt 

If we include into the previous expression a detailed statement (9.69) then we 
will find out that the function D[x] = D[x1, x2 , ..• , xn] has the form 

where the function P': K x X x K -t lR is 

P'[k', x, k"J = h[k', x, k] @dde[x, #]@ P2[k, x, k"], (9.71) 
x k 
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and the function 1/J' : K ~ lR is 

1/J'[k] = h[k',x,k"JQ9dde[i,#]Q$)1/J[k"]. (9. 72) 

This concludes the proof of Lemma 9.6. • 
The expressions (9.71) and (9.72), however, do not yield any constructive way 
for calculating the functions P' and 1/J' since they include the convolution 
h[k',i, k"] ®.x dde[i, #]over the infinite set of all possible sequences i. Such 
a constructive calculation is possible owing to Lemma 9.3 which asserts that 
this infinite convolution is 

Explicit expressions for calculating the functions P' and 1/J' thus are 

( ) 
IKI-1 

P'[k',x,k"] = t5[k',k]i!1(P2 [k',x,k]~de[x]) ~P2 [k,x,k"], 

1/J'[k] = (t5[k, k'] EB (P2 [k, x, k'J® de[x])) IKI-l Q$)1/J[k'] 
X k' 

which show a constructive way how they can be obtained on the basis of the 
known functions P2, 1/J and de. 

The three proved lemmata 9.4, 9.5 and 9.6 prove Theorem 9.2, and thus the 
equivalent Theorem 9.1 as well. It is because these three lemmata show how to 
find the functions P' and 1/J' the existence of which is mentioned in the above 
two theorems. The functions P' and 1/J' are to be created on the basis of the 
five functions P, 1/J, in, ch, de by means of the following seven steps. 

Algorithm 9.1 Constructive calculation of functions P' and 1/J'. 

1. The function P1 : K x X x K ~ R is calculated, 

P1 [k', y, k"J = P[k', y, k"] EB (8[k', k"] Q9 in[y]). 

The complexity of this calculation is O(IKIIXIIKI). 

(9. 73) 

2. The function ch*: X x X~ R is calculated, i.e., in the following way. First, the 
function ch * is expressed as 8 EB ch then the following operator is used repeatedly 
but not more than log j.\~"j-times, 

ch* [:r, y] ::= ch* [x, z] ® ch* [z, y]. (9.74) 
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This is performed until the function ch • stops changing. The complexity of a 
single calculation of (9.74) is obviously CJ(IXI 3 ), and the overall complexity of 
creating the function ch* is CJ(IXI 3 log lXI) in the worst case. 

3. The function P2 : K x X x K -+ lR is calculated, 

P2[k', x, k"] = Pl[k', y, k"] Q9 ch* [y, x]. (9. 75) 
y 

The complexity of this calculation is CJ(IKI 2 IXI 2 ). 

4. An auxiliary function q: K x K -+ lR is calculated 

q[k', k"] = 8[k', k"] E!J (P2 [k', x, k"] Q9 de[x]). (9.76) 
X 

The complexity of this calculation is CJ(IKI 2 IXI). 

5. The auxiliary function q*: K x K -+ lR is calculated, i.e., in the following way. 
First, the function q· is substituted by q. Then repeatedly but not more than 
log IKI-times the following operator is used 

q*[k',k"] ::= q*[k',kJQ9q*[k,k"], 
k 

until q* stops changing. The computational complexity is CJ(IKI 3 log IKI). 

6. The function P': K x X x K -+ lR is calculated, 

P'[k', x, k"] = q*[k', k] Q$}P2[k, x, k"]. 
k 

The complexity of calculation is CJ(IKI 3 IXI). 

7. The function 1/J': K-+ lR is calculated, 

1/J'[k] = q*[k,k'JQ91/J[k']. 
k' 

The complexity of this calculation is O(IKI 2 ). 

(9.77) 

(9.78) 

(9.79) 

All calculations quoted here do not depend on the actual sequence x for which 
Levenstein dissimilarity with a known regular language is calculated. If the 
dissimilarities are sought for various different sentences x with the same au
tomaton tp, P, 1/J and the same penalty functions in, ch, de then the above 
relations can be calculated in advance only once for all sentences that will be 
analysed in the future. 

If the functions P' and 1/J' are already at our disposal then Levenstein dissim
ilarity D(x) is calculated for each sentence x = (x 1 , x2 , ... , Xn) as a convolution 
expression 
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One of the possible procedures of this calculation is a gradual building of the 
functions fo, h, ... , f n according to 

fo[ko] = cp[ko] , 

/i[ki] = h-dki-1] ® P'[ki-1' Xi, ki]' 
k;-1 

D(x) = fn[kn] ® ?/J'[kn]· 
kn 

; ~ 1,2, ... ,n,} 
(9.80) 

Note that this is by no means the only possibility. 

9.5.10 Nonconvolution interpretation of the main result 
For a final solution of the Levenstein task the solution in a convolution form 
is to be transformed to the form in which the task was originally formulated. 
The original formulation of the task reads as follows. 

Let us have two finite sets X and K and three functions cp: K---+ {O,oo}, 
P: K x X x K---+ {O,oo}, ?jl: K---+ {O,oo} which determine a language, i.e., 
a set L of sequences x = (x1,x2, ... ,xn). The sequence x = (x1,x2, ... ,xn) 
belongs to L if and only if there exists a sequence ko, k1, ... , kn for which the 
following holds 

cp(ko) = 0, 

?/!(kn) = 0. 

Furthermore let us have three functions in : X ---+ IR, ch : X x X ---+ IR, de : X ---+ 
IR which determine the function d: X* x X* --t IR the value d(y,x) of which 
denotes Levenstein dissimilarity of the sentences x and jj. An algorithm is to 
be found in the task which for each sentence x E X* will find the number 

D(x) =min d(jj, x) 
iiEL 

(9.81) 

which is called Levenstein dissimilarity between the sentence x and the lan
guage L. 

The algorithm for calculating the number D(x) consists of two parts. The 
first part are preliminary calculations the complexity of which is not greater 
than {O(IKilogiKI), O(IX*IlogiXI), O(IKI3 IXI), O(IKI2 IXI)). These cal
culations do not depend on the input sentence x and are calculated only once 
for the given language L and Levenstein. dissimilarity. The second part are 
calculations which depend on the given sentence and the complexity of which 
is O(IKI2 n), where n is the length of the sentence x. 

Now we will present the calculations of the first part which were expressed 
before by means of convolution formulre (9.73) through (9.79). We will explain 
the necessary computations. The explanations will rest on the representation 
of the language L by a finite automaton. 
1. A function P1 : K x X x K---+ IR will be created (see formula (9.73)), 

{ 
min(P(k',y.k"),in(y)), if k' = k", 

p (k' k")-
1 'y, - P(k' k") if k' -1- k" . , y, ' -r 
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The number P1 (k', y, k") represents the minimal penalty for adding the 
symbol y to the end of the sentence under the condition that the automaton 
was in the state k', and reached the state k" after adding. For k' =f:. k" 
there exists only one way of adding. The symbol y must be generated by 
the automaton and the penalty in this case is P(k', y, k"). There are two 
options for how to add a symbol y if k' = k" = k. The first option is that 
the automaton generates symbol y and is penalised by P(k, y, k). In the 
second option the operation of the automaton is interrupted, the symbol y 
is inserted at the end of the already generated sequence and a penalty in(y) 
is paid. It is quite natural that the cheapest alternative is selected. 

2. A function ch*: X x X--+ lR will be created (see formula (9.74)) for instance 
in this way. First the numbers ch • ( x, y) will be created such that ch • ( x, y) = 
0 for x = y and ch*(x, y) = ch(x, y) for x =f:. y. Then the numbers are 
transformed many times by the operator 

ch*(x,y) ::=min (ch*(x,z) + ch*(z,y)). 
zEX 

The number ch*(x,y) corresponds to the penalty for the cheapest chain of 
changes by which the symbol x is transformed to the symbol y, i.e., 

ch*(x,y) = x,,~~.~,xn (ch(x,xl) + ~ ch(Xi-l,Xi) + ch(xn,Y)), 

where the length n is not known beforehand and can even be zero. 
3. A function P2 : K x X x K--+ lR will be created (see formula (9.75)), 

P2(k',x,k") =min (P1(k',y,k") + ch*(y,x)). 
yEX 

The number P2(k',x,k") represents the minimal penalty for adding the 
symbol x to the end of the sentence under the condition that the automaton 
was in the state k' before adding, and got to the state k" after adding. It 
is a number resembling the number P1 ( k', x, k"), but there is an essential 
difference between them. The added symbol can be either generated by 
the automaton or inserted at the end of the sequence. Afterwards the 
added symbol can be changed by an arbitrary long sequence of changes 
or not changed at all. Thus now the number P2 (k', x, k") is the result of 
optimisation on a quite extent set. 

4. An auxiliary function q: K x K --+ lR is calculated 

{ 
0, 

k' k" = q(') min(P2(k',x,k")+de(x)), 
xEK 

if k' = k", 

if k' =f:. k" . 

The number q(k', k") is the price of the cheapest process by which the au
tomaton passes from the state k' to the state k", but the generated sentence 
was not changed as a result of the whole process, though it was changed 
during the process. Any process of this class consists of: 
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• Adding a symbol at the end of the sequence of symbols; 
• Sequence (even an empty one) of arbitrary changes of newly added 

symbol; 
• Deletion of added and changed symbol from the sentence. 

5. An auxiliary function q* : K x K -+ lR will be calculated (see formula ( 9. 77)). 
First is the substitution 

*(k' k") { 01 q 1 = q(k',k"), 

Then the operator will be repeatedly used 

if k' = k" 1 

if k' :j: k" 0 

q* (k', k") ::= min (q* (k', k) + q* (k, k")) . 
k'EK 

The number q*(k', k") is similar to the number q(k', k"). There is a differ
ence between these numbers as it was assumed when creating the number 
q(k', k") that the automaton generated only one symbol or only one symbol 
was inserted at the end of the sequence. This symbol was then further ma
nipulated. When the number q* (k', k") is being created a situation is taken 
into account when the automaton can generate any sequence of symbols (it 
can be an empty sequence as well as a rather long one). The automaton 
begins to generate symbols in the state k' and finally gets to the state k". 
Apart from that any symbols can be inserted to the obtained sequence. 
The sequence generated is subject to a number of changes until it ends in 
deleting all generated symbols. The price for the least expensive procedure 
of this class is q*(k',k"). 

6. A function P' : K x X x K -+ IR will be calculated (see formula ( 9. 78)), 

P'(k',x,k") = min(q*(k',k) +P2(k,x,k")). 
kEK 

The function P' resembles the functions P1 and P2 . The number P' (k', x, k") 
is the price for the least expensive procedure of the following class. The au
tomaton which is in the state k' will generate a sentence. Then each symbol 
of the sentence is subject to changes and is deleted. Then the automaton 
will either generate the symbol x' or the symbol will be inserted at the end 
of the sentence. Being the last symbol, it is subject to repeated changes 
until it is changed to the symbol x which is no longer deleted. Through the 
above procedure the automaton gets to the state k". 

7. A number 1/J'(k) will be calculated (see formula (9.79)), 

1/J'(k) = min (q*(k, k') + ~~(k')). 
k'EK 

The number 1/J' ( k) represents the price for the least expensive procedure 
of the following class. The automaton which is in the state k generates a 
sentence and gets to the state k' where it stops. Then each symbol in the 
generated sentence is changed until it is finally deleted. 
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The computational procedure (9.80) has the following form when explained in 
natural language. For each sequence x = (xo, x1, ... , Xn) the numbers /i(k), 
k E K, i = 0, 1, ... , n, and the number D(x) are to be calculated according to 
the formulre 

fo(ko) = <p(ko) , ko E K, 

fi(ki) = min (fi-dki-d + P'(ki-!,Xi,k;)), 
k;-1EK 

k; E K, i = 1, 2, ... , n, 

D(x) = min (fn(kn) + 1/J'(kn)). 
knEK 

We can see that mere explanation of the already validated algorithm using 
natural language is rather difficult. The explanation becomes inevitably lengthy 
and consequently not transparent and convincing. It could be even worse if the 
algorithm were not available yet and should be created and validated by so 
called reasonable consideration. In such a case the risk becomes rather great 
that some hardly noticeable peculiarities of the problem will be omitted and 
consequently an erroneous outcome will be obtained. 

We choose the formal way in this lecture to construct the algorithm for 
Levenstein approximation. The formal convolution expressing the problem is 
equivalently transformed step by step until the convolution expression is ob
tained that represents the algorithm. Every step in this deducing is guided by 
formal rules equivalently transforming convolutions and not by a vague reason
ing. Such a way is not very amusing but it excludes unfortunate inadvertence. 

9.6 Discussion 
I have noticed a substantial difference between Lecture 8 and Lecture 9, even 
when their topics are close, both dealing with recognising sequences. The pre
ceding Lecture 8 actively uses results from the general statistical pattern recog
nition theory. The present Lecture 9 is quite different. It seems to me as if 
the problem started being examined from another side and from the very be
ginning. Well, in the substantial part of the lecture the term 'probability' does 
not occur even once and the outcomes of the preceding lectures are not made 
use of. On the whole this lecture could be placed at the beginning of the course 
and nothing would obstruct understanding it. It seems to me that through 
this lecture the explanation loses its clearly ordered structure, in which its in
dividual parts clung closely to each other. I see Lecture 9 as if hanging in the 
air, and so a number of questions arise. Was not the explanation on structural 
recognition started from some other, nonstatistical standpoint? Or, have not I, 
perhaps, overlooked an important relationship between current and previously 
explained matter. 

You have hardly overlooked anything very important. It may rather have es
caped our notice. But if you feel a little bit confused then it is only because 
you expect more from the theory of pattern recognition than it can offer you in 
its present day state of the art. For the time being the theory does not present 
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a well worked out hierarchy of tasks according to which their relationship as a 
'task equivalence type' or the 'task A is a particular cas(' of task B' type would 
be evident, and which would involve the task generalising all the tasks in the 
hierarchy as well. The present day theory of pattern recognition is still some
thing other than, say, linear programming. The frame of linear prograrmning 
is defined by a single task, which, moreover, can be expressed in a brief and 
illustrative way. In pattern recognition, and even in part of it, i.e., structural 
recognition, several tasks occur. 

Two previous lectures were devoted to two groups of related tasks. The 
basis of the first task group is the assumption of a random character of an 
observed object, in the given case it is of a random character of the observed 
sentence in a certain alphabet. A number of pattern recognition tasks can 
be naturally formulated within the limits of this assumption as a statistical 
estimate of unobserVf~d parameters. 

In the second group the formulation of tasks is not based on the statistical 
model of an object but on the following two concepts. The first of them is a 
certain subset L in the set X of all possible observations. In our case it was a 
regular language. The subset L can be considered as a set of some ideal, nod
damaged observations. The algorithm which is to reveal important properties 
of the observation is assumed to be easily implemented in the case in which the 
observation belongs to L. For example, it is assumed to be known to which class 
each observation from thf' set L is to be included, which is the most frequent 
assumption. In the case in which the observation is different from the set L 
rather complicated calculations are needed. 

The second important concept is the function d: X x X --+ ~which for each 
pair of observations x and y finds the number d(x, y). The function d(x, y) 
formalises intuitive considerations to which extent the observations x and y are 
similar to each other. 

On the basis of these t\\'0 concepts the following recognition procedure is 
defined, i.e., is considered as a postulate. For any observation x E X an ideal 
observation y* E L is sought that is the most similar to the observation x. 
Then the observation x is assumed to have the same properties as the ideal 
observation y*. It is assumed, for instance, that the observation x belongs to 
the same class of observations as the observation y•. 

Our Lecture 9 is devoted to the way in which the preceding procedure is 
to be implemented if L is a regular language and the dissimilarity function 
belongs to the class of Levenstein functions. Your assumption that this class of 
tasks seems as if to hang in the air is wrong. In situations when observation is 
considered as a point in a linear space, these methods are not less known than 
statistical methods that were discussed in the first part of our course. This 
class of methods is known as nearest neighbour methods. 

Thus we can understand your question as a question about a relation between 
the statistical methods and the nearest neighbour method. This question is 
really rather difficult for us. The best answer to the question would then be 
that we do not know. 'Ve know, of course, a number of rather trivial examples in 
which the statistically formulated ta.sk can bt> simplified to a nearest neighbour 
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method, and also vice versa. The two classes described have a relatively large 
intersection. On the other hand, for some nontrivial tasks such a reduction 
has not been found. This also applies to the task of Levenstein matching of a 
sentence to a regular language which was discussed in Lecture 9. 

We would like to add an important comment. For the time being we do not 
know a universal formulation that would generalise the tasks of Lecture 8 and 
Lecture 9. But along with you we have become convinced that the algorithms 
for solving them are more than only being related. The algorithms are, actually, 
identical and form the link between the subject matter of those two lectures. 

Will the following explanation be based on statistical estimation methods or 
on nearest neighbour methods? 

Our explanation will be based on both the approaches as much as possible. 

I expect that, beginning with this lecture, the nearest neighbour methods will 
gradually acquire more weight. But I am surprised that you did not devote at 
least one lecture to these methods in the first part of the course. 

You yourself answered this question at the beginning of the discussion. It is 
because the structural recognition, based on the nearest neighbour approach, 
can be dealt with without preliminarily explaining general features of these 
methods. It naturally does not mean, however, that general features would not 
be worth their own price. If you did not know them, it would be a serious gap 
in your education. But there is an extensive literature by other authors at your 
disposal. 

The mutual similarity of algorithms for solving different structural recognition 
tasks, which you so much draw attention to, is quite clear to me now. I have 
also noticed that the whole class of mutually similar algorithms also have a 
common drawback which cannot be overlooked. 

I assume that there is a sequence x1 , x2 , ... , Xi, ... , Xn of observations at my 
disposal and I am to determine the sequence of directly unobservable states 
ko, k1, ... , kn by means of one of the procedures described in the lectures. All 
the algorithms described require that first the whole sequence x1 , ... , Xn should 
be examined, and then, at once, the whole sequence k0 , k1, ... , kn should be 
decided upon. Even if the correctness of such a procedure is clear to me, it 
seems to me quite unnatural that the decision about the first element k0 in 
the sought sequence can be made only when the last element Xn is arrived at. 
I have already come across this obstacle even in the simplest applications in 
which I do not know when I can regard the observation sequence has ended. 
When I am reading a book, for example, I have to decide, sooner or later, what 
the first symbol in the book is like. When am I able to do it? After I see over 
the first word as a whole? Or after I come to the end of a line? Or of a page? 

... or at the end of the book? We cannot help turning your question into a joke. 
When we go further in the direction of your consideration we can find that the 
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Figure 9.5 Structural analysis of a sequence with not all lengths of graph edges known. 

content of one book depends on what has been written in the other book, then 
consequently you have to read all books first and only then to decide what was 
the meaning of the first symbol in the first book. One could write poetry on 
that! 

And the content of all such poems can be expressed formally. Let XI, X2, ... , Xn 

be a sequence and let k0, k;, ... , k~ be a sequence defined as follows, 

(k; I i = 0, ... , n) = argmax max··· max (t fi(k;-I, Xi, ki)) . 
ko k! k. . 

!.=I 

(9.82) 

It is to be discovered under what conditions the first element k0 in the sequence 
k0, ki, ... , k~ can be uniquely determined if only the initial part xi, x2 , ... , x1, 

l < n, of the sequence XI, x2, . .. , Xn is available. 

This question was asked by V.A. Kovalevski of himself immediately after he had 
designed the first algorithm known for the structural analysis of a sequence [Ko
valevski, 1967]. We will illustrate your question by means of a graph in Fig. 9.5 
which we have already come across earlier in Fig. 8.2. In the same way as before 
the graph is formed by the vertices a and (3 and a group having /K/ n vertices. 
Each of vertices is represented as a point (k, ·i), k E K, i = 0, ... , n, with the 
horizontal coordinate i and the vertical coordinate k. The graph presented 
illustrates a situation where the set K consists of three states A, B, C. 

Your question can now be asked in the following way. Assume you have 
examined the given graph only as far as to a horizontal coordinate l, where 
l < n. This means that you know only the lengths of those edges lying to the 
left of the coordinate l, and the other lengths are still unknown to you. In such 
a situation, of course, you cannot find the shortest path from the vertex a to 
the vertex (3, because the path depends on data still unknown to you. But 
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you are not interested in the shortest path as a whole. You are interested only 
through which leftmost vertex the path passes. In Fig. 9.5 these three vertices 
are marked by white circles. 

You could answer this question after the following considerations. Even if 
you do not know what the shortest path from a to (3 will be, one thing is 
certain. It passes through one of the vertices the coordinate of which in the 
horizontal direction is l. In Fig. 9.5 these vertices are marked by black circles 
(A,l), (B,l) and (C,l). You can find the shortest path from the vertex a to 
every of the vertices marked by black circles. Thus you will find three paths: 
the shortest path from the vertex a to the vertex (A, l), and similarly those to 
the vertex ( B, l) and the vertex ( C, l). Now, you already know that whatever 
the path from the vertex a to the vertex (3 may be, its initial section must be 
one of the three paths, which you already know. For each of the three paths you 
will find through which vertex with a horizontal coordinate i = 0, i.e., through 
which vertex marked by a white circle in Fig. 9.5, it passes. Finally, you will 
arrive at the following conclusion. If each of three found paths passes through 
the same vertex marked by a white circle, e.g., through the vertex (A, 0), then 
the vertex (A, 0) belongs to the shortest path from a to (3. 

And what about when the given condition is not satisfied? 

This means that a partial knowledge of the graph is not yet sufficient for an 
unambiguous decision on the state ko and you have to continue examining it. 
Is this informal explanation clear to you? 

Yes, it is! 

Well, write down, please, an exact answer to your question. 

I will introduce a number F1 (kL) 

l 

Ft(kt) =max max·· ·max""" fi(ki-l,Xi,ki) 
ko k1 k,_ 1 ~ 

t=l 

(9.83) 

and I will denote as ko1 (kt) the first element in the sequence k0, ki, ... , ki_ 1 , in 
which the sought maximum (9.83) is reached. The numbers F1(kt) and kot(kt) 
are calculated according to the following recurrent relations 

F1 (k") = max h (ko, x1, k''), 
ko 

kol(k") = argmax fi(k,x 1 ,k"), 
k 

Ft(k") = max(Ft-dk) + ft(k, Xt-l, k")) , 
kEK 

ko,t(k") = ko,l-1 ( arf~ax (Ft-dk) + ft(k, Xt-1, k"))) . 
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If for some value l all the values kot(k"), k" E K, are the same, and this 
value is k*, for example, it means that the initial part of the observation 
x1, x2 , ••• , x1 is sufficient to determine unambiguously the element k0 in the 
sequence k0, ki, ... , k~ which maximises the sum 

n 

LJ;(ki-1,Xi,ki). 
i=1 

And this element is k*. 

Try to imagine now the situation in which you did not start observing the 
sequence from the very beginning, but from somewhere in the middle. You can 
assume that the object observed by you started working at the moment - T in 
the past and will be working until to the moment T in the future. During its 
functioning it generated a sequence of symbols 

X-T+1, X-T+2• · · ·, X-1, Xo, X1, · · ·, XT-2, XT-1 · (9.84) 

If the preceding sequence were known then you could find the most probable 
sequence of the states 

(9.85) 

through which the object had passed. You did not note, however, the mo
ment when the object started working. You only observe a section of the 
sequence (9.84) from X-1+1 till Xt-1. You are expected to answer the question 
whether the information is sufficient for uniquely determining the element k0 in 
the sequence (9.85). In the case of a positive answer, you are also to determine 
what the element k0 is equal to. 

I will denote the number F;j(k;, kj), -l ~ i < j ~ l, k; E K, ki E K, 

j 

F;j(k;,kj) =max max··· max max Lft(kt-1,Xt,kt). 
ki+l k;+2 kj-2 kj-1 t=i 

(9.86) 

I will denote by kiJ(k;,kJ) the element ko in the sequence k-t+1 , k-t+2, .. . , 
kt-2, kt-1, which maximises (9.86). The answer to your question is: if the 
vertex Lt,t(Lt,kt) is the same for each pair k_t E K,kt E K, say k0, then 
the sequence X-1+1, X-1+2• ... , XI- 2 , Xt- 1 is sufficient for uniquely determining 
the element ko in the sequence k1-T, k-T+l, ... , kr-1, kr, which maximises the 
sum L.J'=-T+l J;(ki-1, x;, k;). This element is just k0. I hope I need not write 
down the recursive formulce for calculating the functions F;i and k;i? 

No, you need not. It may be evident enough for anybody who has thoroughly 
studied the two previous lectures. And you have mastered them in an excellent 
way. 
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I would like to discuss one more modification of the examined task with you. 
We have studied a case in which we wanted to determine what was the first 
element k0 in the sequence ko, k1 , ... , kn which was the most probable with 
respect to the sequence x1 , x 2 , •. . , Xn being observed. We wanted to determine 
it when we did not have a complete sequence x1 , x2 , ... , Xn at our disposal, but 
only its initial part. 

But if we are interested only in the first element and we would like to de
termine it with the least probability of the wrong decision, we should take 
quite another approach to the task. You have mentioned this several times 
and I absolutely agree with you. In this case if we had the complete sequence 
x1, x2, ... , Xn at our disposal then we should calculate IKI numbers p(ko, x1, x2, 
... , Xn), ko E K, and select a value ko from them corresponding to the largest 
of these numbers. I wonder what you will advise me to do if I do not have the 
entire sequence x1, x2, ... , Xn at my disposal but only its part x1, xz, ... , Xl· 
On the one hand, I can calculate IKI numbers p(ko, x1, x2, ... , xl), ko E K, and 
evaluate k0 on the basis of the information I already have. Though the infor
mation will be used in an optimal way, the quality of decision will be worse 
in the general case than that attainable in observing the complete sequence 
Xl,X2, ... ,Xn· 

I would intend not only to make an optimal use of the available information 
x1, x2, ... , x1, but, moreover, to have a criterion which would guarantee that 
the quality of decision on the basis of the information is not a bit worse than the 
quality of decisions I would attain through further observations x1+1 , x1+2 , ... 

In other words, I am looking for an answer to the question whether the infinite 
part of the sequence of observations Xl+l, Xl+ 2 , . .. , Xi, . .. is negligible from the 
standpoint of information gain, which it yields as to the state k0 . When the 
criterion was met I could interrupt my observations and estimate the state k0 . I 
could be certain that the estimated quality cannot be enhanced by any further 
(even infinite) observation of the object. If the criterion was not met then the 
observation should continue. 

The question formulated like this evokes an assumption that I should look 
for an answer within the frame of Wald sequential analysis. I have not thought 
about it thoroughly enough, but for the time being I have arrived at the con
clusion that I will not find the answer there. I suspect that the answer to my 
question is either negative, or very complicated. 

If! denote the probability p(ko, x1 , x2, ... , Xt) by Pl (k0 ) then I can formulate 
the question as follows. Does a number l exist such that at any i > l the 
probabilities Pi(ko) will be identical to the probabilities Pl(ko)? This question 
can be answered positively in the trivial case only, when the observation xi, 
i > l, and the state ko are statistically independent events. But here I deal 
with Markovian models, where all parameters are dependent on each other. 
This case was illustrated in Lecture 8 with a mechanical model. It follows that 
even with a rather large i each observation Xi yields some, probably small, 
information on the state k0 • The result of it is quite unfortunate, i.e., I cannot 
decide on the first symbol in the book before I read through the whole book. 
Is there any other possibility for me than to call for help? 
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You have missed significant circumstances from which a constructive answer to 
your question directly follows. But we are pleased at your asking interesting 
questions like that and at their excellent formulations. 

Based on the observation x1, x2, ... , x1 you can calculate not only IKI num
bers p(ko, x1, x2, ... , x1), ko E K, but IKI such groups (p(ko, x1, x2, ... , 
X[,kl), ko E K), k1 E K, in which the k1-th group corresponds to the state 
kt in the instant l. These groups do not unambiguously determine the ensem
ble of numbers p(ko, x1, x2, ... , Xi, ... ) which corresponds to an infinitely long 
observation. But fortunately they determine quite simply a set that is sure 
to contain the particular set. For briefness we will introduce the notation Ql 
for a IKI-dimensional vector the coordinates of which are probabilities p(k0 , 

x1, x2, ... , xi). Similarly, we will denote by Qt(kl), k1 E K, IKI-dimensional 
vector the ko-th coordinate of which is the probability p(k0 , x1, x2, ... , x1, k1 ). 
We are interested in the probabilities p(k0 , x1, x2, ... , x 11 ), n > l, (i.e., a vector 
q11 ) which cannot be calculated because the observations Xt+l, Xt+ 2, . .. , Xn are 
not known. However, it follows from the Markovian character of the model 
examined that these probabilities are 

p(ko, XI, x2, ... , Xn) = L p(ko, X1, X2, ... , Xt, kl) p(xl+l, Xi+2 1 ••• ,Xn I k1). 
J.·,EK 

We will write the preceding relation in vector form 

qn= L q,(k,)p(xl+l,Xl+2, ... ,xnlkt). (9.87) 
k1EK 

The preceding relation states that the vector q11 (i.e., the ensemble p(k0 ,x1 , 

x2, ... , Xn), ko E K) belongs to a convex cone the boundary of which is formed 
by vectors qt(k,) (i.e., the ensembles (p(ko, x1, X2, ... ,X[, kl), ko E K), kt E 
K). We will denote the cone by Q 1. The question can then be formulated as fol
lows. When can we unambiguously find what argmaxkoEK p(ko, x1, x2, ... , Xn) 
is equal to if we only know that the ensemble p(k0 , x 1 , x2, ... , x11 ) belongs to 
the cone Ql? And the answer to the question is quite evident. 

If for any ensemble p' (k0 ), k0 E K, belonging to the cone Q1 the argmaxkoEK 
p'(ko) results in the same value k0 then argmaxkoEKp(ko, x1, x2, ... ,xn) 
is also k0. It also holds vice versa. If the cone Q1 contains two such en
sembles (p'(ko)lko E K) and (p"(ko)lko E K), that argmaxkoEK p'(ko) f. 
argmaxko E K p" ( ko), then from the statement that the ensemble p( ko, x1 , x2, 
... , Xn) belongs to the cone no conclusion can be drawn what argmaxkoEK p(ko, 
XI, x2, ... , Xn) is equal to. 

To find if the conditions of the previous statements are satisfied, not all 
points of the cone Q 1 are to be examined (and they are indefinitely many). It is 
sufficient to examine only the cone boundaries, i.e., the ensembles (p( k0 , x1 , x2, 
... ,Xt,kt), ko E K), k, E K. Youaresuretoprovethefollowingtwoassertions, 
the latter of which is quite trivial, the former not being very complicated either. 

Let a value k0 E K exist such that for each k0 E K and k1 E K the following 
inequality holds 
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Then independently of observations Xt+l, Xt+2, . .. , Xn the following inequality 
holds 

Let two values k! and k;' exist such that 

argmax p(ko, x1, x2, ... , x1, k!) i- argmax p(ko, x1, x2, ... , Xt, k!') . 
~EK ~EK 

In this case with some probabilities p(xt+l, Xt+2, ... , Xn I kt) the value 
argmaxkoEK p(ko, x1, x2, ... , Xn) will vary. 

Your explanation is valid for the case in which we intend to determine the 
most probable value of the state k0 . I would like to know if it is possible to 
generalise your considerations to a more general case in which a Bayesian risk 
for an arbitrary, but prior known, penalty function is to be minimised. 

Of course, it is. Have a look at the general case now without our help. Recall 
the theorem on the convex form of classes in the space of probabilities which 
was introduced as early as in the first lecture. We can see that a rifle loaded in 
the first act of our explanation has fired at last. We had nearly thought that 
it would not be needed in our course. 

Even when I have understood your explanation I still cannot find where I made a 
mistake arriving at the conclusion that each observation Xi yielded information 
on the state k0 . 

But you made nearly no mistake! You simply passed from one question to the 
other, considering them to be equivalent. You are right in that any observation 
x; even at large i makes the information on the state k0 more exact. But we 
are asking about something else. We are interested if the overall information 
resulting from the infinitely extended observation is sufficient for flipping the 
decision on the state k0 from one class to the other. This, at first glance more 
difficult, question can be, as you can see, quite easily answered. 

There is still an obstacle to my being completely sure about the questions 
discussed. In our considerations we nowhere referred to Wald's results. Does 
it mean that the tasks which are objects of \-Vald sequential analysis can be 
solved in a far easier way which is just the one you have shown? Why then 
is Wald sequential analysis so terribly complicated? Did we not once more 
discover America which had been already found by Wald? Unfortunately, I do 
not know how to describe my apprehension in a more exact manner since I am 
not sufficiently familiar with n~ald sequential procedures. 

You are far better off than those who believe that they know Wald sequential 
analysis quite well. Your advantage over them is, at least, that you can see not 
only the ingenious simplicity of Wald's procedures but you fear the complexity 
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of a proof that just these procedures solve some tasks in an optimal way. Wald 
sequential analysis should not be referred to in a cursory way. That is why 
we answer your questions, just to allay your quite justifiable doubt. Our brief 
answer does not make a claim to be exact and comprehensive. 

The questions which we discussed with you do not belong to the 'continent' 
discovered by Wald. Very roughly speaking, Wald's procedures answer the 
question of how long an object has to be observed so that its state may be eval
uated with a previously given quality. Under certain assumptions about the 
statistical observation model, the observation sequence has been successfully 
proved to converge in a sense. It is to understand that any quality of estimate 
is available, even when it can be sometimes attained only through a long ob
servation. And we particularly bring to your attention that this convergence 
occurs only under certain assumptions concerning the object. 

Sometimes, with an inaccurate reference to Wald, it is stated in a vulgar way 
that by increasing the number of observed features of the object an arbitrar
ily high recognition quality can be attained. It is, of course, only a negligent 
manipulation with Wald's results. Just now, we have, together with you, got 
convinced that in observing Markovian objects and in analysing Markovian se
quences it may easily happen that the information so far obtained is not enough 
for a sufficient quality of recognition. In spite of that, further observation of 
the object ceases to be decisive. It is because further observation cannot affect 
the decision, and so not enhance it either. 

Together with you we have also examined a task in which the observation 
of an object can be interrupted. But as a condition for the interruption we 
did not regard the attainment of a previously given recognition quality (as was 
in the case of Wald), but a situation in which the quality attained, whatever 
it may be, cannot improve further, perhaps by an infinitely long observation. 
There are, therefore, two different conditions for interrupting the observation 
of an object, and we cannot guarantee that either of them will be satisfied. 
For some Markovian objects the necessary quality of its state estimate can be 
unattainable however long the observation may be, and then Wald's condition 
for interrupting the observation will not be satisfied. For other Markovian 
objects a situation may occur, even in a quite long observation, that further 
observation can flip the decision on the state attained on the basis of the already 
known observations. 

And only now can we ask a really interesting question. We are asking how 
these two conditions for interrupting observation interact. Can one state that 
the observation of any Markovian object should be sure to interrupt at some 
time, either because the observations already attained allow us to qualitatively 
recognise the state, or because further observation cannot improve the already 
attained quality? 

Am I right to understand that an answer to this question is not yet known? 

We do not know such an answer, at least. 
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In our discussion the nearest neighbour method unexpectedly appeared, and 
this gave rise to many new questions. 

Well, go ahead! 

When I revived my knowledge of the nearest neighbour method, I found that 
the algorithms described in the lectures realise only the simplest method. In the 
set L only one single sequence is sought that is nearest to the observed sequence. 
In the theoretical examination of the nearest neighbour method and in their 
practical application emphasis is laid on more complicated methods. In the set 
L not only the nearest element is sought, but a previously determined number, 
say d nearest elements. As opposed to the simplest method seeking one single 
most similar element these methods are called the d-nearest neighbour methods. 
I think about important advantages of the d-nearest neighbour methods when 
compared to the method of one nearest method not only thanks to an extent 
research in this discipline, but also on the basis of my own experience, even 
when it is not very rich. 

I can easily imagine the following practical situation. Assume that an appli
cation task can be exactly formalised, but the solution of a task so formalised 
is very complicated. This means that for the observation x it is difficult to find 
a k such that it is in agreement with the observation within the framework of 
the created formal scheme. At the same time it can happen that for each given 
state k it can be easily found out whether it is in agreement with the obser
vation x. It is a similar situation to that in which a solution of a complicated 
equation is sought. To find a solution can be a very complicated job, but for 
each number one can easily verify whether the equation is satisfied. 

Assume I can simplify the application task being solved to seeking the short
est path in a graph, but only when I neglect some important properties of the 
task. This means that the simplification does not represent the application 
task quite precisely, but it still has something in common with it. 

In this situation, which is nothing infrequent in pattern recognition appli
cations, the following procedure is quite natural. First, the shortest path in 
the graph is sought, i.e., the sequence k* which is in best agreement with the 
recognised sequence x. But the satisfaction of some requirements which are 
important in the original application task is not guaranteed, because for sim
plification purposes these requirements were not taken into consideration in the 
first stage. Only in the second stage does one verify whether the sequence k* 
found satisfies additional conditions. When it does so the sequence k* found 
is then the solution of the original task. In the opposite case the recognition 
algorithm gives the answer not known. 

This procedure can be enlarged in such a way that instead of the answer 
not known the best sequence k; in the set L is sought except for the sequence 
k*. With the result that the additional conditions are again verified. If neither 
this sequence satisfies the condition, still further sequences are sought. The 
algorithm ends with providing the not known answer only when, e.g., none out 
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of the best one hundred sequences does not satisfy the additional conditions, 
which in creating the set L were not taken into consideration. 

To be able to use such a technique I need to have an algorithm that is 
capable of finding d number of the best paths in a graph. I wish to get an 
effective algorithm the computational complexity of which should not rise too 
much with increasing d. 

All that you have said now is right. We only do not understand what is the 
core of the question. 

I do not know what the algorithm for finding the d-best paths in a graph should 
look like. 

We do not believe that. We can guess that the algorithm for solving that task 
possesses a complexity which rises with d increasing linearly. This means that 
seeking the d best paths is not more than d-times more complex than seeking 
one single best path, and thus, its computational complexity is O(IKI 2 d n). 

Now it is I who does not believe it. Could not you, please, explain the algorithm 
in more detail for me? 

Let us try it together. But first, tell us about the train of your considerations 
so that we would not start a wrong way for the second time. 

Assume I have a graph G which determines the set of paths L from the vertex 
a to the vertex f3. I assume to have already found the path k* E L which 
is the shortest in the set L. My job now is to find the path k1 which is the 
shortest in the set L \ { k*}. The difficulties are because the subset L \ { k*} 
cannot be represented as a set of paths in the subgraph of G. No edge in the 
graph G can be excluded, since through each edge some of the paths from the 
set L \ { k*} passes. The set L \ { k*} contains not only paths which do not 
intersect with the paths k*, but all the paths which diverge from the path k* 
in some section of it, at least. In spite of all these difficulties, a new graph 
G1 can be created such that the set of paths in it will represent just the set 
L \ {k*}. But the new graph will have twice as many vertices as there were in 
the original graph. This means that seeking two best paths will be three times 
more difficult than seeking a single best path. That would still do, but I do 
not think I can continue doing so, since the number of vertices in a graph the 
paths of which match the set L \ { k*, k1 , k2 , •• • , kd} (where k*, k1 , ... , kd are 
the earlier found, and thus firmly determined, paths), is 2d-times larger than 
the number of vertices in the graph G the paths of which match the set L. 

We have understood your difficulties and we will show how to get over them. 
But it will be the last opportunity in our lectures for you to see the fruitful way 
of stating structural analysis tasks as algebraic expressions in appropriate semi
rings. We believed that we had sufficiently explained the subject matter when 
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we were examining the task of Levenstein matching of a sentence to a regular 
language. But now we can see we have not convinced you. If you had taken the 
explained subject matter seriously, you would not have your difficulties now. 

I admit I have not yet included the algebraic methods explained amongst other 
tools I actively use. Levenstein matching did not seem so much convincing since 
you had deliberately, and as I can see it, rather unnecessarily complicated the 
task by letting the edit functions in, de and ch be without any restriction. Well, 
even some weak and quite natural assumptions on edit functions are sufficient 
to make the task at least reasonably solvable, if not quite simple. I mean, for 
example, a constraint in the form of triangular inequality. I have heard about 
Wagner algorithms [Wagner and Fischer, 1974; Wagner and Seiferas, 1978}, 
which solve the task not only for regular languages, but for the context-free 
ones as well. 

And do not the difficulties you see in the task on d-best paths in a graph occur 
to you as accumulated in an artificial way? 

No, they do not. But I already suspect that you know the solution of the task 
which will be quite unexpected from my part. 

Well. Now look how the task on d-best paths is formulated in the form of 
generalised convolution expressions. You will see that a task formulated like this 
is not worth mentioning. But be patient, since for briefness' sake the subject 
matter will be explained in a similar way as can be found in the most indigestible 
pseudo-mathematical articles, where something is referred to without saying in 
advance what it is good for. 

Let us first write down in a form of enumeration the main notions which are 
necessary for seeking the d-best paths in a graph. 
1. Let R be a set of nonnegative real numbers extended by a particular 'num

ber' oo, and it is assumed that for an arbitrary a E R the oo + a = oo and 
min(oo,a) =a hold. 

2. Let Rd be a set of ordered ensembles of the form ( a1 , a2, .. . , ad), where 
a; E R, i = 1, 2, ... , d, a1 :S a2 :S ... :S ad· 

3. On the set Rd x Rd a function of two variables is defined which assumes 
values on Rd. The function will be called addition of ensembles. For each 
pair a E Rd and b E Rd the function determines the sum c = a EB b in the 
following way. 
If a= (a1,a2, ... ,ad) and b = (b1,b2, ... ,bd) then for the calculation of 
their sum it is needed 

• to create an ensemble (a1 , a2 , ... , ad, b1 , b2, ... , bd) of the length 2d; 
• to order the ensemble in an ascendant way; 
• to regard the first d numbers in the ensemble as the sum a EB b. 

Addition defined in this way is an associative and commutative operation 
with QE!l which is the ensemble (oo, oo, ... oo). 
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4. On the set Rd x Rd the function of two variables is defined which assumes its 
values on Rd. The function will be called multiplication of ensembles. For 
each pair a = ( a1, a2, ... , ad) and b = (b1, b2, ... , bd) the function determines 
their product a 181 b such that 

• an ensemble (ai + b3, i = 1, 2, ... , d; j = 1, 2, ... , d) of the length~ is 
created; 

• the ensemble is ordered in an ascendant way; 
• the first d numbers in the ensemble are regarded as the product a 181 b. 

Multiplication defined in this way is an associative and commutative oper
ation with 1181 which is the ensemble (0, oo, ... , oo). 

5. The multiplication introduced is distributive with respect to the addition 
introduced earlier, i.e., a181(bEBc) = (a181b)EB(a181c). By the distributivity and 
also because the product of each ensemble with an introduced zero is also 
a zero the given operations of addition and multiplication form a semi-ring 
on the set Rd. 

6. Let X be a finite set and f be a non-negatively defined real function X -t R. 
We will denote as f' the following function which assumes values on the set 
Rd. For x E X the value f'(x) is an ensemble that consists of d numbers, 
where the first element is f(x) and further d- 1 elements are oo. There 
follows from this definition that the product ®xEX f'(x) is an ensemble of d 
numbers in which the first number is ~xEX f(x) and further d -1 elements 
are oo. The sum EBxEX f'(x) is an ordered ensemble which contains d 
smallest numbers from the ensemble (f(x),x EX). 

Now we can state the original formulation of the task seeking the d-best paths 
in a graph. 

Let X and K be finite sets and Pi, i = 1, 2, ... , n, ben functions of the form 
K x X x K -t lit For any sequence x = (x1,x2 , ... ,xn), Xi EX, and any 
sequence k = (ko, k1, ... , kn), ki E K, the number 

n 

F(x, k) = LPi(ki-1, xi, ki) (9.88) 
i=l 

is defined. The aim of the task is to find an algorithm which for each sequence 
x E xn determines d smallest numbers from the ensemble (F(x, k), k E Kn+l) 
that consists of jKjn+l elements. 

Finally, we can start the algebraic formulation of the task seeking the d best 
paths in a graph and to its solution. 

By means of the operations introduced that add and multiply ensembles of 
the length d, the formulated task will be reduced to seeking the ensemble Q 
given by the formula 

n 

Q(x)= E9 F'(x,k)= E9 Q9p~(ki-l,xi,ki). (9.89) 
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In the preceding formula notations F' and Pi are used instead of F and Pi in the 
formula (9.88). The values of the functions F' and Pi (primed) are ensembles of 
length d, and not numbers for which the denotations F and Pi (without primes) 
were used. 

In the definition (9.89) nothing will be changed if each summand is mul
tiplied by the ensembles cp'(ko) and 'lj;'(kn) which are ones, i.e., ensembles 
(O,oo, ... ,oo). Thus we have 

The expression (9.90) can be written as 

Q(x)= EB ( EB ( EB .. ·( EB cp'(ko)0( @Pi(ki-1,xi,ki))0¢'(kn)} .. )~. 
koEK ktEK k2EK knEK i=1 ~ 

(9.91) 
By the distributivity of multiplication with respect to addition, each coefficient 
in the formula (9.91) can be factored out before the symbol of addition oper
ation with regard to the variables on which the coefficient does not depend. 
Thus we obtain 

I can say I already understand it. I am now expected to gradually calculate the 
sum in the innermost parentheses. The result of each such addition will be IKI 
ensembles of length d. I will first calculate the ensembles f n-1 ( kn- 1) of length 
d, where kn- 1 E K. It will be according to the formula 

fn-dkn-1) = EB (p~(kn-1,Xn,kn) ®'lj;'(kn)), (9.92) 
knEK 

and then I will calculate the ensembles fn-2(kn-2) for each kn-2 E K, 

fn-2(kn-2) = EB (P~-1(kn-2,Xn-1,kn-d ®fn-1(kn-d) · 
kn-I EK 

I continue gradually fori= n- 3, n- 4, ... , 2, 1, 0, 

fi(ki) = EB (Pi+1(ki,Xi+1,ki+I) Q9 fi+1(ki+d)' ki E K. (9.93) 
k;+tEK 

The ensemble Q(x) I am seeking will be then found according to the formula 

Q(x) = EB ( cp(ko) 0 fo(ko)) = EB fo(ko) . (9.94) 
~EK ~EK 
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You stopped before the last step which would have much pleased us. The 
calculation according to the formul<£ (9.92), (9.93) and (9.94) can be regarded 
as a calculation of the matrix product 

(9.95) 

in a semi-ring which is created on a set of d-dimensional ensembles by the 
operations of addition and multiplication of ensembles mentioned. In (9.95) 
the 'P represents a row vector and 'lj; represents a column vector. Both vec
tors are IKI-dimensional. Each component of theirs represents the ensemble 
(O,oo,oo, ... ,oo) of the length d. The matrices Pi, i = l, ... ,n, are to be 
understood as particular matrices in which each element is a d-dimensional 
ensemble. The ensemble in the k'-th row and k"-th column of the matrix Pi 
has the number Pi(k', x;, k") in its first element and in all other elements the 
values oo. 

The solution of the task presented here is the most convincing illustration of 
the fruitfulness of the algebraic expressions. I do not mean by that the final 
result (9.95), but I admire how brief and transparent the path from a formal 
definition of the task (9.89) to the computational procedure in (9.92), (9.93), 
(9.94) can be. This intelligibility becomes even more impressive when I compare 
the algebraic formulation of the task with its original graph formulation. The 
algebraic formulation immediately indicates the direction in which to look for 
the solution. The object sought (in our case an ensemble of numbers) is defined 
by the formula (9.95). The task analysis lies in formal transformations of this 
formula in which the unchanged form of the defined object is guaranteed. 

It was quite different with the original task. The task was not defined by 
a formula but the definition was verbal. It was stated that d-shortest paths 
in the graph is to be found. This formulation seems to be illustrative only at 
first glance because it is not supported by any apparatus by which a verbal 
formulation can be transposed to another verbal formulation. The researcher 
who tries to solve the task in its verbal formulation can rely only on his/her 
rational considerations. These considerations can be very extensive and be
sides leading in the right direction they can put the researcher on many other 
paths. Just this kind of 'intelligibility' routed me at first toward such task 
solving algorithms which were not practically implementable. At that time, 
the 'intelligibility' simply disoriented me. 

Now I have understood at last how just the algebraic representation of the 
task seeking d-best path revealed its simplicity, which was treacherously hidden 
in graph representation. Graph representation does represent something, but 
it is not what is to be found in the formulated task. The object sought, i.e., 
a group of d-best paths cannot be represented in the graph expression at all. 
When we superimpose the paths from some group on them we obtain a graph 
which contains not only the paths of the group but also a lot of irrelevant paths. 

When I have now seen the actual simplicity of the task examined, I feel I 
could master even more general tasks. I have in mind, for example, the case 
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of seeking d-nearest neighbours, when instead of being described by a sim
pler sequence the object observed is described by a more complex arbitrary 
beforehand known acyclic structure. I would like to generalise the Levenstein 
matching task so that not only the best approximation, but the d-best approx
imations should be sought. 

We are sure that you will easily generalise the computational procedure (9.95) 
even for the case of acyclic graph structures. But be careful in generalising 
Levenstein matching. One of the most significant properties, thanks to which 
Levenstein approximation was successfully managed, is the idempotent prop
erty of addition which was minimisation in our particular case. Only thanks 
to the idempotent property did we manage to prove that some infinite con
volution expressions have finite equivalents. Remember Lemmata 9.2 and 9.3 
of the lecture. Adding d-dimensional ensembles, as we have defined it for the 
task of d-best sequences, is not idempotent. Therefore, you will have to devise 
something which would be similar to the above mentioned lemmata 9.2 and 9.3 
for the given case. 

I would like to come back to the computational procedure (9.95) and see what 
form it will assume when I do not express it by means of macro operations of 
multiplying and adding of ensembles, but through elementary level operations 
dealing with individual numbers, i.e., with elements of ensembles. 

We will be pleased to go with you through the computational procedure (9.95) 
because it is interesting from the purely computational standpoint and possesses 
quite surprising features. Well now, you are to start. 

The task is to create an ensemble of the length d which is determined by the 
matrix product 

(9.96) 

A sequence of IKI-dimensional row vectors h, h, ... , fn is to be calculated, 
where h = r.p · P1 and J; = fi-1 · P;, i = 2, ... , n. Then a 'scalar product' 
fn ·1/J is to be calculated. The computational complexity of (9.96) is n times 
greater than computational complexity of multiplying the IKI-dimensional row 
vector by a matrix of dimension IKI x IKI. I will examine the complexity of 
this multiplication. I will take into consideration that the components of the 
vector J;_ 1 and the matrix P; are d-dimensional ensembles, not numbers. The 
component J; ( k) of the vector J; = J;_ 1 · P; is an ensemble of the length d that 
is determined by the sum 

J;(k) = EB fi-1 (k')@ Pi(k'' k). (9.97) 
k'EK 

To create the ensembles f;(k) for all k E K means to create IKI 2 auxiliary 
ensembles 

c(k',k) = li-I(k') 0P;(k',k), k' E K, (9.98) 



460 Lecture 9: Regular languages and corresponding pattern recognition tasks 

and then their sum 

J;(k) = E9 c(k', k) (9.99) 
k'EK 

for all k E K. So, multiplication J; = J;_1 ® P; requires JKJ 2 multiplications 
and JKJ 2 additions of ensembles of length d. Let me examine the complexity 
of these operations with ensembles. 

Let a= (a1 ,a2 , ..• ,ad) and b = (b1 ,b2 , ••• ,bd) be two ensembles. To cal
culate their product in the general case means to create an ensemble (ai + bi, 
1 :::; i :::; d, 1 :::; j :::; d) and select d smallest numbers from it. In our case one 
of the ensembles is the ensemble P;(k, k') which has a specific form. All the 
numbers in it, except the first one, are oo, i.e., b = (b1 , oo, oo, ... , oo). The 
product of the ensemble a = (a1 , a2 , .•• , ad) with the ensemble of this specific 
form is simply ( a1 + b1, a2 + b1, ... , ad + b!). Its calculation obviously has 
the complexity O(d). 

Let a= (a1, a2, ... , ad) and b = (b1, b2 , ••• , bd) be two ensembles. Their addi
tion means a selection of d smallest numbers from the ensemble ( a1 , a2 , ... , ad, 
b1, b2, ... , bd). Since the ensembles a and b are in ascending order their addi
tion has complexity O(d). This addition could be computed by the following 
program fragment. 

k=i=j=1; 
while ( k :::; d ) { 

if ( a; :::; bi ) 

} 

{ ck = a; ; i = i + 1 ; } 
else 

{ Ck = bj; j = j + 1 j } 

k = k + 1; 

Tlms the multiplication J;_1 ·Pi is of complexity O(JKJ2 d), the multiplication 
(9.96) being of complexity O(JKJ2 d n). It is the result you have anticipated 
from the very beginning of the task analysis. The result states that seeking d
best sequences is only d-times more complicated than seeking the best sequence 
which can be performed with complexity O(JKJ 2 n). 

You have missed some important properties of ensemble addition. You are right 
that the addition a1 EB a2 has the complexity O(d). But it does not follow from 
that that the complexity of the addition a 1 EB a2 EB ... EB a"' is O((m- 1)d). 
Actually, it is substantially less, being just 0 ( ( m - 1) + ( d - 1) log m). When 
the calculation procedure is clear to you then you will arrive at the conclusion 
that the calculation of the product J;_1 · P; is not of complexity O(JKJ2 d), but 
a more favourable value O(JKJ 2 + d JKJlog JKI). Think over the program for 
computing the product of the vector J;_1 with the matrix P; more thoroughly. 

Not to deal with unnecessary details, I will introduce simplified notation for 
calculating the ensemble J;(k) for one certain k E Kin agreement with the for-
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k=:rs 0 D D ~ b(O)o - ~ >b{B)) 
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Figure 9.6 Arrangement of data for effective computation of the product of vector J;_ 1 with 
matrix P;. The squares contain numbers f(k,q). 

mula (9.97). If the value k is fixed then it can be omitted and the formula (9.97) 
has the form 

f' = E9 f(k) ® P'(k), (9.100) 
kEK 

where/', f(k), P'(k), k E K, are ensembles of d numbers each. Ensembles 
P'(k), k E K, have a specific form. Only the first number in each ensemble 
is not oo. All other numbers are oo. I denote as P(k) the first number in 
the ensemble P'(k). The calculation according to (9.100) means, in fact, the 
following. There are diKI numbers f(k, q), k = 0, 1, ... , IKI-1, q = 0, 1, ... , d-
1. Furthermore, there are also IKI numbers P(k), k = 0, 1, ... , IKI - 1. The 
ensemble of numbers f(k, q) is partially ordered in such a sense that for each 
triplet k,q1,q2, q1 < q2, the inequality f(k,qi) ~ f(k,q2) holds. The ensemble 
of numbers P(k) is arbitrary. 

The ensemble f(k, q), k = 0, 1, ... , IKI-1, q = 0, 1, ... , d -1, is represented 
by a rectangular field of squares in Fig. 9.6. Each of the squares represents 
a corresponding number f(k, q). The ensemble P(k), k = 0, 1, ... , IKI- 1, is 
depicted in Fig. 9.6 by a column of circles in which the corresponding numbers 
P(k) are written. The figure shows a case in which IKI = 8 and dis arbitrary. 

The complexity of selecting the d smallest numbers from the ensemble 
(/(k, q) + P(k), k = 0, 1, ... , IKI-1, q = 0, 1, 2, ... , d -1) is to be determined. 



462 Lecture 9: Regular languages and corresponding pattern recognition tasks 

The first number selected is evidently mink {J(k, 0) + P(k)). To determine this 
number is not complicated and therefore it is obvious that its computational 
complexity is O(IKI). However, I do not intend to seek the minimum in a 
common fashion, but by means of a data structure which is represented by the 
tree in the right-hand side of Fig. 9.6. The vertices in the tree are labelled by 
the values b(j) in the Fig. 9.6. Their amount is 2 IKI - 1. The numbers b(j) 
are determined by the following program fragment 

for ( k = 0; k < IKI i i + +) 

{ b(k) = f(k,O) +P(k); q*(k) = 1; } 
k = 0; j = IKI; 
while c j # 2IKI - U { 

if ( b(k) :::; b(k + 1)) } (9.101) 

} 

{ b(j)=b(k); ind(j)=k;} 
else 

{ b(j) = b(k + 1); ind(j) = k + 1; } 
k=k+2; j=j+1; 

When the program finishes then at each tree vertex a number is written which 
is the smaller of two numbers which are written at the vertices connected 
by edges with the respective vertex and lie to the left of it. For example, 
b(9) = min (b(2), b(3)) and b(12) = min (b(8), b(9)). The numbers ind(j), 
j = IKI, ... , 2 (IKI - 1) are indices pointing which of the two numbers was 
overwritten from the left to the right. The indices are represented by arrows 
in Fig. 9.6. 

For example, the arrow from the ninth vertex points towards the third vertex, 
which means that ind(9) = 3, and thus b(3) :::; b(2). It is evident that with such 
a data arrangement the number b(2(IKI - 1)) at the root of the tree is the 
smallest of the numbers b(j), j = 0, ... , IKI- 1. The ensemble of arrows shows 
the number j of the tree leaf where the least number lies. The ensemble of 
arrows in Fig. 9.6 indicates, for example, that b(14) = b(3). The program 
(9.101) also determines indices q*(k) which indicate how many numbers were 
taken of the ensemble f(k,q), q = 0, ... ,d- 1, and were written in the tree 
leaves. 

The above mentioned program for finding the least number from the ensem
ble {J(k, 0) + P(k), k = 0, ... , IKI - 1), is exceedingly complicated only at 
first glance. In fact, its complexity is O(IKI-1), i.e., of the same order as that 
with the common procedure seeking the least number by simple examination 
of the numbers f(k, 0) + P(k), k = 0, ... , IKI- 1. An important advantage of 
the algorithm (9.101) is that in addition to seeking the least number it creates 
supplementary data which allows us to find the succeeding least number not in 
(IKI - 1) operations, but in substantially fewer log IKI operations. I will show 
how it occurs. 

Assume that the number written in the output ensemble f' as the first 
was a number from the k*-th row of the ensemble f(k,q). This means that 
the number f(k*,O) + P(k*) = f'(O) was the least number in the ensemble 
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(f(k, 0) + P(k), k = 0, 1, ... , JKI - 1) which consists of JKI numbers. The 
succeeding number f'(1) which is to be written in the output ensemble must 
be either f(k*, 1) + P(k*) or the least number of the group f(k, 0) + P(k), 
k =I k*. So the numbers f' (0) and f' (1) are the least numbers of two dif
ferent groups which, however, differ from one other only by a single number. 
In seeking the number f' (1) it is not necessary to examine the whole new 
group. It is sufficient just to calculate the new values in the ensembles b(j), 
ind(j), j = JKJ, ... , 2(JKI - 1). However, the number of values which must 
be changed is not greater than log JKI numbers. The changed numbers and 
arrows are just those in the tree vertices which lie on the path from the leaf k* 
to the root. 

Imagine that after starting the program (9.101) we have obtained all needed 
data in the tree, i.e., numbers b(j) and arrows ind(j) for each tree vertex. 
Assume the arrows have corresponded to those in Fig. 9.6. The ensemble 
of arrows depicted states that the least of the numbers f(k, 0) + P(k), k = 
0, ... , JKI - 1, was the number f(3, 0) + P(3). Thus the number b(3), which 
previously was f(3, 0) + P(3), is now to be changed into the number f(3, 1) + 
P(3). The data within the tree are also to be changed in a respective way, i.e., 
numbers b(j) and ind(j) will be changed only at 3 = log 8 vertices 9, 12 and 
14. The number b(9) is to be changed into the number min(b(2), b(3)). Into 
the vertex number 12 the number min (b(9), b(8)) will be written. Finally, the 
number min (b(12), b(13)) will be written at the root of the tree. Obviously the 
same way will lead to obtaining new indices ind(j) for j = 9, 12, 14. 

I will now deal with the general case. Assume the program has already 
written q numbers into the output ensemble f' that were the q least numbers 
in the ensemble (f(k, q) + P(k), k = 0, 1, ... , JKI - 1, q = 0, 1, ... , d- 1). 
Assume also that the algorithm has the following data at its disposal. These 
are numbers q* ( k), k = 0, ... , I K l-1, which means that the least q* ( k) numbers 
have been already taken of the k-th row of the ensemble f(k, q) and written 
in the respective leaves of the tree. So the numbers f(k,q*(k)- 1) + P(k), 
k = 0, 1, ... , JKJ-1, are written just now into the tree's leaves b(k). Assume also 
that all other numbers b(j) and indices ind(j), j = JKJ, JKI + 1, ... , 2(JKI- 1), 
in the tree vertices are in agreement with the data in the tree leaves. 

The next least number in the remaining part of the ensemble (f(k, l) + P(k), 
k = 0, 1, ...... , JKJ-1, l = q*(k),q*(k) + 1, ... ,d -1), i.e., (q)-th number of 
the output ensemble, is sought by means of A.lgorithm 9.2. 

Algorithm 9.2 Seeking a further least number in the remaining part of the ensemble. 

1. It is to find from what tree leaf the last number f' (q- 1) was taken, 

k* = ind(2(IKI- 1)); } 

while (k* ;::: IKI)k* = ind(k*); 
(9.102) 

After executing the previous commands the number k* informs us that the last 
number f' ( q -1) written to the output ensemble f' was the number f ( k*, q* (k*)
l)+P(k*). 



464 Lecture 9: Regular languages and corresponding pattern recognition tasks 

2. The succeeding number of the k* -th row of the ensemble f(k, q) is taken out and 
the number in the k* -th tree leaf is changed. 

b(k*) =f(j*,q*(k*)) +P(k*);} 
q*(k*)=q*(k*) +1; 

(9.103) 

3. With respect to the change of the number in the k* -th tree leaf, new data in the 
tree are computed, 

while (k* =f- 2 (IKI - 1)) { 

} 

j1 = k* xor 1; j2 = IKI + k* /2; 
if (b(k*) ~ b(j1)) 

{ b(j2) = b(k*); ind(j2) = k*;} 
else 

{ b(j2) = b(j1); ind(j2) = j1;} 
k* = j2; 

(9.104) 

4. The number from the tree root is written at the position q of the output ensemble 
f' and the number q is incremented by one. 

In Algorithm 9.2 the operation k* xor 1 represents inversion of the least signif
icant bit in the binary representation of the integer nonnegative number k*. 
The operation k* /2 is an integer number division ignoring, at the same time, 
the information in the least significant bit in the binary representation of the 
number k*. The index j2 points to the vertex within the paths from the vertex 
k*. This is the vertex that is connected with the vertex k* by an edge. The 
index j1 is the second vertex that is connected with the vertex j2 but the dis
tance of which from the tree root is greater than that of j2. The meaning of 
indices k*, j1 and j2 can be understood from Fig. 9. 7. 

After Algorithm 9.2 has ended, the j1 
number of positions already written in 
the output ensemble has increased by j2 
one and data needed for seeking the suc
ceeding number to be written into the 
output ensemble have been prepared. 
The complexity of Algorithm 9.2 is given 
by the number of cycle repetitions in 
its fragments (9.102) and (9.104). This 
number is always O(log IKI) and it is Figure 9.7 Meaning of indices j*, jl and 
the complexity of finding one element j2 in Algorithm 9.2. 

(but not the first one) in the output en-
semble f'. The creating of the whole ensemble of the length d, i.e., the calcu
lation (9.97), consists of the calculation of the first element by means of the 
program (9.101), having the complexity IKI and the calculation of the (d- 1) 
other elements. The total complexity thus is O(IKI + (d- 1) log !KI). The en
semble (9.97) is to be calculated for each k E K, and therefore the complexity 
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of the operation fi = fi-1 ·Pi is O(IKI(IKI + (d- 1) log IKI)). It follows from 
that the calculation complexity of the ensemble (9.96) of the length dis 

O(IKI 2 n + IKI(log IKI)n(d- 1)). (9.105) 

This is a damned interesting result. I expected that the search for d-best 
sequences will be substantially more complicated than the search for one single 
best sequence. But in reality the algorithm shows quite the opposite property. 
It is the first best sequence that requires the most of calculations. When we 
are looking for the first sequence with deliberation then seeking any further 
sequence is less demanding. 

When you understand so well the advantage attained by a carefully thought over 
computational procedure we can advise you to further continue in analysing 
our task. In a more detailed examination of task properties you will find that 
the computational complexity is even less than (9.105). You will see that the 
complexity is only 

O(IKI 2n +(log IKI) n (d- 1)). (9.106) 

Note that the number (log IKI) n (d - 1) is simply a number of bits which 
is needed only for the (d- 1) shortest paths found to be stored somewhere. 
This means that if you create an algorithm of the complexity of (9.106) then 
the finding of any succeeding shortest path will have a complexity of the same 
order as simply writing this path to the output memory. It will be an algorithm 
which seeks the shortest path in such a deliberate way that each succeeding 
path will look as if the paths were only rewritten from one memory to another. 

If I did not have any experience of discussion with you then I would believe that 
further reducing the computational complexity was not possible. Well now, the 
matrix product 

(9.107) 

cannot be calculated in any other way than by an n-times repeated product of 
the vector f with the matrix P, can it? The complexity of such a calculation 
cannot be less than 0( n C), where C is the complexity of the calculation f P. 
But the result of multiplying f and P is an ensemble consisting of I K I ensembles 
of length d. Thus the IKI d numbers have to be sought and stored. Because of 
that the calculation of the product f P must have a component the complexity 
of which is O(IKI d). Furthermore, it must have an n-fold product of the vector 
with the matrix, which is needed for the calculation (9.107), a component 
with the complexity O(IKI d n). But a contribution that would refer to the 
component mentioned here, I cannot find in your estimate of the complexity of 
(9.106). 

Before showing where you made your mistake let us go back to the computa
tional procedures which we have already dealt with. 
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You and we clearly understand that adding two ensembles a1 and a2 has a 
complexity O(d). There is no hope for improvement here, since an ensemble of 
length d is being created. It would seem to result from it that the complexity 
of adding n ensembles a1 , a2 , ... , an cannot be less than 0 ( ( n - 1) d). As the 
addition can be done (attention, an error will follow!) only in such a way that a 
sum of two summands is computed, then of two others, and then to the already 
computed summands another summand in turn is added, and so forth. It would 
follow from it that we cannot do without n- 1 additions. 

But just a while ago you proposed an excellent algorithm for calculating the 
sum EB~= 1 ak the complexity of which is not O((n- 1) d) at all, but which 
is substantially less, i.e., 0 ( ( n - 1) + ( d - 1) log n). Even when you scrutinise 
your algorithm as best as possible, you will not find anything which would 
indicate that auxiliary data could be interpreted as partial sums of subsets of 
summands, in our case the subsets of ensembles. This means that you have 
managed to create an algorithm for adding a set of ensembles and avoiding the 
addition of some of their subsets. 

Now let us return to calculating an ensemble of length d 

(9.108) 

based on the procedure which we already understand well, 

lo = c.p 

li = li-1 pi' i = !,2, ... ,n. } 
(9.109) 

The product (9.108) is a product In 1/J, i.e., an ensemble of the length d 

EB ln(k) ® 1/J(k) , (9.110) 
kEK 

where ln(k) and 'ljJ(k) at .any k E K are ensembles of the length d. You 
examined that calculation and arrived at a correct result that its complexity is 
O(IKI +(d- 1) log jKj). Go thoroughly through your algorithm once more and 
notice that for the calculation (9.110) you need not have complete information 
on all jKj ensembles ln(k), k E K. The complete information about them 
consists of jKj d numbers, but only d of them are necessary for calculating 
(9.110). Unnecessary numbers need not be calculated. 

You can continue in considerations like that. For calculating the vector In 
complete information about the vector ln-1 is not needed either. To obtain 
partial information about the vector In, even fewer data of the vector ln-1 

suffice. The procedure of computing (9.109) is in a sense a bit wasteful. In 
each step i = 1, 2, ... , n, the procedure creates spare data and a large part of 
these data will not be ever used. When you design an algorithm such that only 
what is used in calculation will be included in it then you will see that you will 
calculate the whole product (9.108) and avoiding the calculation of products 
c.p P1, r.p P1 P2, c.p H P2 P3, etc .. 
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I will go back to the graph interpretation of the task. I am going to speak about 
a graph the vertices of which are a and /3 (see Fig. 9.5) and further K (n + 1) 
vertices of the form (k, i), k = 0, 1, ... , K- 1, i = 0, 1, ... , n. I did not denote 
the set of values of the variable k by the symbol K, but their number, since 
further on in the algorithm I will use the value k as an integer index. 

The graph contains the following oriented edges. The K edges point from 
the vertex a to vertices of the form (k, 0). The lengths of the edge (a, (k, 0)) is 
determined as 'P(k). From each edge (k', i -1) the Kedges point to the vertices 
( k", i). The length of each of these edges is P; ( k', k"). From each vertex ( k, n), 
the single edge points to the vertex /3 and is of the length 'l/!(k). 

I am interested in the complexity of the algorithm that will find d shortest 
paths from the vertex a to the vertex /3. 

For the analysis of the task and the algorithm of its solution I will introduce 
the following notation. For each vertex"( of the graph which corresponds either 
to the pair ( k, i) or /3, I will denote by C ( 'Y) the set of paths from the vertex a 
to the vertex 'Y. I will order this set in ascendant order by the path length and 
denote by c("f, q) q-th path in this ordered set. The paths in the ordered set 
C('Y) will be enumerated starting from zero. The shortest path in the ordered 
set C('Y) is therefore c('Y, 0). In the program presented later the sets C('Y) and 
the paths c("f, q) are not explicitly represented. They do not belong to the 
objects which the program has to manipulate but they are concepts explaining 
the sense of the data that the program creates and transforms. These data 
are subdivided into groups corresponding to the graph vertices. The sense of 
the data is equal for all vertices as well as for their processing. But formal 
descriptions of their meaning are different for the vertices of the form (k, i) 
and /3. I will explain the data and rules for their processing which apply only 
to the vertices of the form (k, i) in a rather detailed way. The processing of the 
vertex /3 will be explained in a less detailed way and I hope that the explanation 
will be clear even without detailed comments. 

The most important group of data in the algorithm is the ensemble of num
bers f(k, i, q), which stand for the length of the path c(k, i, q), i.e., the q-th path 
from the vertex a to the vertex ( k, i). The number f (/3, q) stands for the length 
of the q-th best path from a to /3. For a fixed i the ensemble f(k, i, q) is just the 
the row vector]; in the algebraic representation of the task, and the ensemble of 
numbers f(/3, 0), f(/3, 1), ... ,j(/3, d-1) is the ensemble expressed by the product 
in (9.109). If the situation q 2: IC(k, i)l occurs then I consider f(k, i, q) = oo. 

For each vertex (k, i) and each number q the indices k'(k, i, q) and q'(k, i, q) 
are defined. These indices have the following meaning. The path c(k, i, q) 
consists of the path c(k' (k, i, q), i- 1, q' (k, i, q)) to the end of which the vertex 
(k, i) is to be appended. By means of indices k' (k, i, q) and q' (k, i, q) any path 
c(k, i, q) can be created. For example, the q-th path from a to /3 is 

where 

kn = k'(f3,q),q11 = q'((J,q), k;-J = k'(k;,i,q;), Qi-1 = q'(k;,i,q;). 
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The algorithm, which will be presented later, calculates the quoted data suc
cessively in such a way that in every step the data f(k, i, q), k'(k, i, q), q'(k, i, q) 
are available only for some triplets (k, i, q), not for all. Which part of the data 
are already known is determined by numbers q*(k, i). They indicate for each 
vertex (k, i) that the data f(k, i, q), k'(k, i, q), q'(k, i, q) are available for q*(k, i) 
best paths leading to the vertex (k,i). 

Furthermore the quoted data additional data relate to each vertex (k, i) 
which will be referred to as a tree of the vertex (k, i). These data have 
the same structure as that which was presented in Fig. 9.6. The vertices 
of the tree (k,i) correspond to triplets (k,i,j), j = 0,1, ... ,2(K- 1), the 
numbers b(k, i, j) and indices ind(k, i, j) being defined for every vertex. The 
root of the tree (k, i) corresponds to the index (k, i, 2 (K- 1)). The number 
b(k,i,2 (K -1)) in the root is the number f(k,i,q*(k,i)), i.e., the length of 
the longest path out of all the already determined paths which is the q* (k, i)-th 
shortest path of the set C(k, i) out of the paths from a to (k, i). The leaves of 
the tree (k, i) correspond to the indices (k, i, j), j = 0, ... , K - 1. Some num
bers b(k, i, 0), b(k, i, 1), ... , b(k, i, K -1) and indices ind(k, i, 0), ind(k, i, 1), ... , 
ind(k, i, K -1) are stored in the leaves. The number b(k, i, k') is equal to number 
f(k', i- 1, q) + P;(k', k) at some q the value of which is stored as ind(k, i, k'). 

The numbers b(k, i, j) and indices ind(k, i, j) in all the other vertices of the 
tree (k, i) have the same sense which I mentioned before when explaining them 
in Fig. 9.6. So the indices ind(k, i, j) in the leaves of the tree have a slightly 
different meaning than in other vertices of the tree. 

At first glance the data manipulated by the algorithm seem to be quite 
numerous. But fortunately only at first glance. The data are subdivided into 
two groups. The former contains quantities f(k, i, q), k'(k, i, q) and q'(k, i, q). 
The required size of memory for storing these data depends on the numbers 
q* (k, i), because it is proportional to L,k i q* (k, i). Further on we will see 
that L,~==~1 q* ( k, i) is not greater than the 'number q* ((3). This number q* ((3) 
indicates how many shortest paths from the vertex a to the vertex (3 have been 
created. The total size of the memory for f(k, i, q), k* (k, i, q) and q' (k, i, q) is 
then not greater than L,~==O q* ((3) = ( n + 1) q* ((3). It is the memory of the same 
order of size as the memory needed for storing final results. 

The other data group is formed by trees for each graph vertex. The total 
size of the memory for storing trees is O(K2 n), which corresponds to the 
size of memory needed for storing the input data of the task, i.e., for storing 
information of edge lengths P;(k', k). It can be seen that neither the demands 
for memory are exaggerated. The required memory is of the same order as the 
memory size necessitated for storing the input data of the task and the results 
of its solution. If these data are exceedingly many nothing can be done, and it 
means that the task under solution is really too extensive. 

Quite a different question is that the data are quite diverse and cannot be 
overlooked at one sight to see all mutual relationships among the data. These 
are the programmer's trouble, whose job is to write a program so that the 
required relation between data should not be violated in their transforming or 
supplementing the data. 
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In observing the accumulated data I am once more aware of the appropri
ateness of the algebraic construction that was used before. It enabled me to 
get an overall view of the task at the level of macro-concepts without being 
forced to annoyingly fiddle with individual odds and ends. Though at the level 
of macro-concepts a number of small items are ignored, a program has been 
successfully created for solving the task, which, on the whole, was not the worst 
one. Now, I intend to take advantage of everything out of the task that can add 
to speeding up the algorithm, and thus I cannot help fiddling with odds and 
ends. I believe I have mastered it, but I would not have managed it had I not 
had a firm basis which was the solution of the task at the algebraic macro-level. 

Finally, our patience has been rewarded and you well understand the advantages 
of the algebraic expression of tasks we have been dealing with. 

I will present an auxiliary algorithm which will be the most substantial part 
of the algorithm solving the problem. I will call the algorithm NEXT(k, i) and 
define its functions as follows. The algorithm changes the given data in such a 
way that the number q*(k, i) is increased by one and all other data will adapt 
to this new value. Before starting the algorithm NEXT(k, i) the data yielded 
information on q-best paths from the vertex a to the vertex (k, i). When the 
algorithm NEXT(k, i) stops then the data have been transformed so that they 
yield information on the (q + l)-th paths. 

As a prototype for the algorithm NEXT(k, i) the algorithms (9.102), (9.103) 
and (9.104) will serve for calculating the ensemble EakEK f(k) ® P(k), where 
f(k) and P(k) are ensembles. The prototype has to be modified with respect 
to the fact that the algorithm NEXT(k, i) has to transform different data ac
cording to input arguments (k, i). The algorithm will also include a command 
which will state what has to be done if the data the algorithm is to use are not 
yet available. 

Algorithm 9.3 NEXT(k, i) 

1. First it has to be found which number was taken out of the ensemble f(k', i -
1,q) when the number f(k,i,q*(k,i)- 1) was being computed, i.e., the length 
of the q• (k, i)-th path from the vertex o: to the vertex (k, i). In the prototype 
algorithm, the command (9.102) was used for this purpose. Now it is no longer 
needed as the necessary information is stored in the data k'(k,i,q*(k,i) -1) and 
q' (k, i, q• (k, i) - 1). Instead of the command (9.102) the following command is 
performed 

k* = k'(k,i,q*(k,i) -1); q• = q'(k,i,q*(k,i) -1). 

The indices k* and q• indicate that the number f(k,i,q*(k,i)) was obtained as 
the sum of numbers f(k*, i- 1, q*) and P;(k*, k). 

2. Now the length f(k*,i -1,q*) of the succeeding (q* + 1)-th path from the set 
C(k*, i- 1) is to be taken out, the number P;(k*, k) added to it and place the 



470 Lecture 9: Regular languages and corresponding pattern recognition tasks 

obtained sum in the k* -th leaf of the (k, i)-th tree. 

if (q*(k*,i-1)=q*+1) NEXT(k*,i-1); } 

b(k,i,k*) = f(k*,i -1,q* + 1) + P;(k*,k); . 
(9.111) 

The preceding operation resembles the command (9.103) from the prototype 
program with that important difference that in the command (9.111) the first 
line is also present which the command (9.103) did not contain. The number 
f(k*, i- 1, q* + 1), which is necessary for satisfying the second line of the com
mand (9.111), may not be yet available. It will be so when q* + 2 > q*(k*, i -1). 
But before the command (9.111) was carried out the number f(k*, i- 1, q*) had 
already been available. This means that q* (k*, i- 1) ~ q* + 1. It follows from 
this that if the number f(k*, i - 1, q* + 1) is not available then q* (k*, i - 1) is 
exactly q* + 1. To create the number f(k*, i- 1, q* + 1) it is sufficient to let the 
program NEXT(k*, i- 1) run just once which will occur in the first line of the 
command (9.111). 

3. The data in the tree (k, i) are transformed with respect to the change of the 
number b(k, i, k*) in the tree leaf, which is done by means of a program which 
only slightly differs from the prototype program (9.104). 

while (k* =f. 2(K- 1) ) { 

} 

j1 = k* xor 1 ; j2 = K + k* /2 ; 
if (b(k,i,k*) ~ b(k,i,j1)) 

{ b(k,i,j2) = b(k,i,k*); ind(k,i,j2) = k*; } 
else 

{ b(k, i, j2) = b(k, i, j1); ind(k, i, j2) = j1; } 
k* = j2; 

(9.112) 

4. The numbers f(k,i,q*(k,i) + 1) and indices k'(k, i, q*(k,i) + 1) and q'(k, i, 
q*(k, i)+1) corresponding to the path c(k, i,q*(k, i)+1) just found are to be stored 
in the respective memory cells. The value f(k, i, q* (k, i) + 1) is obtained from the 
the cell b(k, i, 2(K -1)) and the indices k' (k, i, q* (k, i) + 1), q' (k, i, q* (k, i) + 1) will 
be determined by the program, which resembles the prototype fragment (9.102). 

q* (k, i) = q* (k, i) + 1 ; 

j* = 2 (K- 1) ; } 
f(k, i, q*(k, i)) = b(k, i,j*); 
while (j* ~ K) j* = ind(k,i,j*); 
k'(k,i,q*(k,i)) =j*; q'(k,i,q*(k,i)) =ind(k,i,j*); 

(9.113) 

An important property of the auxiliary algorithm NEXT(k, i) defined is that 
in performing it the NEXT(k', i - 1) is called not more than once (it may be 
called not even once). And if the program NEXT(k', i- 1) is called then it is 
called only for one of the values k'. This means that the computation of the 
function NEXT(k, i) consists of computations complexity of which is O(log K) 
(which is owed to the while cycles in the commands (9.112), (9.113)) and of 
computations of the function NEXT(k',i -1) for one certain k'. The compu
tation of the function NEXT( k', i - 1) consists of computations the complexity 
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of which is O(log K), and perhaps also of the computations of the function 
NEXT(k", i - 2) ) for one certain k". Since the function NEXT(k, 0) will be 
called not even once, the overall complexity of the algorithm NEXT(k, i) is 
O(i logK). 

It can be easily understood that the algorithm NEXT(k, i) presented can be 
changed through a slight modification so that to its domain of definition not 
only vertices of the form (k, i) is included but also the target vertex ;3. For 
this modification in the programs (9.111), (9.112) and (9.113), it is sufficient 
to write /3 instead of every pair (k, i) as well as n instead of i - 1. Execution 
the algorithm NEXT(/3) will have a complexity of at most O(n log K). 

It is self-evident that before the first starting the program NEXT(/3) the 
data must be initialised to become consistent. 

Algorithm 9.4 Data initiation before starting NEXT(/3). 
1. For the vertices of the form (k, 0) the number q• (k, 0) is to be equal to one, 

which means that the information about two shortest paths from the vertex a 
to the vertex (k, 0) is available. The length of the shortest path is rp(k), i.e., 
f(k, 0, 0) = rp(k) is substituted. The length of the succeeding path is oo, i.e., 
f(k, 0, 1) = oo, which means that the second path from a to (k, 0) does not exist. 
The other data for the vertices (k, 0) are not defined. 

2. For all other vertices q• ('y) = 0 is substituted. This means that only information 
on the best path from the vertex a to the vertex "( is available. The number 
f('y, 0) is the length of that best path and the numbers f('y, q) for q > 0 are not 
defined, since in this case q > q• ( "() holds. 

3. Theindexk'(k,i,O) isargmaxk' (/(k',i-1,0)+Pi(k',k)), andtheindexq'(k,i,O) 
is 0. 

4. The index k' (/3, 0) is argmaxk' f(k', n, 0) and the index q' ({3, 0) is 0. 

5. In the leaves of (k, i)-th tree the numbers f(k', i -1, 0) are entered, i.e., b(k, i, k') = 
f(k', i - 1, 0) and ind(k, i, k') = 0, k' = 0, 1, ... , K- 1. The information on all 
other tree vertices, including the tree root, should correspond to the information 
in the tree leaves. 

6. Similarly as the initiation of the tree ( k, i), the initiation of the tree ({3) is to be 
carried out. 

The initiation presented contains, in fact, all computations which are needed to 
seek the shortest path from a to (3. The results of seeking and further auxiliary 
data are stored in such a form that the program NEXT may be used. The 
complexity of the initiation is O(K2 n). 

In this way I have arrived at a result in which seeking the d-shortest path 
from a to the vertex (3 consists of the initiation having the complexity O(K2 n) 
and (d - 1)-fold running of the program NEXT(/3) having the complexity 
O(n log K). The overall complexity of the task solution is not greater than 

0 ( K 2 n + ( d - 1) n log K) . 

I cannot but close the question that I mentioned only cursorily before. The 
matter is that the memory needed for storing the data f(k,i,q), k'(k,i,q) 
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and q' (k, i, q), is actually much smaller than the size of 'L.k 'L.i (q* (k, i) + 1), 
which it would seem to be at first glance. Based on the knowledge of a con
crete algorithm we can claim that immediately after the initiation the sum 
'L.k 'L.i (q*(k,i) + 1) slightly differs from the number Kn. Further on, in each 
application of the program NEXT(;3) the sum does not increase by more than n, 
because for each i no more than one of the numbers q*(k, i) is changed. When 
the sum changes then it is increased only by one. It follows from this that after 
ad-fold application of the program NEXT(;3) the sum of the memory sizes will 
not be greater than CJ(Kn + nd). 

Well, this may be all with respect to the d-shortest paths in the graph and, 
consequently, with respect to search for the d-best approximations of given 
sentence with sentences of given regular language. Certainly, the procedure 
described can be easily generalized to the situation in which the object under 
approximation is of more complicated acyclic structure than a sequence. 

The algorithm for solving the task on d shortest paths in a graph begins to 
gradually assume an appropriate form. You might publish your results, since 
they have a significance on their own, and not only in the pattern recognition 
domain. On the whole we can see that you have excellently mastered the 
subject matter of the last two lectures. 

The analysis was quite instructive for me because I became convinced once more 
how substantially the efficiency of a procedure carefully thought over may differ 
from the one which occurs to me at first and seems to be self-evident. 

Allow me to say frankly that in one item of your lecture I saw quite some 
negligence in the estimate of computational complexity. It concerns the com
plexity of the matrix polynomial EB:o A i in a semi-ring with idempotent addi
tion. Without any hesitation you wrote that the complexity of that operation 
was CJ(k3 logk) for the matrix A of the dimension k x k. But that is the com
plexity of the most primitive algorithm which occurs to anybody in the first 
place. For this task there exists a long known algorithm owed to Floyd {Floyd, 
1962} complexity of which is CJ(k3 ). How shall I come to terms with it? 

Simply by forgiving the negligence. We did not intend to interrupt the firm 
and purposeful storming of the main aim of the lecture. 

I am thankful that you have assessed my understanding of the subject matter 
presented as being quite satisfactory. Without pretending mock modesty, I feel 
that I have got oriented in the subject matter has been dealt with. In spite of 
that, I still miss the last item to be supported in writing an actual program for 
my task on text-line pattern recognition. I miss something significant for being 
able to represent my actual problem by abstract concepts which were used in 
the lectures. I do not ask questions only to enquire about something more. I 
tried to settle the problems by myself, but now I am arriving at the idea that 
the theoretical results of the last two lectures have nothing in common with 
even the simplest practical task, which I would like to solve at all costs. 
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Well, will you get on with it and formulate the question in a more concrete 
fashion? 

I cannot get on quickly, I am afraid, because the question cannot be expressed 
briefly. 

After Lecture 7 we thoroughly discussed a number of questions related to 
practical aspects of recognising text documents. At the end of the discussion 
you anticipated what difficulties were still in store for me after I started recog
nising a whole line of symbols, even when having an appropriate algorithm for 
recognising individual isolated symbols at my disposal. You promised that I 
would find the key to meeting the difficulties in Lectures 8 and 9. Your pre
diction came true only partially. The difficulties arose, that is true, but the 
subject matter presented is still of no help to me, though I understand it. At 
least, it seems to me that I understand it, and even you have appreciated it. 
I have an impression that practical difficulties were about one thing and the 
lectures were about something quite different. 

The lectures were about how, according to the sequence of images, x1, x2, 
... , Xn to find the sequence of character labels k1, k2, ... , kn, which correspond 
to the images. Even the way how to make use of the knowledge of mutual 
dependence of two neighbouring character labels was referred to. This model 
situation is substantially different from what I actually have. 

Input data for recognition do not have, at all, the form of a sequence 
x1 , x2 , ... , x 11 , in which x; should depict the i-th character with an unknown 
label k;. The input information has the form of one non-segmented image x 
that corresponds to even an entire line of characters. Furthermore the images 
x there is nothing to tell me where one character ends and the other starts. 
To use the subject matter of the lectures I must first segment my image into 
individual characters in some way. This problem again lets me remain without 
help. If I knew how to segment the input image x into individual characters 
then it would mean that I had got over the greatest obstacle in solving the task. 

Assume that I had managed to segment the image with text into individual 
characters in some way. What can the theoretical exposition offer to me? 
Only that I can use the information on mutual dependence of neighbouring 
characters and so improve the quality of their recognition. But the structural 
relationships of individual characters in a natural language and finally even 
in a formalised language, are far more complicated than those which can be 
expressed by virtue of such primitive means as are regular languages and their 
stochastic generalisation. By .these simplest tools the results of recognising 
isolated symbols can be substarltially improved only in the case in which results 
are quite bad. 

Based on ideas of the discussion after Lecture 7 I wrote a program which 
recognises isolated characters quite well. But wrong answers in recognising a 
text line do not occur as a result of not respecting the dependency between 
neighbouring symbols in the text, but mainly because an error had already 
occurred in segmenting the line into individual characters. For segmentation I 
used an algorithm which I had devised on my own without any theory. I admit 
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that it yields bad results. But the theory does not tell me anything about 
what a segmentation algorithm should look like. But image segmentation does 
belong to pattern recognition, does it not? 

The situation as a whole seems to me as if a person promised to serve me 
any kind of meal, and only when I really wanted to get a meal, did I find that 
I had first to prepare it myself Then independently of what kind of meal it 
was, that person could bring and serve it to me. He had kept his promise, but 
I saw that it had been a pure hoax. 

Here I can see a clear gap between the theory explained and my actual 
practical task. The theory deals with making use of the dependency between 
symbols which in my practical task cannot substantially improve the results 
of recognition. The major difficulty of my task is how the originally compact 
observation x is to be transformed into a sequence of observations x 1 , x 2 , ... , Xn, 

in which each observation corresponds to one character. The theory is silent 
about that. In the theory the sequence x1 , x2 , ... , Xn is already assumed as 
given. To worry about how to get it is to be my job. 

Do I see the gap in the right place? Could not you, perhaps, help me in 
analysing my task of recognising an image with a line of text in which segmen
tation problems appear? These problems seem to me the most significant. The 
relationship between neighbouring characters could be ignored, as it seems less 
substantial to me. 

First you created the gap yourself and now you can clearly see it. You have 
assumed since the very beginning that the alphabet K of states is identical 
with the alphabet of characters. This conception of the set of states immedi
ately results in the idea that the sequence of observations must have the form 
x1, x2, ... , Xn, in which xi is a part of the image containing the i-th character 
and no part of any other character. But for using the theory it is not at all 
inevitable for the sequences k1, k2, ... , kn and X1, X2, ... , Xn to have exactly 
this meaning. 

We will examine your task quoting a form of data which can be assumed 
to undoubtedly correspond to input data. In any case we can assume that 
the input data have the form of a two-dimensional array (x(i, j), 1 :::; i :::; n, 
1 :::; j :::; m) which consists of n columns and m rows. As usual, when referring 
to images, the value x(i,j) is considered to be the brightness of the image at a 
point with integer coordinates (i,j). These data can be interpreted even as a 
sequence x1,x2, ... ,xn, where Xi is a one-dimensional ensemble of the length 
m; simply speaking, it is the i-th column in an original two-dimensional array. 

But in such a case the set X, from which the quantities Xi assume their values, 
is extremely extensive. 

Yes, it is. But for the time being do not worry about it. Now it is more 
important to reveal what this multi-dimensional, and therefore so complicated, 
operation Xi depends on. Recall that i indicates the number of the column 
being processed in the whole line of the text. 
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The observation Xi depends only on two quantities. One is the number q, i.e., 
the counter of columns from the beginning of a character, since the first column 
in the character being processed is the column i- q. The other quantity is the 
name k of the character being processed which is a name from the alphabet K. 
For each k E K the number Q(k) will be introduced which means the width of 
the symbol k, i.e., it indicates of how many columns the image, representing 
the character, consists. The pair (k, q), on which the column in the observed 
two-dimensional array (x(i,j), 1 ~ i ~ n, j ~ m) depends, belongs to the set 
{ (k, q)l lk E K, q = 0, 1, ... , Q(k)- 1 }. This set will be considered as a set of 
states of an automaton which generates images with lines of text. 

I have caught it! The main thing is that the automaton states need not cor
respond just to what is to be recognised, but they may be something more 
detailed. I remember that we were discussing something similar to it after Lec
ture 7. Then you directed my attention to a situation in which in creating a 
model of a recognised object some artificially created parameters are sometimes 
to be added to the hidden parameters of a natural kind. By extending the set 
of hidden parameters the task does not become more complicated. Just the 
opposite, it becomes simpler. 

Here just such a situation has occurred. We are surprised that you did not 
arrived at it sooner. Well, continue by yourself. 

The automaton generates a sequence of states (k1, ql), (k2, q2), ... ,(kn, qn) and 
a sequence e1, e2, ... , en of columns, each of which consists of m elements, ap-
pears at the output. The sequence e1 , e2 , ... , en then forms a two-dimensional 
ensemble (e(i,j), i = 1,2, ... ,n, j = 1,2, ... ,m) which can be considered as 
an image. For the image to correspond to an ideal, undamaged text line, cer
tain constraints are to be satisfied as to what the state (ki, qi) can be in the 
i-th moment in dependence on what the state (ki- 1 , qi_ 1) was in the preceding 
moment ei on the state (ki, qi) is to be determined. For simplicity I will not 
take into consideration that the labels of characters in the text are mutually de
pendent. The automaton generating an image of a text line in which mutually 
independent symbols occur can be, for example, defined as follows. 

1. The set of initial automaton states is the set { (k, 0) I k E K} by which a 
clearly understandable property is stated that the generation of an image 
with text begins from generating the initial (zero) column of some of the 
symbols. 

2. The set of target states is { (k, Q(k)- 1) IkE K}. This means that the gen
eration of an image with text can end only in those states when generating 
some of the symbols is finished. 

3. If the automaton is in some state (k, q), k E K, q =J. Q(k) - 1, (i.e., if the 
state labelled k has not been processed as a whole) then the succeeding 
state must be (k, q+ 1) (i.e., it must continue generating the same character 
k). 
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4. IE the automaton is in the state (k,Q(k)- 1), k E K, (i.e., when the 
generation of the state labelled k has already ended) then the automaton 
can either stop generating the text line or pass on to the state ( k', 0), k' E K 
(i.e., to start generating the succeeding state). 

5. If the automaton is in the state (ki, Qi) at the i-th moment then to an earlier 
constructed ensemble e(i', j), i' = 1, 2, ... , i -1, j = 1, 2, ... , m, a column ei 
is added. The column ei is defined by the label of the character ki which is 
just being constructed, and by the number Qi of the column in the character. 

We will denote by E(k, q) the set of all columns which can be regarded as ideal 
representatives of the q-th column of the character named k. The set E(k, q) 
need not be very extensive. In the simplest case it can consist only of one 
column. The diversity of all possible columns Xi which can actually occur in 
the position of the q-th column of the character k can be expressed not only 
by the extension of the set E(k, q), but also by the introduction of a similarity 
function d( k, q, x). This function indicates to what extent the column x can be 
considered as the representation of the q-th column of the character named k. 

The concepts presented here serve as a basis for the following formulation of 
a task the solution of which is the segmentation of the ensemble (x(i,j), 1 ~ 
i ~ n, 1 ~ j ~ m) into individual characters as well as the recognition of 
individual characters. 

The ensemble (x(i,j), 1 ~ i ~ n, 1 ~ j ~ m) will be considered as a 
sequence of columns x1, x2, ... , Xn, and the task will be formulated as seeking 
thesequence(ki,qi), (k2,q2), ... , (k~,q~) which is 

n 

((k;), i = 1,2, ... ,n) = argmax l:d(ki,Qi,xi) 
((k;,qi), i=1,2, ... ,n) i=1 

under the conditions 

(k1, ql) E {(k, 0) I k E K}, (kn, Qn) E {(k, Q(k) - 1) I k E K}, ki = ki-1, 

. - { Qi-1 + 1 , if 
q~- 0, if 

Qi-1 =I Q(ki-1) -1, 

Qi-1 = Q(ki-d - 1 . 

The sequence obtained ( ki, qj), i = 1, ... , n, determines the sequence i 1, i2, 
... , iM of indices, where qjm = 0. The index im provides the horizontal coor
dinate of a point in which the m-th character begins, kim denotes the name of 
the character, and M is the number of of characters in the text line which is 
being recognised. 

What you have designed is one of the simplest approaches. As we know you, 
some more accomplished algorithms will occur to you after a period of thinking 
it over. 

July 1998 
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9. 7 Link to a toolbox 
The public domain demonstration software related to recognition in regular 
languages was written in C language by P. Soukup as a diploma thesis in Sum
mer 2001. It can be downloaded from the website http: I I cmp. felk. cvut. 
czl cmpl cmp_software. html. The library implementing generalised convolu
tion and several tasks solving the best matching problem are available including 
the source code. 

9.8 Bibliographical notes 
The chapter is based on the formulation of languages and grammars in the sense 
of Chomsky [Chomsky, 1957; Chomsky et al., 1971] which in its significance far 
exceeds pattern recognition. The concept of the fuzzy grammar alternative 
comes from [Zadeh, 1965; Zimmermann et al., 1984]. 

A large group of tasks in structural pattern recognition deals with compar
ing an object with the ideal object (exemplar). The objects are usually of 
a more complex structure than that of a sequence. They are mostly graphs. 
The comparison criterion usually is a modified Levenstein dissimilarity [Leven
stein, 1965; Bunke, 1996]. A further step towards the statistical interpretation 
of Levenstein tasks was made by Kashyap and Oommen [Kashyap and Oom
men, 1984; Oommen, 1987] when they formulated nontrivial pattern recognition 
tasks and solved them. 

In the lecture another approach was applied in which the object examined 
is compared with a set of objects (with a regular language). In the case in 
which Levenstein dissimilarity is the metric the exact solution of the best 
matching problem belongs to Wagner [Wagner and Fischer, 1974; Wagner and 
Seiferas, 1978]. Efficient algorithms for solving tasks of this kind were designed 
by [Amengual and Vidal, 1996]. The solution for a more general case in which 
Levenstein similarity is not the metric has been presented in this lecture. 

Jifi Pecha brought to our attention in the discussion Floyd's excellent algo
rithm [Floyd, 1962]. 

Jiri Pecha is not the only one whose interest was attracted by the beautiful 
task of searching ford-best derivations of a formal language sentence, in partic
ular, its computational aspects. After the Czech version of this monograph was 
published we learned about the paper [Jimenez and Marzal, 2000] which solves 
the problem seeking d-best derivation of a sentence in a context-free language. 
The paper solves the more general version of the problem compared to the one 
we have analysed with Jiri Pecha. Even so, the motivation and results obtained 
are close to the conclusions of .Jifi Pecha. It seems that there are more of us 
who are interested in these nice and not very simple problems. 

The algebraic constructions for solving optimisation tasks of structural pat
tern recognition, quoted in the lecture, were presented by Schlesinger [Schle
singer, 1989; Schlesinger, 1994; Schlesinger, 1997]. 



Lecture 10 

Context-free languages, 
their two-dimensional generalisation, 
related tasks 

10.1 Introductory notes 

From time to time scientific terminology seems to make fun of a trusting reader, 
deliberately wanting to confuse him or her. It happens that scientific concepts 
are used which are common in everyday life but denote something quite dif
ferent. For example, the theory of catastrophes does not deal with what we 
normally consider a catastrophe, a disaster. Similarly, games theory has noth
ing to do with what is happening on a football ground or on a chess board. 

The concept 'context-free language' is one of the examples of such a perfidi
ous concept. According to the name it could be supposed to mean manipulating 
a language in such a way that one wants only to switch from one topic to an
other until the sentence resembles a chaotic chain of mutually independent 
fragments. In fact, a context-free language is determined by precise definitions. 
If the definitions were not known then one could not guess what the particular 
term might mean. This is the case in which the application of a familiar and 
expressive concept for a concrete idea brings about only disorientation. 

This lecture is devoted to a formalism with the aid of which sets of images 
and a probability distribution on them are constructively defined. Based on 
the definitions, different pattern recognition tasks are solved resembling those 
analysed in the previous two lectures 8 and 9. This lecture differs from the 
previous two lectures in that the objects recognised will not only have the 
form of one-dimensional sequences but primarily the form of two-dimensional 
and multi-dimensional arrays. We will see that the formalism proposed is a 
natural generalisation of context-free grammars and languages according toN. 
Chomsky's hierarchy. In its turn, the Chomsky's context-free grammars and 
languages are generalizations of regular grammars and languages. 

479 
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10.2 Informal explanation of two-dimensional grammars 
and languages 

Imagine a dialogue between a human and an artificially produced device, say, a 
computer. The computer is expected to make use of the dialogue and to learn 
to recognise images of a class. The dialogue starts by presenting an image to 
the computer and asking the computer if the image belongs to the class of 
images which denote, e.g., the Russian letter SH pronounced as 'sh", which 
will be for typographical reasons denoted here as SH. Its shape can be seen in 
Fig. 10.1. 

The computer scans its library of programs and checks if it contains the 
pertinent program. If it does then it replies to the question and finishes the 
dialogue. If not then the computer tells the user that it cannot answer the 
question. A human can react to the information by inserting a program into 
the computer enabling it to answer. Such a method of communication between 
a human and the computer seems natural from the present day point of view 
even when it greatly differs from a dialogue in which the partner would be 
another human. The human partner could be explained in a way the meaning 
that the image is called SH. This explanation would not have the form of a 
program, i.e., a sequence of instructions. Such non-procedural definitions are 
possible even in the human/computer dialogue. In this case the definition of 
the objects concerned must be provided in a form given beforehand which is 
understandable even to the computer. Assume that three admissible definition 
forms were to be given beforehand. 

1. The image may be labelled s, i.e., may have a name s, if it can be divided 
into two parts by a horizontal line so that the image in the upper part is 
labelled Su, and the image in the lower part is labelled Sct. 

2. The image may be labelled s if it can be divided into two parts by a vertical 
line so that the image in the left part is labelled s1 and the image in the 
right part is labelled Sr. 

3. The image may be labelled s if it has another label s'. 

The quoted form of definitions can be understood as metarules, i.e., the rules 
for formulating other rules serving for recognising whether the image has a 
certain label. At the same time, the metarules can be understood as rules for 
formulating other rules for the generation of images with given labels. 

The first metarule can be interpreted like this: To find whether the image 
may have a label s the image is to be divided by a horizontal line into two 
parts in all possible ways, and after each division a program is to be run which 
finds whether the upper part is labelled Su and the label of the lower part is Sct. 

When a positive answer occurs with at least one decomposition of the image 
then it is decided that the image presented is labelled s. 

The first metarule can be interpreted in another way, i.e., as a rule for gen
erating images labelled s. In order to make the drawing of an image labelled s 
possible, two images are to be drawn consisting of the same number of columns. 
The first of them can be any of the images labelled S 0 , and the second can be 
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any of the images labelled Sct. The images drawn are to be arranged to form 
one image so that the image labelled Su forms its upper part and the image la
belled Sct forms its lower part. The second and third metarules can be similarly 
interpreted. 

Let us show now how the class of the images with label SH can be defined 
using the quoted metarules. 

By means of the third and second metarules the following definition of the 
set of images labelled SH can be stated: The image may have a label SH if its 
label is SH1 or if it is composed of two parts divided by a vertical line, the left 
part being labelled SH1 and the right one WR (white rectangle, i.e., an image 
all pixels of which are white). The first part of the definition is represented by 
the left picture in Fig. 10.1 and the second part by the right picture in Fig. 10.1. 
If we deleted all useless words from the definition, and kept only what makes 
the definitions differ from each other then the definitions could be written in 
the following brief form: 

SH ::= SHll WR;} 

SH ::= SH1. 
(10.1) 

In this definition SH1 is the label of the image in which SH is closely adjacent 
to the right side of the rectangle (of the field of view) on which it is drawn. If 
the computer understood this situation, i.e., if it had a program for recognising 
white rectangles and letters SH closely adjacent to the right side of the field 
of view then the given definition would suffice for automatically creating a 
program which would recognise even the letters that are not adjacent to the 
right side of the field of view. If the computer does not have programs of this 
type then it asks additional questions as to what the SH1 and WR mean. A 
human answers and uses additional labels in his answer. The dialogue continues 
until the concept 'the image is labelled SH' is explained by means of concepts 
which the computer already knows. We will show one of the possible definitions 
of the concept 'the image is labelled SH' for the case in which the computer 
knows two concepts only which need not be defined. These are WP (white 
pixel) and BP (black pixel). We will need some auxiliary concepts too, namely 
WR (white rectangle), BR (black rectangle), U (a shape resembling letter U), 
I (a shape resembling letter I), L (a shape resembling letter L). The definition 
can be visualised by the corresponding figures. 

WR } SH9 ::: ~~~;} SH1 ::= SH2 ; 
(10.2) (10.4) 

SH1 ::= SH2. SH3 .. - WR. 

SH2 oo= SH9 ; } SH4 : := u I BR . (10.5) 

SH2 ::= WR I SH3. 
(10.3) 

I 
(10.7) U ::= Ll L; (10.6) L::= BR; I::= BR I WR. (10.8) 
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Figure 10.1 Generating letter SH according 
to rule (10.1), i.e., separating the image mar
gin at the right side of the letter. 

BR ::= BR I BR; 

BR 
BR ::= BR; 

BR ::= BP. 

(10.9) 

Figure 10.2 Illustration of the (10.2), i.e., 
separation of the image margin above the let
ter. 

WR ::= WR I WR; 

WR 
WR ::= WR; 

WR ::= WP. 

(10.10) 

The rules (10.1) through (10.10) form the definition of the concept 'the image 
is labelled SH', i.e., a definition of a set of images. The information obtained by 
the computer from the human during the imaginary dialogue can be arranged 
in a shape of a six-tuplet 

G = (X,K,ko,Pv,Ps,Pr) (10.11) 

which is an example of the two-dimensional context-free grammar. Later we 
will introduce it in a more precise form. In the six-tuplet X represents a 
terminal alphabet. In our interpretation it is a finite set of labels assumed to 
be understood by the computer without additional explanation. In the above 
example concerning the letter SH the terminal alphabet X consists of two 
terminal symbols, i.e., WP (white pixel) and BP (black pixel). 

The set K is called a non-terminal alphabet. This alphabet contains a finite 
number of labels. In our example these are BR, WR, I, L, U, SH4, SH3, 
SH2, SH1 and SH. One of the non-terminal names which is in the grammar 
G denoted as k0 is called an axiom. It is a concept for which the grammar G 
was actually created. In our example the axiom is the symbol SH. 

Three additional concepts of the grammar are three relations Ph, Pv, Pr. 
The first two relations are subsets of the triplets of non-terminal symbols, i.e., 
Ph C K x K x K, Pv C K x K x K. The relation Pr is a subset of the pairs 
Pr C K x (K U X). Indices h, v, r in the denotations Ph, Pv and Pr are the 
first letters of the words 'horizontal', 'vertical', and 'renaming'. The relations 
Ph, Pv and Pr determine the rules by which images are generated and which 
belong to the set generated by the grammar. In our case these are the rules 
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WR '---y---1 
SH3 

SH3 

Figure 10.3 Illustration of the rule (10.3), 
i.e., separation of the margin at the right side 
of the letter. 

WI 
Figure 10.5 Illustration of the rule (10.5), 
i.e., separation of the black rectangle (BR) 
at the right side. 

Figure 10.7 Illustration of the rule ( 10. 7), 
i.e., decomposition of the shape resembling 
letter L into two parts: the black rectangle 
at the bottom and a shape resembling letter 
I, where the black rectangle is at the left and 
the white rectangle is at the right. 

I BP 

• 
BRBR 

"---..r--' 
BR 

Figure 10.9 Illustration of the rule (10.9), 
i.e., the black rectangle can be created by 
concatenating of these black rectangles only. 

Figure 10.4 Illustration of the rule (10.4), 
i.e., separation of the margin below the let
ter. 

Figure 10.6 Illustration of the rule (10.6), 
i.e., decomposition of the remaining part of 
the letter into two shapes resembling letter L. 

ID 
y '-v-' 
BRWR 
"--,-' 

I 

Figure 10.8 Illustration of the rule (10.8), 
i.e., decomposition of the shape resembling 
letter I into a black rectangle and a white 
rectangle. 

WP 

D WR} D WR 
WR 

0 DD 
WR WR 

'-----v---' 
WR 

Figure 10.10 Illustration of the rule (10.10), 
i.e., the white rectangle can be composed of 
these white rectangles. 
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(a) (b) (a) (b) 

Figure 10.11 (a) An example of the image 
with a letter resembling SH which can be 
created by the introduced rules. (b) An ex
ample of the image not resembling SH which 
cannot be created by the introduced rules. 

Figure 10.12 (a) An example of the image 
with a letter not resembling SH which can be 
created by introduced rules. (b) An example 
of the letter resembling SH which cannot be 
created by introduced rules. 

(10.1) through (10.10), and thus they are the relations 

Ph= {(SH,SH1, WR), (SH2, WR,SH3), (SH4, U,BR), (U,L,L), 
(I, BR, WR), (BR, BR, BR), ( WR, WR, WR)} , 

Pv = {(SH1, WR,SH2), (SH3,SH4, WR), 
(L,I, WR), ( WR, WR, WR), ( WR, WR, WR)} , 

Pr = {(SH, SHJ), (SH1, SH2), (SH2, SH3), (SH3, SH4), 
(BR, BP), ( WR, WP)}. 

(10.12) 

By the relations (10.12), or equivalently by the rules (10.1) to (10.10), im
ages can be generated which resemble the letter SH, such as the letter in 
Fig. lO.ll(a). By applying this procedure other images which do not resemble 
the letter SH cannot be generated, see Fig. 10.11(b). However, one can make 
sure that by the quoted rules even images which are not the letters SH can 
be created, e.g., see Fig. 10.12(a). On the other hand, some images which, ex
cept for small deformations, correspond to nearly satisfactorily shaped letters 
SH, e.g., see Fig. 10.12(b), cannot be generated by the rules quoted. Thus the 
grammar G introduced defines the set of images which only remotely resembles 
the set of all images that could be understood as letters SH. The reason for 
quoting the example was not our intention to define a set of images for ac
tual application. We intended only to elucidate the main tool by which sets 
of images are syntactically defined. In the succeeding section we will present a 
formal definition of two-dimensional context-free grammars and languages. 

10.3 Two-dimensional context-free grammars and languages 
Let X be a finite terminal alphabet the elements of which are called terminal 
symbols. For every two positive integers m (the number of rows) and n (the 
number of columns) the notation T(m, n) introduces a rectangle in a two
dimensional integer grid, i.e., T(m, n) = {(i,j) II :::; i :::; m, 1 :::; j :::; n}. The 
image x is understood to be a pair of numbers m, n and a function of the 
form T(m,n)-+ X, i.e., x = (m,n,T(m,n)-+ X). The value (i.e., intensity, 
brightness) of the image in the point (i,j) E T(m, n) will be denoted x(i,j). 
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The set of all possible images will be denoted X* and each subset L C X* will 
be called the two-dimensional language in the alphabet X. 

We will introduce an operation of horizontal and vertical concatenation of 
images. Let x1 = (m,n1,T(m,nl) ~X) and x2 = (m,n2,T(m,n2) ~X) be 
two images which have the same number of rows m. The horizontal concatena
tion of the images x1 and x2 means the image x = (m, n1 +n2, T(m, n1 +n2) ~ 
X) which will be denoted x = x 1 I x2 and for which the following holds, 

.. {x1(i,j), if 1:Sj:Snl, 
x(z,J) = 

x2(i,j- nl), if n1 < j :S n1 +n2, 

i=1,2, ... ,m, 

i=1,2, ... ,m. 

Let x1 = (mt,n,T(m1,n) ~X) and x2 = (m2,n,T(m2,n) ~X) be two 
images with the same number of columns n. The vertical concatenation of the 
images x1 and X2 means the image x = (m1 + m2,n,T(m1 + m2,n) ~X), 
which will he denoted x = ~, and for which the following holds, 

( . ") {Xt(i,j), 
X Z J = 

' x2(i- m1,j), if m1 < i :S m1 + m2, 

if 1 :S i :S m1 , j=1,2, ... ,n, 

j = 1,2, ... ,n. 

Let us note that the concatenations introduced in this way are associative, but 
they are not commutative operations for the subsets of image pairs. 

Let K be a finite set of labels, i.e., a non-terminal alphabet, and Ph, Pv, Pr be 
threerelationsoftheformPh C KxKxK,Pv C KxKxK,Pr C Kx(KUX). 
These three relations determine IKI two-dimensional languages Lk, k E K, 
which are defined in the following recursive way. 

Definition 10.1 Two-dimensional languages. 

1. For the selected k E K the image x = (1, 1, T(1, 1) ~ X) belongs to the 
language Lk if {k,x(1,1)) E Pr. Explained descriptively, an elementary 
image consisting of one single pixel can be called k if a rule from the set Pr 
says that a symbol written in this pixel can be renamed to k. In addition to 
the simplest images of such a form even other images can be labelled k in 
agreement with additional metarules. 

2. For k E K the image x belongs to the language Lk if there exists a non
terminal symbol k' for which x E Lk' and (k, k') E Fr. 

3. For k E K the image x belongs to the language Lk if there exist images 
Xt {top), Xb {bottom) and symbols kt E K, kb E K, so that x = xtfxb, 
Xt ELk., Xb ELk"' and (k,kt,kb) E Pv are valid. 

4- Fork E K the image x belongs to the language Lk if there exist images Xi 
{left), Xr {right) and symbols ki E K, kr E K, so that x =Xi I Xr, Xi E Lk11 

Xr E Lk,, and (k, k~, kr) E Ph are valid. 

A 

The presented concepts defining the group of languages Lk, k E K, can be 
expressed in the form of a six-tuplet 

G = (X,K,ko,Ph,Pv,Pr) 
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which will be called the two-dimensional context-free grammar where: 

X -finite terminal alphabet, 

K -finite non-terminal alphabet, 

k0 - axiom as one of the non-terminal symbols, k0 E K, 

Ph c K x K x K - collection of rules for horizontal concatenation, 

Pv C K x K x K - collection of rules for vertical concatenation, 

Pr C K x (K U X) -collection of rules for renaming. 

The language Lk0 , in which ko is an axiom of the grammar G, will be called 
the language of the grammar G, and the denotation for it will be L(G). Images 
belonging to the language L( G) will be said to be admissible images in the 
grammar G. 

A grammar in which one of the sets Ph or Pv is empty is an ordinary, i.e., one
dimensional context-free grammar expressed in a canonical form according to 
N. Chomsky. The language of such a grammar contains 'images' which consist 
of a single column or a single row. Actually, they are no longer two-dimensional 
images, but sequences. It is generally known and can be easily demonstrated 
that every regular language can be defined by means of a context-free gram
mar. This means that the class of context-free languages contains all regular 
languages the properties of which were analysed in the two preceding lectures. 
In this lecture we will formulate pattern recognition tasks for context-free lan
guages resembling those we examined before for regular languages. First we will 
deal with the exact matching problem of an image with the two-dimensional 
context-free language. 

10.4 Exact matching problem. 
Generalised algorithm of Cocke-Younger-Kasami 

Let G = (X, K, k0 , P1, Pv, Pr) be a two-dimensional context-free grammar and 
x = (m, n, T(m, n) --? X) be an image. In the exact matching problem an 
algorithm is to be created which for each grammar G and each image x finds 
whether x E L( G) is valid. 

The algorithm which solves the exact matching problem is based on the 
following simple considerations. Let R( it, ib, Jl, Jr), 1 ~ it ~ ib ~ m, 1 ~ 
Jl ~ Jr ~ n, be a rectangle which is a subset in the rectangle T(m, n), i.e., 
R(it,ib,JhJr) = {(i,j) /it~ i ~ ib, Jl ~ j ~ Jr}· The set of all such rectangles 
will be denoted R. This set is partially ordered by the relation C. The set R 
can be, therefore, ordered into a one-dimensional sequence in such a way that 
if R' C R" and R' "I- R" then R' appears in the sequence of rectangles before 
R". 

Let x(R), R E R, be a contraction of the image x to the subset R. Let 
us denote f{it,ib, )l,Jr,k), k E K, the number which assumes value 1 if 
x(R(it, ib,JhJr)) E Lk. and assumes value 0 otherwise. The equality /(1, m, 
1, n, ko) = 1 is thus equivalent to the statement x E L(G). In the task being 
solved one single bit /(1, m, 1, n, ko) is to be computed. 
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Here and later on we will use the denotation Ph, Pv, Pr in two senses. Some
times these letters will be considered as before to denote relations, i.e., subsets 
Ph C K x K x K, Pv C K x K x K and Pr C K x (K U X). Other times 
the denotations will be understood as functions Ph: K x K x K --+ {0, 1}, 
Pv: K x ]( x K--+ {0, 1 }, Pr: K X (KUX) --+ {0, 1 }. The relations (k1, k2, k3) E 
Ph and Ph(k1,k2,k3) = 1, (k1,k2,k3) E Pv, Pv(k1,k2,k3) = 1, and others 
will be considered equivalent. With the newly introduced denotations we can 
write the following recursive relations for the values f(it,ib,ji,jr,k), 1:::; it:::; 
:::; ib :::; m, 1 :::; j1 :::; jr :::; n, k E K, 

jp-1 

[ V VV(i(it,ib,ji,j,kt)/\Ph(k,kt,kr)/\j(it,ib,j+1,jr,kr))] 
j=jj k1 kr 

v [i\/VV(J(it,i,jlJir,kd APv(k,k~,kb) A J(i+1,ib,jl,jr,kb))] 
i=it k, kb 

V [ V (!(it,ib,jlJir,k') 1\ Pr(k,k'))]. 
k'EKUX 

(10.13) 

The previous relation precisely expresses the assertions 1-4 from the earlier 
introduced Definition 10.1 which define images belonging to the language Lk. 
The last term (in square brackets) in the relation (10.13) corresponds to the first 
and second assertion of the definition. The second term corresponds to the third 
assertion, and the first term corresponds to the fourth assertion of the definition. 
The relation (10.13), and thus also the Definition 10.1 of the language Lko 
k E K, form a basis for the following algorithm recognising whether the image 
x = (m, n, T(m, n) --+X) belongs to the language L(G). 

Algorithm 10.1 Two-dimensional generalisation of the Cocke-Younger-Kasami 
algorithm 

1. For all pairs ( i, j), 1 :S i :S m, 1 :S j :S n, the values of the function f is initialised, 

f(i,i,j,j,x(i,j)) := 1. 

The other values off are filled with zeroes. 

2. All rectangles R E 1?, i.e., quadruplets (it, i2, j1, h) are examined in proper order 
in such a way that if R' C R" then R' is processed before processing R". This 
was mentioned already that such a one-dimensional ordering exists. The following 
three steps are performed for each rectangle (iJ,i2,jJ,j2) and each k E K. 

(a) The following condition is verified 

V V V (/(iJ, i2,j1,j, k1) 1\ h(k, k1, kr) 1\ J(il, i2,j + 1,h, kr)). 

(10.14) 
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If the condition is satisfied then /(ii, i2, ii, h, k) := 1 is substituted. 
(b) If the preceding condition (10.14) is not satisfied then the following condition 

is verified, 

(10.15) 
If the condition (10.15) is satisfied then /(iJ,i2,ji,h,k) := 1 is substituted. 

(c) For values of k for which /(i1,i2,i!,h,k) continues to be zero the following 
condition is verified 

V /(iJ,i2,i!,h,k) 1\ Pr(k,k'). (10.16) 
k'EK 

If the condition (10.16) is satisfied then /(ii, i2, j1, h, k) := 1 is substituted. 

3. The solution of the task is the bit /(1, m, 1, n, ko). 

The presented algorithm is a direct two-dimensional generalisation of the known 
Cocke-Younger-Kasami algorithm which decides whether the sequence of sym
bols from X belongs to the given context-free (one-dimensional) language. The 
original Cocke-Younger-Kasami algorithm is a special case of Algorithm 10.1 
when one of the two relations Ph, Pv is empty. 

Even when Algorithm 10.1 is the two-dimensional generalisation of the known 
Cocke-Younger-Kasami algorithm, it does not follow from it that the compu
tational complexity of recognising two-dimensional images is greater than that 
of one-dimensional sequences. 

The computational complexity of the calculation using the formula! (10.14), 
(10.15) and (10.16) depends on the size of the image and is O(m2n2 (m + n)). 
From this the known estimate of the complexity of the original one-dimensional 
alternative of the Cocke-Younger-Kasami algorithm follows. If the length of 
the analysed sequence is l then the computational complexity is O(l3 ). 

We have arrived at a rather surprising, but now quite understandable prop
erty that recognition of a (two-dimensional) image consisting of (m x n) pixels 
is realised order of magnitude faster than that of the (one-dimensional) se
quence containing the same number of mn symbols. The complexity of the 
two-dimensional case is O(m2n2(m + n)). However, the complexity in the 
one-dimensional case is 0 ( ( mn )3 ). The result can be explained so that in gen
eralising the concept of the context-free language to the two-dimensional case, 
other languages were added to the original class, but within the extended class 
the most difficult cases are still those which the class contained before its exten
sion. All pattern recognition tasks which had been added to the previous tasks 
appeared easier. It is quite an unexpected feature because one could suppose 
that the transition from recognising sequences to recognising two-dimensional 
structures might require calculations of markedly greater complexity. 

We can only admire the thoroughness and ingeniousness with which Nature 
or evolution (or something else) has discovered that for the transfer of a large 
amount of information an image is far more suitable than a one-dimensional 
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sequence of signals. Nature seems to have deliberately seen to it that the 
analysis of a vast amount of information may be at least a little facilitated by 
an appropriate choice of its structure. 

10.5 General structural construction 
We have dealt so far with two mechanisms for formulating a model of a recog
nised object. The former mechanism was based on the concept of a regular 
language including its various stochastic and fuzzy modifications. This mech
anism has been subject to our analysis in the two preceding lectures. In the 
subject matter exposed so far in this lecture we have outlined a more general 
mechanism based on the context-free language and its two-dimensional gener
alization. Now we are going to introduce the general construction including the 
two already explained mechanisms as special cases. 

This general approach will be called a structural construction. We have 
introduced it not only because of the possibility to briefly express the already 
explained subject matter but owing to other reasons. After we unify the two 
explained mechanisms into one consistent formal construction, we will see that 
within this frame even models of a recognised object can be formulated which 
cannot be expressed by means of regular or context-free languages. In this way 
holes and gaps which have been looming in the so far explained subject matter 
will be filled up. We will bring to your attention the most interesting points. 

1. Even if it is obvious that the class of context-free languages contains all 
regular languages, we can easily notice a great logical jump when passing 
from regular languages to context-free ones. It can be seen when we realise 
the fast and vehemently increasing complexity of recognising sentences in 
context-free languages compared with regular languages. Various tasks have 
been discussed for regular languages. Some of them seemed complicated 
at first glance, but we always finally managed to find a solution. The 
complexity of the solution depended linearly on the length of the analysed 
sequence. 
We have analysed only one single task for context-free languages so far which 
concerns exact match. The complexity itself for solving this simplest task 
is cubic with respect to the length of the sequence analysed. This is a sub
stantial jump in complexity. An assumption stealthily occurs to us about 
the existence of an interlinking class of languages that are more compli
cated than the regular ones, but not so complicated as are the context-free 
languages in their complete generality. 

2. Between the formalism of context-free languages, both one-dimensional and 
two-dimensional, and real pattern recognition tasks a gap starts to appear. 
It was quite evident in Section 10.2 in which we informally elucidated the 
fundamental concepts of context-free languages on the example of a Rus
sian letter SH. The only characteristic of the fragment of an image which 
determines its dependence on other parts of the image is the label of the 
particular fragment. This label must belong to a finite alphabet of labels 
(which must be a small one in practically applicable cases). With such weak 
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means it is rather difficult to state actual constraints with respect to admis
sible images of a certain class. It is hard to state, for example, that a letter 
can be only an image of a certain size, or an image with a certain ratio of 
dimensions pertaining to its fragments, and the like. Therefore an effort is 
justified to add additional means to context-free grammars by which pure 
geometrical relations and constrains could be expressed. 

3. We have been dealing only with the simplest task for context-free grammars, 
i.e., with an exact matching problem. It is natural to expect that even within 
the frame of context-free languages the best matching problem as well as 
its stochastic and fuzzy modifications should be formulated and analysed. 

Now we can start introducing a system of concepts which will be called a struc
tural construction. Formal definitions of fundamental concepts in the struc
tural construction will be interlaced with examples which will illustrate the 
introduced notions. The introduced concepts have their importance beyond 
the cases in which the formalised objects are images and sets of images. Never
theless, for these concepts we will use the terminology which have their origin 
in recognising images. 

10.5.1 Structural construction defining observed sets 
Let T be a set which will be called the observed field or field of observation (in 
the same sense as the viewing field of a photographic camera or a telescope). 
Let V be a finite alphabet of symbols. The elements of the set T will be called 
pixels and denoted by t. Let 2T be a set of all subsets of T, and T c 2T 
be a set of some subsets of T. The set T will be called a structure of the 
observed field and its elements will be called the fragments of the observed field, 
or simply fragments. This means if T' E T then T' C T, but not vice versa. 
The structure T does not contain all the subsets of the observed field. Later 
on we will deal only with such structures in which for each t E T the relation 
{ t} E T holds. Roughly speaking we will assume that each individual pixel 
forms one of the elements of the structure. 

The observation x, i.e., the image x will be said to be given in the field T if 
the fragment T0 E T and function v: To --+ V are defined. The observation is 
thus expressed as a pair of the form (To, v), To E T. 

Example 10.1 Finite sequence of letters. LetT be a set of positive integers 
and the structure T contain all intervals of the form { t I 1 ::; t ::; n}, n E T, 
and all sets of the form { t}, t E T. Let the set V consist of letters A, B, C. An 
observation is thus a sequence of finite length composed of letters A, B, C. • 

Example 10.2 Binary image. LetT be a set of pairs of positive integers, and 
the structure T contain sets of the form {(i,j) I m1 ::; i ::; m2, n1 ::; j ::; 
::; n2}, 1::; m1 ::; m2, 1::; n1 ::; n2. If V = {0, 1} then the observation can be 
considered as a binary image of size (m2 - m1 + 1) x (n2 - n1 + 1). • 

Example 10.3 Binary image varying in time from the instant tt to the 
instant t2. Let T be a set of triplets of positive integers and the structure T 
contain sets of the form {(i,j, t) I m1 ::; i::; m2, n1 ::; j ::; n2, t1 ::; t::; t2}, 
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1 :'S m1 :'S m2, 1 :'S n1 :'S n2, 1 :'S t1 :'S t2. At V = {0, 1} the observation can 
be considered as a time varying binary image which is observed in the interval 
from h to t2. A 

Example 10.4 Observed field with a more complicated structure. The ob
served field T can have a more complicated structure. It can be, for example, 
a set of vertices of an acyclic graph or that of a Cartesian product of such 
graphs. A 

Remark 10.1 The alphabet of symbols V corresponds to terminal and non
terminal alphabets in formal grammars. For our later purposes these two types 
of symbols need not be differentiated. A 

The set T x V will be called a set of structural elements and will be denoted S. 
Individual structural elements will generally be denoted by a lower-case letter 
s distinguished by indices. A structural element is a certain fragment from the 
structure T marked by a symbol from V. 
Example 10.5 Structural element. If a pixel is said to be black then it deter
mines the structural element. If a set of pixels is said to form an abscissa then 
it determines the structural element too. If a rectangle in the observed field set 
is said to contain an image representing the letter A then it is also referred to 
as a structural element. A 

A four additional important concepts are segmentation of a fragment, hierar
chical segmentation, map, and hierarchical map of the structural element. 

The segmentation of the fragment To E T is a subset R C T of fragments 
which contains the fragment T0 and some other fragments R \{To} which form 
the decomposition of the fragment T0 . In other words if To = U:1 Ti, Ti E T, 
and Tin Ti = 0 for any i > 0, j > 0, i f- j then R = {Ti I i = 0, 1, ... , m} is 
the segmentation of the fragment T0 . 

Any function m: R --7 V in which R is the segmentation of the fragment To 
defines the map of the structural element (T0 , m(T0 )). Each map is a subset of 
labelled fragments, i.e., a subset of structural elements. 

We will introduce two important particular cases of maps. The map defined 
on segmentation which consists of three fragments is called a rule. For this 
particular case the denotation 1r will be used and different sets of rules will be 
denoted by II with different indices and arguments. 

The other particular case of a map is the labelled image. The information 
contained in this map consists of the definition of the fragment T0 , label v 
which characterises the image as a whole, and an ensemble of labels which 
characterise individual pixels in the fragment T0 . Formally speaking, it is the 
segmentation R = {To} U ( UtETo { { t}}) of the fragment T0 to individual pixels 
and the function x: R --7 V. Thus, this pair is a map as well. The labelled 
image is also a subset of labelled fragments of a certain form, i.e., the set 
{(To, vo)} U { ( {t}, x(t)) It E To}. 

Hierarchical segmentation is defined in the following recursive way. 

1. The segmentation R which consists of three fragments is the hierarchical 
segmentation. 
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2. Let R be a hierarchical segmentation and T' E R be a fragment which does 
not contain any other fragment from R. Let T" E T and T"' E T be 
a decomposition of the fragment T'. In this case R U {T", T"'} is also a 
hierarchical segmentation. 

The hierarchical map is a hierarchical segmentation of R supplied by the func
tion R --+ V which assigns a label to every fragment of R. The hierarchical map 
will be denoted H and different sets of hierarchical maps will be denoted 1i with 
different arguments. Both the map and the hierarchical map are understood 
as a set of structural elements of a certain form. 

From the definition presented there immediately follows that a subset of 
rules II(H) corresponds to each hierarchical map H. Moreover, this set is the 
only possible set for every hierarchical map. 

For the labelled image m we will denote 1i ( m) the set of all hierarchical 
maps containing m. 

Let W be a commutative semi-ring where EB and ® denote addition and 
multiplication performed on that semi-ring. We will denote by QEll an element 
from W for which w EB QEll = w and w ® QEll = QEll holds for each w E W. We 
will denote by 1 ® an element from W for which w ® 1 ® = w holds at any 
arbitrary w E W. Let P be a function which for any rule 1l' defines the quantity 
P(7r) E W. 

Example 10.6 The function P is a tool by means of which the generation of 
images on the fragment T0 labelled v0 is controlled. The image is generated 
by means of ITol - 1 steps. The result of each i-th step is a segmentation of 
the fragment To to the i + 1 labelled fragments. In each step a fragment is 
selected from the already created map which consists of more than one pixel 
and does not contain any other fragment of the current map. The fragment 
selected is decomposed into two smaller fragments which are labelled. Thus the 
decomposition implements some rule and the function P controls this procedure 
in different ways presented in later examples. • 

For each hierarchical map H the quantity g(H) will be introduced, 

g(H) = (g} P(7r). (10.17) 

1rEll(H) 

For each labelled image m the quantity G(m) will be introdti<'<'d, 

G(m) = EB g(H) = EB ( Hl.18) 
HE'H.(m) HE'H.(m) rrEll(//) 

The basic problem of structural pattern recognition is to nmt.P a11 algorithm 
which will calculate the quantity G(m) for each lahd!P<l imap;P 111. 

Example 10.7 Let W = {0, 1} and let the opemtion tl) 7'(']11'(!8(!1/.t disjunction 
and ® represent conjunction. In this case the function P d(!fines a subset of 
rules which are admissible in that particular· task being solved. Starting from 
the fragment To labelled by the symbol v0 only some admissible images can be 
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generated not arbitrary ones. The quantity {10.18) states whether the particular 
image is admissible. A 

Example 10.8 Let W be a completely ordered set. Let EB mean max and 
0 mean min. In this case the function P defines an element from W for 
each rule 1r which indicates the degree of confidence in the rule. At the same 
time the degree of confidence in generating the image is assumed not to be 
less than () if the degree of confidence in each rule applied in generation is not 
less than () either. The expression ( 10.18) in this case determines the safest 
way of generating the particular image, i.e., roughly speaking finding the most 
convincing reason that the image presented is labelled vo. A 

Example 10.9 Let W be a set of nonnegative numbers. Let EB mean min and 
0 mean addition in the common sense. In this case the function P can be 
understood as stating a penalty for the application of the rule. The number 
{10.17) represents the total penalty for the actual procedure in generating the 
image and the number {10.18) means the least possible total penalty with which 
it is still possible to generate the image presented. A 

Example 10.10 Let W be a set of nonnegative numbers. Let the operations EB 
and 0 correspond to addition and multiplication in their common sense. If for 
an arbitrary s the function P satisfies the equality Ls1 ,s2 P( s1, s2 I s) = 1 then 
the function P can be understood as the determination of a random mechanism 
in generating the image. In this case the quantity {10.18) states the probability 
of occurrence of the presented image within a group of images defined on the 
given fragment To which can be assigned the label v0 . A 

10.5.2 Formulation of the basic problem in structural 
recognition of images 

Let the following be given: 

set T, 

set V, 

structure T C 2T, 

function P: (T x V) x (T x V) x (T x V)--+ W, 

operations EB : W x W --+ W and 0 : W x W --+ W, zero element QE!l E W and 
unit element 1° E W, 

fragment To E T, image x: To --+ lf and symbol Vo E V. 
Based on this input data the following quantity is to be calculated 

G(To, vo, x) = (10.19) 

In the preceding formula 1l(To, v0 , x) is a set of hierarchical maps which contain 
structural elements (To,vo) and ({t}, x(t)), t E To, whereas II(H) is a set of 
rules (s1,s2,s3) contained in the hierarchical map H. 
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10.5.3 Computational procedure for solving 
the basic problem 

For the given observation To and x: T0 --+ V we will take into consideration an 
ensemble of quantities 

c(r',v',x(T')) = E9 0 ?(81,82,83) (10.20) 
HE1-l(T' ,v' ,x(T')) (s1 ,s2,s3)EII(H) 

which are to be calculated for each structural element (T', v'), T' C To, T' E T, 
v' E V. In the formula (10.20) x(T') means contraction of the analysed image 
x to the fragment T'. 

If we compute all the quantities (10.20) then we will solve the task (10.19) 
as well, because the quantity (10.19) is one of the quantities given by (10.20). 

In each actual task, the image x: T0 --+ V, as well as its contraction to 
different fragments, is constant. Therefore to make later formul<E brief, we 
will neither refer to the denotation of the image x, nor to the denotation for its 
contraction x(T'). Recall the previously introduced denotations 8 for structural 
elements, i.e., pairs of the form (T',v'), T' C T 0 , T' E T, v' E V, and the 
denotation 1r for rules, i.e., triplets ( 8 1 , 8 2 , 8 3 ) of a certain form. In using these 
denotations the formula (10.20) will have a shorter form 

G(8) = E9 0 P(7r). (10.21) 
HE1-l(s) rrEII{H) 

In the preceding formula the quantity G(8), 8 = (T',v'), characterises a map 
which consists of the contraction of the presented image x: To --+ V to the 
fragment T' C T0 and the label v' of the fragment T'. The set 1l ( 8), 8 = (T', v'), 
is the set of all hierarchical maps which contain the structural element (T', v') 
and the contraction of the presented image x to the fragment T'. The set II(H) 
is the set of rules in the hierarchical map H. 

The quantities G(8), 8 = (t',v'), T' C T0 , T' E T, v' E V, cannot be arbi
trary. They satisfy certain relations which make their constructive calculation 
possible. Let us examine these relations. 

For each structural element 8 the set 1l(8) contains 8. For each pair 8 1 ,82 , 

which makes up a rule with the element 8, we will denote by 1l ( 8, 8 1 , 8 2 ) the 
subset of the set of hierarchical maps 1l(8) which contain elements 8 1 and 8 2 . 

The relation 1l(8) = U U 1l(8, 81, 82) is evident and thanks to this we can write 
SJ 82 

the quantity (10.21) in the form 

G(8) = E9 E9 0 P(7r). (10.22) 
s1 s2 HE1-l{s,s1 ,s2) rrEII{H) 

We will examine the sum 

0 P(7r) (10.23) 
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which will be denoted G(s, s1 , s2). The rules, s1, Sz is present in each hierarchi
cal map H from the set Ji(s,s1 ,s2), and thus the factor P(s,s1,s2) is present 
in each product ®rrEII(H) P(n). It can be factored out behind the addition 

G(s,s1 ,s2)=P(s,sl,sz)0( E9 @ P(n)). (10.24) 
HEH(s,st,s2) rrEI1(H)\{(s,st,s2)} 

For each hierarchical map H E 1i ( s, s 1 , s2) the set II (H)\ { ( s, s1, sz)} is decom
posed into two subsets. One is the hierarchical map H1 from the set Ji(sl), and 
the other is the hierarchical map H2 from the set Ji(s2). Therefore the product 
®rrEII(H)\{(s,s 1 , 82 )} P(n) means ( ®rrEII(Ht) P(n)) 0 ( ®rrEII(H2) P(n)), and 
addition along all the maps from the set Ji(s, s1 , s2) means addition along all 
the maps from the Cartesian product Ji(sl) x Ji(sz). Thus the formula (10.24) 
assumes the form 

G(s,s1,s2) (10.25) 

= P(s, s1 , sz) 0 ( E9 E9 ( @ P(n)) 0 ( @ P(n))) . 
HrEH(st) H2EH(s2) rrEII(Ht) rrEII(H2) 

On the basis of the evident equality EBiEJ EB jEJ (f3i 0 "fj) = ( EBiEI f3i) 0 
( EBjEJ "!j) we further have 

G(s, s1, s2) (10.26) 

=P(s,s1 ,s2)0 ( E9 @ P(n)) 0 ( E9 @ P(n)). 
HEH(sr) rrEII(H) HEH(s2) rrEII(H) 

This expression is a product of three terms. According to the definition (10.21) 
the second term is nothing else than G(si). The third term is G(s2 ). Thus the 
formula (10.26) assumes a brief form 

and it is the quantity (10.23). If we substitute it into (10.22) then we will 
obtain a recursive formula 

G(s) = E9 ( G(sl) 0 P(s, s1, s2) 0 G(s2)) (10.27) 
sr ,s2 

which is the tool for solving the basic problem. We are now going to demon
strate it. 

The quantity G ( s), as we defined it before and as can be seen from the 
formula (10.27), is relevant only for such structural elements s = (T',v') which 
are decomposed into other elements, i.e., when T' ~ 2. We will extend this 
definition even to the cases in which the structural element is an individually 
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labelled pixel. For the presented image x: T0 --+ V we define G ( s), s = ( { t}, v), 
t E T0 , v E V, in such a way that 

{ 
OE!l, if X ( t) ::j: V , 

G({t},v)= 1°,if x(t)=v. (10.28) 

We will order all the structural elements into a one-dimensional sequence (it 
does not depend on the dimensions of the observed field T which are by no 
means taken into consideration) so that the element s' = (T', v') precedes the 
element s11 = (T", v"), if T' ::J: T" and T' C T". If T' = T" then the elements 
are arranged in the sequence in an arbitrary order which will later be considered 
as fixed. For the given observation x: To--+ V the quantities G({t},v), t E T0 , 

v E V, will be defined in accordance with (10.28). Then we stepwise examine 
all the elements in the before settled order and for each of them, assume for the 
element s, we will calculate the value G(s) according to the formula (10.27). 
All the data is already at hand for the calculation because only the values of 
G(s') for those elements s' are needed which occurred in the ordered sequence 
of elements before. In this procedure the values G(s) as well as those of the 
fragment (To, v), v E V, are calculated. In this way it can be stated to what 
extent the assertion is valid that the presented image can be labelled v. The 
total number of operations in the calculation is proportional to the number of 
rules (s,s1,s2), s = (T',v'), s1 = (T{,vD, s2 = (T~,v~), T' C To, for which 
P(s,s1,s2) ::J: OEll. 

Example 10.11 Regular language and structural construction. In the case 
of regular languages and their stochastic and fuzzy generalisations, the set T 
is a set of positive integer numbers. The structure T contains fragments of 
the form {t I 1 :S t :S n}, n E T, and fragments of the form {t}, t E T. 
Let a sequence of the length n be given which is to be processed, i.e., let a set 
To = { 1, 2, ... , n} and the function x: T0 --+ V be given. For the set To only 
n - 1 triplets of fragments (T1, T2, T3), T; C To, i = 1, 2, 3, exist in which T2 
and T3 constitute the decomposition of the fragment T1. The reason is that the 
triplet (T1,T2,T3) can have only the form (T1,T1\{t}, {t}) in which tis the 
last pixel in the fragment T1 . Because the structural element s3 can only have 
the form (x(t), {t}) {where x(t) is the t-th symbol in the presented sequence), 
to each triplet of fragments at most IVI2 rules 1r = (s1,s2,s3) correspond for 
which P(1r) ::J: 0. Thus the complexity of the analysis of a sequence with the 
created construction is O(IFI2(n- 1)) which is of the same order as that for 
algorithms analysing sequences which refer solely to regular languages. • 

Example 10.12 Context-free language and structural construction. In defin
ing a context-free language by means of the created structural construction, the 
set T is a set of integer numbers as it was in the preceding example. The struc
ture T contains all intervals of the form {t I i ~ t ~ j}, i E T, j E T, i ~ j. 
If the recognised sequence To = {1, 2, ... , n} is of the length n then the number 
of segmentations of the form {Tr, T2, T3}, T; C To, is of the order n 3 which is 
just the complexity of sequence recognition by means of the known algorithms 
which have been created solely for the case of context-free languages. • 
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Now we can more clearly understand what causes such a steep increase in the 
complexity of the pattern recognition task in passing from regular to context
free languages if intermediate levels were not considered. It is owed to the 
difference between the used structures which in the theory of formal grammars 
are not quoted under one separate notion at all. Nevertheless, the definition of 
a class of languages is based on the application of a certain structure, even if it 
is not explicitly described. A structure of regular languages contains only such 
fragments which can be decomposed into other fragments in a single way. The 
result is that one single hierarchical segmentation corresponds to each sequence 
presented for recognition which is easy to find. It is natural that the complexity 
of the syntactic analysis falls rapidly in this case. 

The situation is different in the case of context-free languages. Here each 
fragment of the length n can be decomposed in all the (n- 1) ways into other 
two fragments. Thanks to the greater freedom in decomposition of the fragment 
into two parts, the greater amount of hierarchical segmentations corresponds 
to the sequence. 

Now when the fundamental factor that determines the complexity of syn
tactic analysis of the sentence has been revealed, languages can be constructed 
which, strictly speaking, are not regular but for which the complexity of the 
pattern recognition task is not greater than that for regular languages. 

Example 10.13 A language between the regular and the context-free lan
guage. Let the structure T be defined in the same way as it was in Exam
ple 10.12 for context-free grammars. The function P, however, has been chosen 
so that for each fragment T1 the quantity P ( (T1, v1), (T2, v2), (T3, v3)) is non
zero only in the case of one single decomposition of fragment T1 into fragments 
T2 and T3. For example, it can be done in such a way that only those pairs of 
fragments are to be taken into consideration the lengths of which do not differ 
from each other by more than 1. The language defined by such a structure and 
by the function P will be no longer a regular one. Nevertheless, the complex
ity of recognising sequence in this language remains linearly dependent on the 
sentence length as was the case in regular languages. 

Thus the class of languages can be constructed which ranks in a sense between 
regular and context-free languages. Eventually languages can be constructed 
which, strictly speaking, do not belong to the class of context-free languages, 
and at the same time the complexity of sequence analysis with these languages 
rises slower than the third degree polynomial (cubic) of the sentence length. 
Examples of such languages were given at the beginning of the lecture where 
they were called two-dimensional context-free languages. & 

The presented structural construction for observed sets is, therefore, a gener
alisation of the known formalisms, such as the formal regular or context-free 
grammars including their stochastic and fuzzy modifications. The generalisa
tion consists in that no 'one-dimensional' property of observed data is assumed. 
The construction is based on other, more general means, with the aid of which 
sets of other forms than those of sequences are defined. 
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10.6 Discussion 
In the lecture you introduced a structural construction the particular cases of 
which are regular and context-free grammars. Compared with the grammars, 
the construction has additional tools at hand, by which not only regular and 
context-free languages, but also other sets of various forms can be defined. In 
the first place I would like to ask you what tools have made such generalisation 
possible. Then I will ask other questions. 

The first step to generalisation is that the function P: K x K x K -+ {0, 1} 
expressing rules in common grammars is replaced by a function of a more 
general form P: K x K x K-+ W for an appropriate semi-ring W. The result 
is that not only languages can be defined, but even functions which are defined 
on a set of sequences. 

You have already presented this generalisation and used it in previous lectures. 
I am interested in further steps in generalisation which appeared in this lecture. 

It is important that we have created the construction without applying the 
concept of a sequence. In this way we have achieved that the sets of more 
diverse mathematical objects can be defined. These objects are not obligatory 
sequences, but they can be sequences too. Together with the generalisation, 
which was our first step, we obtained a construction not only for the definition 
of admissible observed sets, but also for the definition of certain functions on 
observed sets. Thus the construction has assumed a quite strong and general 
power. 

I would like to be more at home with the problem. I do not understand properly 
why it is necessary to formalise observation in any other way than as a sequence. 
Of course, I understand that an image is something different than a sentence. 
However, I do not know why one should formalise these two representations 
of information in different manner. Well, even when in terms of the general 
structural construction I say that an observation is an ensemble of structural 
elements 8 1, 82, ... , 8n, I still write it down as a sequence. Why could not the 
expression I have just written be called a sequence? 

You have come across the same difficulties that pattern recognition encoun
tered in the 1960s, when formalisation of an observation by a point in a multi
dimensional space seemed to be universally applicable. It was found even at 
that time that it was necessary to make a break with that charming idea. 
Actually, it is not important how the observation 8 1 , 82, ... , 8n is called. An 
observation can be called a vector, a sequence, a set, etc .. It is essential what 
operations on this object are considered understandable in a particular applica
tion. If years ago it was found that the formalisation of observation by means of 
the multi-dimensional vector is not convenient for the purpose then it resulted 
in something more serious than in replacing the word vector by another word. 
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It meant that operations and concepts resulting from formalisation by means of 
vectors (such as vector addition, vector scalar product, hyperplane, convex sub
set, etc.) did not correspond to some applied problems. In some applications 
nothing understandable corresponds to concepts related to vectors. Therefore 
in the formulation of such tasks and their solutions vectors should not be used. 
Finally, when nothing but the word vector itself remained from vector formu
lation then it was evident that another formalisation of observation should be 
introduced as well. 

The case with sequences is similar. The question is not whether the ob
servation s1, s2, . . . . .. , Sn is called a sequence. It is of importance if the 
operations on sequences (such as concatenation, iteration, deleting a connected 
subsequence, etc.) state something that is understandable even in the concepts 
of the applied problem you are to master. And vice versa, if all properties of 
observation in your application can be easily expressed by means of operations 
that are natural for sequences. From the point of view of structural construe~ 
tion, a sequence is nothing else but an auxiliary concept representing structures 
in an illustrative way in that precise meaning in which structures were used at 
the lecture. For some structures the concept of sequence is beneficial, for others 
it is not. When saying that the observation in a particular application is not 
a sequence then we mean that the structure of the observation is expressed 
clumsily, not illustratively, through operations pertaining for sequences. You 
yourself can admit that some sets T and some structures T lose their entire 
illustrative character when they are represented as a set of integers. 

Everything depends on representation, i.e., how the elements of a set T are 
numbered. 

Not everything. There are sets T having a completely clear structure T, which 
loses its lucidity with any mapping of the set T to a set of integers. 

For example? 

An example is a two-dimensional integer-number lattice, i.e., a structure which 
is defined as a set of rectangles of finite dimensions. 

I understand that the correct definition of the set T and its corresponding 
structure T is the most important step in representing an applied problem by 
means of a structural construction. 

We would still add to it the selection of an alphabet V for the labelling of 
structural elements. 

Let me put the alphabet aside, for a while. Let me even put aside the structure 
T, because I agree with you that the words by which I will determine what set 
T is referred to will immediately delimit the structure T natural for a set. 

Now I am coming to the main question. The entire structural construction 
is a tool for defining some sets. But at least one element in the construction is 
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again a set. It is the set T, with respect to it nothing at all is stated, neither 
how it should be defined nor what its form could be. Briefly speaking, nothing 
is said about it and therefore I can consider is as an arbitrary set. Thus, the 
entire structural construction stops being constructive. To define a set (here a 
set of admissible observations) I must have defined another set. And this set is 
just the set T. 

Indeed, you have revealed the weakest point in the proposed structural con
struction. The definition of a set of admissible observations cannot start with 
the words 'let T be a set' because it is a too general sentence. At least, we 
should say 'let T be a finite set' or otherwise strongly limit the set T, so that 
further doing with respect to construction might become correct. We did not 
do it for different reasons, and so understand the sentence in the following in
formal sense 'let T be a set which is easy to define and quite obviously results 
from the applied problem being solved'. 

But still I do not understand why the form of the set T could not be reasonably 
limited for the whole construction to become correct and in spite of it to contain 
all possible sets that can practically occur. Well, the variety of the sets T which 
are of practical interest is not very large. It can be a completely ordered set, 
e.g., a set of integers, or it can be a Cartesian product of a finite number of 
such sets. What else do I dare to ask? 

And situations should be added in which the observation is a function defined 
on the vertices of an acyclic graph and also on the Cartesian product of a finite 
number of such graphs. 

And would that really be all for the present? 

Hardly all. Objects in images are commonly represented by contours. It is 
a function the domain of definition of which is a closed curve (a cycle), i.e., 
something which is not covered by the two previous cases. We do not intend 
to exclude beforehand the analysis of such objects. 

Let us sum up what has been discussed by admitting that something is still 
missing in the proposed structural construction to make it constructive. But in 
actual application, the construction can be made precise to such an extent to 
become constructive. It is possible with the sets T at least which have been just 
mentioned. We do not intend just now to deal with describing the form of all 
observed fields which can occur in practice. The first reason is that we simply do 
not know the form. Every time we tried to limit the form of sets T, after some 
time we encountered a new practical problem in which the limitation had not 
been satisfied. But the main idea remained valid in the proposed construction. 
Secondly (and this is essential), in a general view of the task, not confused by 
useless details, the real simplicity of fundamental concepts of structural pattern 
recognition is being revealed. 
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These are really simple. Further procedure in structural construction seems to 
me so unsophisticated that I have been in fear so far that I might again not 
understand something important. I would like to make sure that I understand 
the simplicity in a correct way. I will quote one of the possible implementations 
of the computational procedure for solving the basic problem. 

Do it, but only after a while. We have not answered your first question yet. You 
asked us by means of what additional tools it was possible to use the extended 
potentiality of structural construction when compared with formal grammars. 

You have certainly noticed that rules in the structural construction have 
another form than those in formal grammars. In the structural construction 
the rule is a triplet of structural elements ( 8 1 , 8 2 , 83), where each element is 
a labelled fragment, i.e., a pair of the form (T, v), T' E T, v' E V. Thus a 
rule is the six-tuplet (T1,v1, T2,v2, T3,v3). A rule in formal grammars has a 
simpler form. It is a triplet of labels and each grammar is characterised by 
a subset of triplets that is determined by the function V x V x V --+ {0, 1} 
which will be denoted PV. If the language of a classical formal grammar 
is expressed by means of a general structural construction then the function 
P: T x V x T x V x T x V--+ {0, 1} will have the form 

(10.29) 

Formal grammars are, therefore, a particular case of the structural construction 
in which the function P has the form of (10.29). Moreover, one single function 
PT: T x T x T--+ {0, 1} must be used for any regular grammars and another 
single function for any context-free grammar. 

With grammars the applicability of a rule does not depend on fragments, 
whereas with the structural construction it does. The triplet of labels v1, v2, V3 

can be admissible for one selected triplet of fragments T1 , T2 , T3 and can be 
inadmissible for some other triple. Do I understand it correctly? 

Yes, you do! 

I will show how I understand the computational procedure solving the basic 
problem. I will present it for the case in which the function P assumes only 
two values, 0 and 1, and these values can be subject to logical addition and 
multiplication. During your lectures I got used to all other cases, seemingly 
more complicated, being in fact exactly as simple as this lucid one. 

The structural recognition task is understood by me in such a way that a 
set of objects 8 1 , 8 2 , ... , 8n (I have nearly said a sequence!) is given. It is to be 
found whether this set is admissible. In other words, it is to be checked whether 
the objects presented can be understood as parts of a composed object. I imag
ine the following procedure for solving the task. The set Si, i = 0, 1, 2, ... of 
objects is being created step by step which are regarded as examined. At the 
beginning the set S 0 is represented by the set { 8 1 , 8 2 , ... , 8n} which was pre
sented for analysis. Let a set si-l be created after the step (i- 1). Then a 
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triplet of objects (s', s", s111 ) is sought for which P(s', s", s111 ) = 1, s' fl. si- 1 , 

s" E Si-I, s"' E Si-1 , holds, and the set Si = Si-1 U {s'} is being created. 
Simply speaking, in each step the set of already found partial objects is in
creased by one more object the existence of which was proved in that step. 
This procedure of creating the set S continues until it is possible with respect 
to the function P. 

I regard the gradual growing of the set presented as the most essential part 
of structural recognition. I would even say that it is its property. After the 
set S is created in the manner described some details are to be completed for 
its interpretation which I do not consider important. If I did not make any 
mistake somewhere then the simplicity is all too much remarkable. Moreover, 
I would say that all pattern recognition algorithms which we have discussed so 
far since Lecture 8 on Markovian sequences have been successfully packed into 
a simple procedure. 

Do not wonder at it. A general view of the class of tasks (if possible at all) 
allows to see the properties of the tasks which are difficult to observe when 
the tasks are analysed apart. Well, usually if you intend to know, e.g., a large 
building, you had better move away from it a little than come nearer to it. It is 
similar to the situation we have already spoken about. As long as people have 
counted one type of objects by pairs, another by dozens, the third by tens, and 
the fourth by three scores, the manipulation with quantities seemed to be very 
complicated. Only since the time when unified representation of quantities was 
proposed, counting has been accessible to every child. 

You have grasped well that part in structural recognition which does not 
change in nearly every application. You have used correct expressions, except 
for using the concept of object instead of the concept of structural element. 

It seems to me that in this way the main idea was pointed out more illustra
tively. 

It may be so, but not to get confused let us go back to the terminology intro
duced in the lecture. 

The procedure you presented can be formulated more concretely to add to 
the subject matter already grasped an elucidation concerning the computa
tional complexity of the algorithm, and to take into consideration factors that 
influence the complexity. Moreover, we will more precisely state which part of 
the algorithm is changed when one goes on from one application to the another. 

We will create the universal algorithm. This means that its input are obser
vations { s1, s2, . .. , sn} and the function P determining which structural anal
ysis is to be performed on the particular observation. The function takes its 
values from the set W. Two operations EB and ® of the form W x W -+ W are 
given which form a semi-ring on the set W. These operations are also defined 
in input data. 

We will order structural elements in such a way that the structural element 
s' = (T', v') precedes the structural element s" = (T", v") if T' C T" and 
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T' f:. T". The ordering will be denoted 8 1 -< 8 11 • If T' = T" then the elements 
8 1 and 8 11 will be arbitrarily ordered, either as 81 -< 8 11 or 8 11 -< s'. The order 
defined will be regarded as fixed. We will order the rules 1r, i.e., triplets of 
structural elements (8 1 ,s2 ,s3 ) so that the rule 7T1 = (8~,8~,8~) precedes the 
rule 1r11 = ( 8~, 8~, 8~), 1r1 -< 1r 11 , if 8~ -< 8~. The algorithm consists of the 
following operations. 

Algorithm 10.2 Structural construction. 
1. For each elements, the G(s) = oEil is defined, where the quantity DEll is taken from 

the input data. 

2. For each element Si from the input data { s 1, s2, ... , Sm} the G ( Si) = 1° is defined, 
where the quantity 1° is also taken from the input data. 

3. The rules 1!' are examined in a beforehand given order, and for each 1l' = (st, s2, s3) 
the quantity G(s1) is modified by the operator 

where the operations EB and @ are determined from the input data. 

From the expression for the algorithm there immediately follows that its com
putational time linearly depends on the number of the rules 1r for which P( 1r) f:. 
Qffi, since each such rule is applied only once. 

I can now see from the description that in every actual application of the 
structural construction I have to do a lot of work. Its result can be considered as 
a program which creates a sequence of triplets of structural elements ( 8 1 , s2 , 83). 

These triplets together with the quantities P( 8 1 , 8 2 , 8 3 ) are then provided to 
the program which already is an invariant, i.e., it does not depend on the 
selected application. It is painful and often annoying work. It seems to me that 
structural analysis of data is simple only under the condition that somebody 
has already done all the unpleasant work beforehand. And this 'somebody' 
may be I, myself! 

This is usual in applied informatics. We will remind you once more that no for
malisation, including formal methods of pattern recognition, is a magical means 
for lazybones like The Magic Table fairy tales. No matter how well elaborated 
and lucid the formalism may be, it does not relieve the researcher of the pains 
of representing an informally conceived task in the particular formalism. 

I seem to be closer to the lazybones dreaming of that magic means. Is it 
not possible to formalise this painful work in a narrower domain at least, for 
example, for one-dimensional context-free grammars? I am speaking about 
a system such that for the given set of sequences would be either capable of 
creating a context-free grammar for generating that set of sequences, or would 
assert with certainty that such a grammar does not exist. I have noticed several 
articles that aim at solving tasks of such a form. 
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Yes, of course. But realise please that we all (by which not only the three of 
us but the whole pattern recognition community are meant) are only at the 
beginning of a long path. 

And what might the first steps along this path be like? 

Keeping in line with our course, it is quite natural that first of all the learning 
task should be formulated correctly. This means that in formulating the task 
the insolvability of one task and the uselessness of others should be taken into 
account. The analysis of the learning task for regular languages we were dealing 
with in Lecture 8 can be regarded as the zero step in the due direction. 

And now, have another considered look at the structural construction which 
we have proposed in this lecture. Different generalisations of regular and 
context-free languages which can be defined by means of construction also con
tain a stochastic generalisation of context-free languages. This means that by 
means of structural construction not only a certain context-free language can 
be defined but also the corresponding probability distribution on such a lan
guage. Spare some good thought for this as it is by no means trivial. Stochastic 
modification of context-free languages is not as simple as that in the case of 
regular languages. The probability distribution on a set of rules applied in 
grammars hardly ever determines the probability distribution on a set of se
quences. It is a known problem, which within structural construction can be 
overcome thanks to the rule not being considered as a triplet of labels, as it is in 
grammars, but as a triplet of labelled fragments. Think it out yourself because 
it is worth considering. Now, however, it is essential that by means of struc
tural construction varied probability distributions on a set of observations can 
be defined. A particular case is the probability distribution of a certain form 
on the context-free language. We regard it as a basis when formulating a task 
of a statistical estimation of a stochastic context-free grammar with respect to 
the observation of a finite set of random sequences. The first step in solving 
a learning task for structural recognition could be that for context-free gram
mars all the results should be repeated which were demonstrated for regular 
grammars in Lecture 8. 

I am nearly sure that I have understood you in the right way, but still I would 
like to be certain about it. Structural construction is based on one type of 
concept and the formulation of statistical learning tasks is based on other con
cepts. In my opinion their mutual correspondence is as follows. The observed 
parameter of an object is an image, and the hidden parameter is a hierarchical 
map. An unknown parameter that determines the joint probability of the im
age and the hierarchical map is the probability distribution on a set of rules, 
where each rule is understood as a triplet of labelled structural elements and 
not as a triplet of labels. 

You have understood it in the correct way. 
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It seems to me that now I could be able to create an understandable formulation 
of a learning task in structural pattern recognition and to find a practically 
applicable algorithm for its solution. 

We have had no doubts about it, but in spite of that we are glad to hear it 
from you. We would like to thank you for your patience and the ideas you have 
contributed. 

January 12, 1999. 

10.7 Bibliographical notes 
The subject matter explained in this lecture on context-free grammars is to 
a great extent original. The Cocke-Younger-Kasami algorithm is described 
in [Aho and Ullman, 1971] as well as in the original publications [Kasami, 
1965; Younger, 1967]. 

The design of two-dimensional context-free grammars is owed to Schlesinger 
[Schlesinger, 1989]. 
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Algorithm 
- c:-optimal separation of finite 

point sets, 167 
- c:-solution, generalised 

Anderson task, 181 
- Baum-Welsh, 395 
- constructive calculation of 

Levenstein dissimilarity, 
438 

-EM, 274 
- ISODATA, 234 
- Kozinec, 163 
- learning, 225 
- max. likelihood estimate for 

Markovian object, 352 
- minimax estimate for 

Markovian object, 354 
- perceptron, 165 
- recogniton, of stochastic 

automaton, 313 
-Rosenblatt, 224 
- shortest path, 324 
-unsupervised learning, 238 
- varying classification, 225 
- Viterbi, 395 
alphabet, 398 
-non-terminal, 400 
- of automaton states, 398 
-terminal, 400 
Anderson, 139 
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arrow, 414 
-long, 416 
-short, 416 
automaton 
-alphabet of input symbols, 311 
-alphabet of output symbols, 311 
-autonomous, nondeterministic, 

400 
- deterministic, 400 
- finite, 311 
- finite state, 399 
-fuzzy, 405 
- goal states, 311 
- initial state, 311 
- penalised, 406 
- set of states, 311 
- stochastic, autonomous, 312 
- stochastic, finite, 311 
- transfer function, 311 
axiom, 400 

Bahadur, 139 
Bayes, 2 
Bayesian task, 2 
bilinear function, 35 
bisection, 186 
Boruvka, 385 

Capacity, set of strategies, 117 
Cartesian hull, 87 
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Cayley, 385 
central issue of learning, 114 
chain 
-graph, 338 
- Markovian, 309 
change, 411 
Chebyshev, 206 
Chervonenkis, 113 
Chow, 384 
classifier 
- d-nearest neighbours, 453 
- by integral of probability, 93 
-Fisher, 169, 170 
- learning, 225 
- linear, 137 
-minimal distance, 202 
-nearest neighbour, 23, 93, 444 
- perceptron, 220 
- taught in, 124, 126 
- varying, 225 
cluster analysis, 232 
clustering, 237 
complete description, object, 285 
concatenation of languages, 401 
conditional independence of 

features, 73 
cone, convex, 5, 450 
contact point, 146 
contraction of the image, 486 
convex optimisation, 355 
convex combination, 197 
convex cone, 5, 450 
convexity, 355 
convolution, 420 
convolution generalised, 420 
criterion 
- learning, most natural, 104 
- learning, substitute, 104 

Decision, 2, 235 
decision function, 2 
decorrelation of features, 262 
delete, 411 
deterministic learning, 122 
deterministic strategy, 40 
dissimilarity 

- between a sentence and a 
language, 410 

- between sentences, 410 
distance 
- between sentences, 404 
-edit, 411 
-from the exemplar, 202 
- Hamming, 407 
distribution, Gaussian, 227 
dynamic programming, 327 

Edit distance, 411 
ellipse, 143, 145 
-size, 143 
ellipsoid, see ellipse 
EM algorithm, 27 4 
entropy 
- of a set of strategies, 116 
- relative, 116 
equivalent strategies, 115 
exemplar, 202 
Expectation and Maximization, 

274 

False alarm, 29 
false negative, 29 
false positive, 29 
feature 
- conditional independence, 73 
- decorrelation, 262 
- of the object, 1 
feature space, 131 
Fibonacci, 188 
field 
- hidden, 285 
- object, 284 
- observable, 285 
- observed, 490 
- of observation, 490 
- structure, 286 
finite automaton, 311 
Fisher, 169 
fixed point, 249 
Floyd, 472 
fragment of the field, 286, 490 
frequency 
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- of errors, 111 
- of wrong decisions, 113 
- relative of errors, 111 
function 
- approximation, Markovian, 352 
- bilinear, 35 
- decision, 2 
-discriminant linear, 137 
- generalised gradient, 355 
- growth, 117 
- Kronecker, 422 
-Levenstein, 411 
-- linear discriminant, 137 
- non-differentiable, 194 
- nonlinear discriminant, 137 
-penalty, 2 
- penalty, quadratic, 17 
- quadratic discriminant, 75, 133 
- restriction, 284 
- state transition, 398 
fuzzyfication, 406 

Gaussian distribution, 227 
generalised 
- convolution, 420 
- gradient, 195 
- portraits, 214 
genotype, 219 
golden cut, 190 
gradient 
- generalised, 195 
- optimisation, 195 
grammar 
- assignment, 400 
-context-free, 479 
- regular, 400 
-rule, 400 
- substitution, 400 
graph 
-acyclic, 338 
-chain, 338 
- Hamiltonian, 383 
- oriented, 322 
-tree, 338 
- vertex, 322 

Halving interval, 186 
Hamming distance, 407 
hull Cartesian, 87 

Idempotent, 423 
image, 278 
- labelled, 491 
- non-segmented, 4 73 
- segmentation, 4 7 4 
inhibition, 220 
initial state, 398 
insert, 411 
interval, 376 
ISODATA, 234 
iteration of the language, 401 

Karhunen, 262 
Karhunen-Loeve expansion, 262 
Kozinec, 163 
Kuhn, 36 

Labelled image, 491 
language, 398 
- concatenation, 401 
- context-free, 479 
-fuzzy, 405 
- iteration, 401 
- membership, 398 
- of the automaton, 398 
- regular, 397 
-union, 401 
law of large numbers, 109 
learning, 225 
- deterministic, 122 
- empirical Bayesian, 226 
- Markovian sequence, 345 
- unsupervised, 217, 225 
-unsupervised for Markovian 

sequences, 370 
learning classifier, 225 
length 
- of experiment, 111 
- training multi-set, 115 
Levenstein 
- deviation, 411 
-dissimilarity, 411, 414 
- function, 411 
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likelihood, 4 
likelihood ratio, 4 
linear discriminant function, 137 
linear separability, 7 
Linnik, 33, 81 
Loeve, 262 

Map 
- hierarchical, 492 
-of the structural element, 491 
Markovian 
- approximation, 352 
-chain, 309 
- sequence, 309 
-statistical model, 309 
matrix 
-multiplication, 314 
- multiplication, generalised, 327 
membership, 398 
memory, 284 
memory cell, 284 
method 
- d-nearest neighbours, 453 
-dual, 192 
model, 239 
-Markovian, 310 
- mechanical, of Markovian 

sequence, 310 
-of an object statistical, 239 
- statistical, 217, 239, 309 
model of research 
- genotype, 219 
- monotype, 219 
monotype, 219 
multi-set, training, 102 
multiplication 
- matrix, 314 
- matrix, generalised, 327 

Nearest neighbour classifier 23 
' ' 93, 444 

neuron, 220 
- inhibition, 220 
-reinforcement, 220 
Neyman, 28 
non-Bayesian task, 25 

non-terminal alphabet, 400 
Novikoff, 165 

Object 
- complete description, 285 
- completely described, 284 
-description, 284 
- statistical model, 73, 103, 308 
object field, 284 
observation, 1 
observed field, 490 
optimisation 
- convex, 355 
- gradient, 195 
- non-differentiable, 194 
-task, 31 
order of the structure, 286 
ordering, 382 
overlooked danger, 29 

Parameter, 1 
-hidden, 1, 308 
-observable, 1, 308 
partial risk, 9 
Pearson, 28 
penalty function, 2 
perceptron, 165, 220 
perceptron classification, 220 
pixel, 490 
point of contact, 146 
precision of a strategy, 111 
problem 
-best match, simple, 407 
- best matching, 405 
- exact matching, 405 
- structural recognition of 

images, 493 
product 
-matrix, 314 
- matrix, generalised, 327 

Quadratic discriminant function 
75, 133 

quality of the strategy, 34 

Randomisation, 4 
ratio, likelihood, 4 

, 
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recognition 
-from incomplete data, 318 
- learning, 218 
- non-Bayesian, 218 
- of Markovian model, 318 
- of the stochastic automaton, 

312 
-taught in, 123 
rectangle, 87 
regular language, 397 
reinforcement, 220 
relative frequency of errors, 111 
reliability, 111 
replace, 411 
risk, 2 
- Bayesian, 2 
-partial, 9 
Robbins, 226 
Rosenblatt's premise, 221 
rule of a grammar, 400, 491 

Segmentation, 375 
- hierarchical, 491 
-of the fragment, 491 
- time interval, 376 
semi-ring, 328, 405 
separability 
-linear, 7 
~. nonlinear, 76 
separation 
- finite point sets, simple, 140 
- of finite points, optimal, 140 
sequence, 307 
- Markovian, 309 
-- random, 309 
-- recognition, 308 
set 
-- fuzzy, 405 
· - of axioms, 400 
·- training, 104-106, 218 
siw of the ellipse, 143 
state, 1 
~ automaton, initial, 398 
- of the object, 1 
-- target, 398 
state transition function, 398 

statistical model, 217, 309 
statistical theory of learning, 113 
stochastic automaton 
-autonomous, 312 
- recognition, 312 
straightening, feature space, 76, 

131, 137, 203 
strategy, 2 
- deterministic, 40 
- equivalent, 115 
- precision, 111 
- quality, 34 
- randomised, 41 
structural analysis, 283 
structural construction, 489 
structural element, 491 
structure, 275 
- element, 491 
-field, 286 
- of observed field, 490 
-order, 286 
subinterval, 376 
substitution, 400 
supervisor, 240 
Support Vector Machine, 214 
symbol, 398 

Target state, 398 
task 
-- Anderson, 141 
- Anderson, c-optimal solution, 

167 
- Anderson, generalised, 141 
- Bayesian, 2 
- clustering, 232 
-Fisher, 169 
- generalised Anderson, 139 
- generalised Neyman, 31 
-generalized Neyman-Pearson, 

44 
- learning, 238 
-linear programming, dual, 36 
- linear programming, primal, 36 
- Linnik, 33 
-minimax, 31, 46, 345 
~ Neyman-Pearson, 28, 41 
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-non-Bayesian, 25, 218 
- recognition, 238, 284 
- Wald, 48 
taught in classifier, 124 
taught in recognition, 123 
teacher, 124, 218 
- fully informed, 240 
- incompletely informed, 240 
teacher's classification, 220 
terminal alphabet, 400 
theorem 
- c-solution, generalised 

Anderson task, 176 
- Chervonenkis and Vapnik, 116 
- duality, first, 36 
- duality, second, 39 
-Kuhn-Tucker, 36 
- Novikoff, 165 

theory 
- non-differentiable optimisation, 

194 
- statistical, of learning, 113 
training multi-set, 102 
training set, 106, 218 
tree, 338 
Tucker, 36 

Union of languages, 401 
unsupervised learning, 225, 240 

Vapnik, 113 
VC dimension, 117 
vertex of the graph, 322 
Viterbi, 395 

Wagner, 455 
Wald, 32, 449 
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