
2024/11/04 14:41 1/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

The „Init“ process
(System and services startup and shutdown)

How to lay my hands on init?
To play with the init system one needs a distribution that still uses the thing :)
This gets harder as all the distros move towards systemd
Use link to get the Debian 7 Virtualbox appliance (cca 400M).

This system is the last Debian using SysVinit (before switching to systemd) yet
modern enough not to impose much other limitations (besides not having systemd
ofc.)

BTW sysVinit is still not dead and even develops new features here and there (2024)

Other init alternatives
systemd - does not need more comment for now, we will play with it the whole next
lesson
upstart - Ubuntus attempt to improve the init process (peaked around 2014), now
Ubuntu is fully switched to systemd too.
s6 - s6 is a small suite of programs for UNIX, designed to allow process supervision (a.k.a
service supervision)
runit - runit cross-platform init system that can run on GNU/Linux, Solaris, *BSD, and Mac
OS X and it is an alternative to SysV init, which offers service supervision.
openRC - openRC is a dependency-based init system for Unix-like systems that maintains
compatibility with the system-provided init system, normally located in /sbin/init. OpenRC
is Gentoo's native init system.
others Nice list/comparison of other mostly all relevant init-like systems.

Linux Boot procedure

http://k332.feld.cvut.cz/files/debian_7.ova
https://www.root.cz/zpravicky/sysvinit-3-11-s-retezenim-prikazu/
https://skarnet.org/software/s6/?via=tecmint
http://smarden.org/runit/
https://wiki.gentoo.org/wiki/OpenRC
https://wiki.gentoo.org/wiki/Comparison_of_init_systems

2024/11/04 14:41 2/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

Boot stage 1
MBR – reside on first 512B of HDD
Search for active partition
Load active partition boot record

continue to stage 2

Stage 2 - kernel loader
More sofisticated than MBR
Can load different OS, eg. Windows, Linux, etc.

Can load different versions of Linux kernel
You can modify some kernel parameters before kernel loading

We may show the password recovery process and init killing here
Loads kernel image into memory /boot/vmlinuz
Loads initial ramdisk /boot/initramfs
Gives the control to Linux kernel

2024/11/04 14:41 3/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

Initramfs
An initramfs (initial ram file system) is used to prepare Linux systems during boot before the
init process starts.

The initramfs usually takes care of mounting important file systems (by loading the
proper kernel modules and drivers) such as /usr or /var, preparing the /dev file
structure, etc.
Users who use an encrypted file system will also have the initramfs ask them for the
passphrase before it can mount the file systems.
When the file systems are mounted, control is passed on to init which then takes care of
further starting all necessary services and booting up the remainder of the system.

Kernel loaders
LILO (Linux Loader) – basic simple loader

ELILO - like LILO but with EFI support
GRUB - (GRand Unified Bootloader)

more advanced
default for most distributions
under active development
suitable for most applications

but OFC more boot-loaders do exist
Read more about EFI-UEFI boot options here
No More Boot Loader NMBL initiative loads kernel directly,… not used in any official ditro
so far (2024)

Kernel loading
Check available RAM

Reserve small amount of memory for kernel structures
Hardware detection and initialization
Kernel is small with reduced set of drivers

Kernel supports loadable modules
Kernel can dynamically load modules (drivers) for HW support

Starts special daemons, processes, kernel threads,…
INIT, kflushd, kswapd,…

Kernel threads
kflushd: The kflushd kernel thread is responsible for flushing dirty pages from the
page cache to the disk in a Linux system. When data is written to files, it is first stored
in the page cache in memory for performance reasons. kflushd ensures that these
changes are periodically written (flushed) to the actual storage devices. This process is
essential for data integrity, as it prevents data loss in the event of a system crash.
kflushd operates based on algorithms that determine when and which dirty pages should
be flushed, optimizing system performance while maintaining data consistency.

https://www.gnu.org/software/grub/
https://en.wikipedia.org/wiki/Comparison_of_bootloaders
https://www.rodsbooks.com/efi-bootloaders/index.html
https://fizuxchyk.wordpress.com/2024/06/13/nmbl-we-dont-need-a-bootloader/

2024/11/04 14:41 4/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

kswapd: Responsible for freeing up system memory by swapping out less
frequently used pages from the RAM to the swap space on disk. This helps prevent the
system from running out of physical memory and keeps it responsive.
pdflush: pdflush (per-disc flush) is another kernel thread that works alongside kflushd to
flush dirty pages from the page cache to the disk. It's responsible for maintaining the
integrity of the file system by ensuring that all modified data is safely written to
the storage devices.

Kernel threads continue…
ksoftirqd: handle software interrupts in a preemptive kernel. In Linux, interrupts
are mechanisms by which the kernel can respond immediately to certain events. When a
hardware interrupt occurs, the appropriate interrupt handler runs. However, some
interrupts, known as softirqs, are deferred and handled by ksoftirqd threads. This helps
maintain system responsiveness.
kworker: kworker threads are a pool of kernel worker threads that perform
various tasks in the background. These tasks can include I/O operations, network
processing, and other kernel-related activities. kworker threads are a part of the Linux
kernel's workqueue system, which allows asynchronous execution of work items.
kthreadd: kthreadd is the kernel thread daemon that creates and manages other
kernel threads during the system's boot process. It serves as the parent thread for
many kernel threads.
migration/N: These threads are responsible for migrating processes between CPU
cores to balance the system's load and improve overall performance. The number of
migration threads can vary based on the system configuration.
and more…

The „init“ process
short for initialization
spawns all other processes
It runs as a daemon typically with PID 1
Compatible with System V (SVR4)
SVR4 init examines the /etc/inittab

Default runlevel
Switching among runlevels

Spawns getty at the end of initialization
It's also used for system shutdown or reboot
Manual controll (press I at start of „Init“) vs. Automatic run (this may differ per
distribution/setting)

search for “interactive boot”&your_distro_name

„Init“ runlevels
There are generally 8 runlevels (0-6, S)

0 Halt
1 (S) Single user mode
6 Reboot

Other runlevels depends on distribution of Unix
Behavior is defined in /etc/inittab

2-5 full multi-user modes

2024/11/04 14:41 5/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

2 – text console login /Debian
3 – text console login /Other
5 – X Window (GUI)

„Init“ runlevels
Run levels location in FS tree

Run level 0 /etc/rc0.d
Run level 1 /etc/rc1.d
Run level 2 /etc/rc2.d
Run level 3 /etc/rc3.d
Run level 4 /etc/rc4.d
Run level 5 /etc/rc5.d
Run level 6 /etc/rc6.d

telinit / init : telinit 3 - switches to RL3
Man pages(Ubuntu 2020): telinit may be used to change the SysV system runlevel.
Since the concept of SysV runlevels is obsolete the runlevel requests will be
transparently translated into systemd unit activation requests.

who -r returns the current run level

root@machine:~# who -r
 run-level 5 Sep 26 12:42

…the upper listing is from Ubuntu 20.04 (2020), even modern systemd based systems retain
some degree of backwards compatibility with SysVinit runlevels.

„Init“ tasks
Sets machine hostname
Sets timezone
Check filesystems (fsck utility)
Mounts file systems
Removes content of /tmp dir or mounts /tmp as ramdisk
Configures network interfaces
Starts daemons and network services, etc.

Using „init“
Based on system of links in /etc/rcX.d/S[XX]servicename
Run /etc/init.d/sshd start when switching to run level 2:

root@machine:~# ln -s /etc/init.d/sshd /etc/rc2.d/S99sshd

Run /etc/init.d/sshd stop when switching to run level 0:

root@machine:~# ln -s /etc/init.d/sshd /etc/rc0.d/K99sshd

Special utilities to maintain and manipulate the services(links) may exist

2024/11/04 14:41 6/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

support and compatibility depends usually on dirtribution
chkconfig –level 2345 sshd (RedHat)
rc-update add sshd.wlan0 office (Gentoo)

/etc/rc.local
It's started at the end of runlevels 2-5
It's good place for your own tasks after OS boot

Running processes
Start a daemon

using start script
/etc/init.d/ssh start (start, reload, restart, stop, status)

Manually running the binary
/usr/sbin/sshd -p 2020

Stop it then
/etc/init.d/ssh stop
kill -s TERM $PID #more about PIDs/PIDfiles later

Keep the service running
Traditional SysV init scripts do not have built-in mechanisms for automatically restarting
services in the event of a crash.

Nevertheless one can implement a custom logic within the init script, such as using a wrapper
script that monitors the service process and restarts it if it crashes. This level of process
supervision and automatic restarts is not a native feature of SysV init.

#!/bin/bash

SERVICE="/path/to/your-service-binary"
SERVICE_OPTIONS="-a 123 -b 456 --whatever"
SERVICE_NAME="your-service"
SLEEPTIME=10

while true; do
 if pgrep -x "$SERVICE_NAME" > /dev/null
 then
 # Service is running, do nothing
 sleep $SLEEPTIME
 else
 # Service is not running, restart it
 echo "Service '$SERVICE_NAME' is not running. Restarting..."
 $SERVICE $SERVICE_OPTIONS
 sleep $SLEEPTIME
 fi
done

2024/11/04 14:41 7/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

PID files
PID (Process ID) file is a file that stores the process ID of a running application or
service. The PID file is commonly used to track and manage daemons or background
processes.
stored in the /var/run/ directory or, more commonly in modern systems, in the /run/
directory. The naming convention often follows the pattern processname.pid or
processname.pidfile. The content of the PID file is simply the numeric process ID of
the running process.
Usage of $! which lists the PID of last executed command

$> myprogram &
$> echo $!
4035

Generate & use a PID file
primitive exapme of PIDfile usage

#...run the service,... some java server in this example
SELENIUM_PROGRAM=/usr/bin/java
SELENIUM_OPTS="-jar /home/vagrant/selenium-server-
standalone-2.24.1.jar"
SELENIUM_PID_NAME=selenium
SELENIUM_LOG_FILE=selenium.logfile
$SELENIUM_PROGRAM $SELENIUM_OPTS 2>&1 >>$SELENIUM_LOG_FILE &
PID=$!
#save the PID to file
echo $PID > /var/run/$SELENIUM_PID_NAME.pid

use the pidfile later to kill the service

$> cat /var/run/selenium.pid | xargs kill

jano@jano-ThinkPad-P71:~$ ping root.cz &> /dev/null&
[1] 5861 #ping now runs in the background
jano@jano-ThinkPad-P71:~$ echo $! > pidfilePing.pid
#PID was saved to the pidfile for later use
jano@jano-ThinkPad-P71:~$ ps -A | grep -f pidfilePing.pid
 5861 pts/0 00:00:00 ping #the search was successful
jano@jano-ThinkPad-P71:~$ echo $?
0 #that generates a happy exit code of that grep
jano@jano-ThinkPad-P71:~$ cat pidfilePing.pid | xargs kill
[1]+ Terminated ping root.cz &> /dev/null
jano@jano-ThinkPad-P71:~$ ps -A | grep -f pidfilePing.pid
jano@jano-ThinkPad-P71:~$ echo $?
1 #now the ping process was dead already, so the exitcode is 1

2024/11/04 14:41 8/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

jano@jano-ThinkPad-P71:~$

…usage of grep + if in bash scripts to make decisions based on pidfile

#...
$PIDFILE=pidfile.pid
if ps -A | grep -f $PIDFILE; then
 echo running process found
else
 echo not found
fi
#...

Signals
man 7 signal - go see the documentation

What do those numbers in man even mean?
kill – sends signal to process / man kill

Linux signals
Number Signal Name Default Action Comment
POSIX (Yes/No)

1 SIGHUP Terminate Hangup detected on
controlling terminal Yes
2 SIGINT Terminate Interrupt from keyboard
Yes
3 SIGQUIT Core dump Quit from keyboard
Yes
4 SIGILL Core dump Illegal instruction
Yes
5 SIGTRAP Core dump Trace/breakpoint trap
Yes
6 SIGABRT Core dump Abort signal from
abort(3) Yes
7 SIGBUS Core dump Bus error (bad memory
access) Yes
8 SIGFPE Core dump Floating-point exception
Yes
9 SIGKILL Terminate Kill signal (cannot be
caught or ignored) Yes
10 SIGUSR1 Terminate User-defined signal 1
Yes
11 SIGSEGV Core dump Invalid memory reference
Yes
12 SIGUSR2 Terminate User-defined signal 2

https://unix.stackexchange.com/questions/3586/what-do-the-numbers-in-a-man-page-mean

2024/11/04 14:41 9/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

Yes
13 SIGPIPE Terminate Broken pipe: write to
pipe with no readers Yes
14 SIGALRM Terminate Timer signal from
alarm(2) Yes
15 SIGTERM Terminate Termination signal
Yes
16 SIGSTKFLT Terminate Stack fault on
coprocessor No
17 SIGCHLD Ignore Child status has changed
Yes
18 SIGCONT Continue Continue the stopped
process Yes

…continue

19 SIGSTOP Stop Stop process (cannot be
caught or ignored) Yes
20 SIGTSTP Stop Stop typed at terminal
Yes
21 SIGTTIN Stop Terminal input for
background process Yes
22 SIGTTOU Stop Terminal output for
background process Yes
23 SIGURG Ignore Urgent condition on
socket Yes
24 SIGXCPU Core dump CPU limit exceeded
Yes
25 SIGXFSZ Core dump File size limit exceeded
Yes
26 SIGVTALRM Terminate Virtual timer expired
Yes
27 SIGPROF Terminate Profiling timer expired
Yes
28 SIGWINCH Ignore Window size change
Yes
29 SIGIO Terminate I/O is available for
asynchronous input or output Yes
30 SIGPWR Terminate Power failure or system
restart Yes
31 SIGSYS Core dump Bad system call
Yes
34 SIGRTMIN Terminate First real-time signal
Yes
35 SIGRTMIN+1 Terminate Second real-time signal
Yes
...
...
63 SIGRTMAX-1 Terminate Second-to-last real-time
signal Yes
64 SIGRTMAX Terminate Last real-time signal

2024/11/04 14:41 10/10 The „Init“ process

Wiki on milixis.xyz - https://milixis.xyz/

Yes

Remember the process control?
ctrl + z - stop current process
myprogram & - starts myprogram on background
myprg1 && myprg2 – if „myprg1“ return exit code 0 (OK) then run „myprg2“

examine yourself what || usage (instead of &&) does
fg [job spec …] - run process on foreground
bg [job_spec …] - run process on background
jobs - show process list (for current instance of shell)
echo $? - return exit code of last command
echo $$ - returns $PID (Process ID)
…

$$ holds the PID of the current script or shell.
$? holds the exit status of the last executed command.
$! holds the PID of the last background command.

Exercise
Look at the structure of /etc/inittab

Disable reload on CTRL+ALT+DEL
Set „3“ as default run level

Make your OS to copy /etc/rc.local to /tmp after the system startup
Start ssh daemon/service listening on port 9999

Use netstat -l to check if process is listening on given port
Terminate this process by sending Terminate signal

Make a custom service run after the system startup
you can use python simple http server for example

Python 2 —python -m SimpleHTTPServer 8000
Python 3 — python -m http.server 8000

Advanced: wrap the service in a watch script to restart it after the eventual crash

From:
https://milixis.xyz/ - Wiki on milixis.xyz

Permanent link:
https://milixis.xyz/doku.php?id=nos:semminar5

Last update: 2024/11/04 13:28

https://milixis.xyz/
https://milixis.xyz/doku.php?id=nos:semminar5

	The „Init“ process
	How to lay my hands on init?
	Other init alternatives
	Linux Boot procedure
	Boot stage 1
	Stage 2 - kernel loader
	Initramfs
	Kernel loaders
	Kernel loading
	Kernel threads
	The „init“ process
	„Init“ runlevels
	„Init“ runlevels
	„Init“ tasks
	Using „init“
	Running processes
	Keep the service running
	PID files
	Generate & use a PID file
	Signals
	Linux signals
	Remember the process control?
	Exercise

