
2024/11/12 10:10 1/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

Systemd
“System and service manager” - an init system used to bootstrap user space and manage
user processes.

Can be found on any modern Linux OS versions at or above some version
Ubuntu 15.04, Debian 8, CentOS 7, Fedora 15, and many more…

History
2010 - Lennart Poettering and Kay Sievers, the software engineers working for RedHat
who initially developed systemd, started a project to replace Linux's conventional
“System V init”.
April 2010 blog post from Poettering, titled Rethinking PID 1, introduced an
experimental version of what would later become systemd.
May 2011 Fedora Linux became the first major Linux distribution to enable systemd by
default, replacing upstart.
October 2012 Arch Linux made systemd the default, switching from SysVinit.
2013 - 2014 Debian undergoes a massive discussion in the respective mailing list about
pros/cons of switching to systemd…. resulting in definitive switching to systemd (from
SysVinit).
2014 - Ubuntu switches to systemd too, mostly based on previous Debian decision
(dropping their own upstart)
There was(and still is) a solid portion of controversy among the Linux world about
switching to systemd, more or less abandoning other alternatives. We try not to take any
stands in this course, but for those who are interested:

The closest to a complex all in one technical & historical summary we were able to
find(2022) is probably this .

Not everybody has switched.

Linux distributions without systemd here.

Design

In May 2014, Poettering described systemd as unifying “pointless differences between
distributions”, by providing the following three general functions:

A system and service manager (manages both the system, by applying various
configurations, and its services)
A software platform (serves as a basis for developing other software)
The glue between applications and the kernel (provides various interfaces that
expose functionalities provided by the kernel)

Systemd is definitely much more than a bunch of shell scrips we used to know form
SysVinit.

Basic info
Systemd is a suite of basic building blocks for a Linux system
System and service manager that runs as PID 1 and starts the rest of the system

https://0pointer.de/blog/projects/systemd.html
https://upstart.ubuntu.com/
https://blog.darknedgy.net/technology/2020/05/02/0/
https://en.wikipedia.org/wiki/Category:Linux_distributions_without_systemd
https://upload.wikimedia.org/wikipedia/commons/3/35/Systemd_components.svg

2024/11/12 10:10 2/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

aggressive parallelization capabilities
uses socket and D-Bus activation for starting services
offers on-demand starting of daemons
keeps track of processes using Linux control groups (cgroups)
maintains mount and automount points,
implements an elaborate transactional dependency-based service control logic
supports SysV and LSB init scripts - works as a replacement for SysVinit

Other functions of systemd

logging daemon
utilities to control basic system configuration like the hostname, date, locale,
maintain a list of logged-in users loginctl
start & run containers and virtual machines
system accounts
runtime directories and settings and daemons
manage simple network configuration
network time synchronization
log forwarding
name resolution (resolvectl status)

Units introduction
The basic object that systemd manages and acts upon is a “unit”.
Units commonly include, but are not limited to,

services (.service)
mount points (.mount)
devices (.device)
sockets (.socket)

To manage services on a systemd enabled machine
main tool is the systemctl command

(Warning: not to be confused with sysctl)

user@machine$ man systemctl
systemctl
SYSTEMCTL(1)
NAME
 systemctl - Control the systemd system and service manager
SYNOPSIS
 systemctl [OPTIONS...] COMMAND [UNIT...]
DESCRIPTION
 systemctl may be used to introspect and control the state of the
"systemd" system and service manager. Please refer to systemd(1) for an
introduction into the basic concepts and functionality this tool
manages.

Available unit types

Target - A group of units that defines a synchronization point. The synchronization point
is used at boot time to start the system in a particular state.
Service - Starts, stops, restarts or reloads a service daemon, such as Apache webserver.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://www.commandlinux.com/man-page/man1/systemctl.1.html
https://en.wikipedia.org/wiki/Sysctl

2024/11/12 10:10 3/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

Socket - Activates a service when the service receives incoming traffic on a listening
socket.
Device - Implements device-based activation such as a device driver.
Mount - Controls the file-system mount point.
Automount - Provides and controls on-demand mounting of file systems.
Swap - Encapsulates/activates/deactivates swap partition.
Path - Monitors files/directories and activates/deactivates a service if the specified file or
directory is accessed. Uses inotify (Basically like socket, but for files)
Timer - Activates/deactivates specified service based on a timer or when the set time is
elapsed.
Snapshot - Creates and saves the current state of all running units. This state can be
used to restore the system later.
Slice - A group of units that manages system resources such as CPU, and memory…
allowing resources to be restricted or assigned to any processes associated with the slice.
The name reflects its hierarchical position within the cgroup tree.
Scope - Organizes and manages foreign processes.
..busname.. - A unit that controls DBus system.

user@machine:~$ systemctl -t help
Available unit types:
service
mount
swap
socket
target
device
automount
timer
path
slice
scope
user@machine:~$

Basic usage
start the service

user@machine$sudo systemctl start nginx.service

or

user@machine$sudo systemctl start nginx

If you do not specify the suffix, systemctl will assume .service.
netctl and netctl.service are equivalent

Mount points will automatically be translated into the appropriate .mount unit.
specifying /home is equivalent to home.mount

Devices are automatically translated into the appropriate .device unit
specifying /dev/sda2 is equivalent to dev-sda2.device

Commands by default operate on system units since –system is the implied default for
systemctl.

2024/11/12 10:10 4/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

To operate on user units (for the calling user), use systemctl –user without root
privileges.

The @ sign

Some unit names contain an @ sign (e.g. name@string.service).
This means that they are instances of a template unit, whose actual file name does not
contain the string part (e.g. name@.service).
“string” is called the instance identifier, and is similar to an argument that is passed
to the template unit when called with the systemctl command:

in the unit file it will substitute the %i specifier.
To be more accurate, before trying to instantiate the name@.suffix template unit,
systemd will actually look for a unit with the exact name@string.suffix file name,

although by convention such a “clash” happens rarely,
i.e. most unit files containing an @ sign are meant to be templates.
Also, if a template unit is called without an instance identifier, it will
generally fail

(except with certain systemctl commands, like cat).

Basic Unit Management
start the service

$ sudo systemctl start nginx.service

stop it

$ sudo systemctl stop nginx.service

restart the service

$ sudo systemctl restart nginx.service

attempt to reload the service without interrupting normal functionality

$ sudo systemctl reload nginx.service

if unsure whether the service has the functionality to reload its configuration

$sudo systemctl reload-or-restart application.service

Enabling or Disabling Units

To configure unit to start automatically at boot, you need to “enable” the unit. This hooks it up
to a certain boot “target”, causing it to be triggered when that target is started.

enable a service to start automatically at boot

$ sudo systemctl enable nginx.service

disable the service

https://0pointer.net/blog/projects/instances.html

2024/11/12 10:10 5/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

$ sudo systemctl disable nginx.service

Unit status overview

To see an overview of the current state of a unit.

$ systemctl status application.service

This will show you whether the unit is active, information about the process, and the latest
journal entries.

check to see if a unit is currently active (running)

$systemctl is-active application.service

…

$systemctl is-enabled application.service

…

$systemctl is-failed application.service

2024/11/12 10:10 6/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

Overview of the System State

get all of the unit files that systemd has listed as “active”

$ systemctl list-units

list-units can be even omitted

$ systemctl

To list all of the units that systemd has loaded or attempted to load into memory,
including those that are not currently active, add the –all switch

$ systemctl list-units --all

To list all of the units installed on the system, including those that systemd has not tried
to load into memory

$ systemctl list-unit-files

2024/11/12 10:10 7/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

Viewing Log Information
By default, this will show you entries from the current and previous boots (if journald is
configured to save previous boot records).

to enable this, either edit the /etc/systemd/journald.conf file and set the
Storage= option to “persistent”, or create the persistent directory sudo
mkdir -p /var/log/journal

journal entries from the current boot (add the -b flag)

$ journalctl -b

only kernel messages, such as those that are typically represented by dmesg, (use the -k
flag)

$ journalctl -k

combine both of above

$ journalctl -k -b

more logs

-b can be combined with boot offset

$ journalctl -b -1

you can also list available boot journals

$ journalctl --list-boots

Time ranges

$ journalctl --since "1 hour ago"

more precise

$ $ journalctl --since "2022-06-26 23:15:00" --until
"2022-06-26 23:20:00"

this is where having a proper sync on system time gets important
for even greater precisions see systemd.time specification .

UTC timestamps

If you are about to combine/compare logs from multiple sources/timezones it is best to
transform everything to UTC first to mitigate eventual confussions.

journalctl --utc

Logs by systemd unit

messages logged by any systemd unit, use the -u switch

https://www.freedesktop.org/software/systemd/man/systemd.time.html

2024/11/12 10:10 8/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

$ journalctl -u nginx.service

-u switch can be used multiple times to specify more than one unit source

$journalctl -u nginx.service -u mysql.service

Follow/Tail -f
specified number of most recent journal entries -n
journal entries in reverse chronological order, so the latest messages are printed first -r

Log output formats

-o or –output

journalctl -u apache2.service -r -o json-pretty

jsonwill - show each journal entry in json format in one long line. This is useful
when sending logs to a log centralization or analysis service, since it makes them
easier to parse
json-pretty- will show each log entry in easy-to-read json format
verbose - will show very detailed information for each journal record with all fields
listed
cat - shows messages in very short form, without any date/time or source server
names
short - default output format, shows messages in syslog style
short-monotonic is similar to short, but the time stamp second value is shown
with precision. This can be useful when you are looking at error messages
generated from more than one source, which apparently are throwing error
messages at the same time and you want to go to the granular level.

Logs by priority or by user

priority from..to :

journalctl -b -1 -p "emerg".."crit"

 0: emerg
 1: alert
 2: crit
 3: err
 4: warning
 5: notice
 6: info
 7: debug

find all messages related to a particular user, use the UID

user@machine:~$ id postfix
uid=124(postfix) gid=129(postfix) skupiny=129(postfix)
user@machine:~$ journalctl _UID=124
-- Logs begin at Fri 2022-04-08 22:30:01 CEST, end at Sun
2022-10-30 20:32:29 CET. --

2024/11/12 10:10 9/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

říj 19 18:42:51 machine postfix/pickup[34788]: CAA8048347D:
uid=1000 from=<user>
říj 19 18:42:51 machine postfix/cleanup[35617]: CAA8048347D:
message-id=<20221019164251.CAA8048347D@machine>
říj 19 18:42:51 machine postfix/qmgr[2151]: CAA8048347D:
from=<user@machine>, size=526, nrcpt=1 (queue acti>
říj 19 18:42:51 machine postfix/qmgr[2151]: CAA8048347D: removed
user@machine:~$

Unit config files
Systemd is configured by text files - unit files.

/lib/systemd/system/XXX.service
full contents of a unit file

systemctl cat sshd.service

dependency tree of a unit (which units systemd will attempt to activate when starting
the unit)

systemctl list-dependencies sshd.service

or add -all flag to expand all dependent units recursively
the low-level details of the unit’s settings on the system

systemctl show sshd.service

Modifying Unit Files

To add an unit file snippet, which can be used to append or override settings in the
default unit file, simply call the edit option

sudo systemctl edit sshd.service

To modify the entire content of the unit file instead of creating a snippet, pass the –full
flag

sudo systemctl edit --full sshd.service

After modifying a unit file reload the systemd process to apply changes

sudo systemctl daemon-reload

Masking & unmasking units

masking marks a unit as completely unstartable

sudo systemctl mask nginx.service

Output

2024/11/12 10:10 10/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

. . .
kmod-static-nodes.service static
ldconfig.service static
mandb.service static
messagebus.service static
nginx.service masked
quotaon.service static
rc-local.service static
rdisc.service disabled
rescue.service static
. . .

…unmask

sudo systemctl unmask nginx.service

Using Targets
In systemd “targets” is the closest equivalent of what was known as runlevels in the good old
init system.

Targets are basically synchronization points that the server can use to get itself into a
specific state.
Services and other unit files can be tied to a target and multiple targets can be active at
the same time.
all the available targets

systemctl list-unit-files --type=target

view the default target that systemd tries to reach at boot (which in turn starts all of the
unit files that make up the dependency tree of that target)

systemctl get-default

targets continue

change the default target… Warning: this makes Ubuntu (or any other system) not
boot to your beloved graphical.target.

sudo systemctl set-default multi-user.target

see what units are tied to a target

systemctl list-dependencies multi-user.target

modify the system state to transition between targets with the isolate option.

sudo systemctl isolate multi-user.target

This will stop any units that are not tied to the specified target. Be sure that the target
you are isolating does not stop any essential services

2024/11/12 10:10 11/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

Stopping or Rebooting
Shortcuts are available for some of the major states that a system can transition to.

sudo systemctl poweroff

sudo systemctl reboot

sudo systemctl rescue

Most distributions include traditional aliases to these operations so that you can simply type
sudo poweroff or sudo reboot without the systemctl.

Exercise - Creating own service
The program to run, our program will be simple http server which exposes its working(or
given) directory content to the web. This is just a command to be run by the service

user@machine:~$ python3 -m http.server --help
usage: server.py [-h] [--cgi] [--bind ADDRESS] [--directory DIRECTORY]
[port]
positional arguments:
 port specify alternate port (default: 8000)
options:
 -h, --help show this help message and exit
 --cgi run as CGI server
 --bind ADDRESS, -b ADDRESS
 specify alternate bind address (default: all
 interfaces)
 --directory DIRECTORY, -d DIRECTORY
 specify alternate directory (default: current
 directory)
user@machine:~$ python3 -m http.server --bind 192.168.21.130 8080
Serving HTTP on 192.168.21.130 port 8080 (http://192.168.21.130:8080/)
...

Turning a command into a service

Let’s create a file called /etc/systemd/system/MyhttpServer.service

MyhttpServer.service

[Unit]
Description=Simple python based web server - demo service
After=network.target
StartLimitIntervalSec=0

https://milixis.xyz/doku.php?do=export_code&id=nos:semminar6&codeblock=51

2024/11/12 10:10 12/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

[Service]
Type=simple
Restart=always
RestartSec=1
User=user
ExecStart=/usr/bin/python3 -m http.server --d /home/user/tmp --
bind 192.168.123.123 8080

[Install]
WantedBy=default.target

start the service

$ systemctl start MyhttpServer

enable the service

$ systemctl enable MyhttpServer

disable, mask, etc..
Explanations:

After= - we want our service to be run only after the network is ready, you may want to
add more like After=mysqld.service etc.
Restart= - By default, systemd does not restart the service if the program exits. We’re
instructing it to always restart on exit. You could also use on-failure to only restart if
the exit status is not 0
RestartSec= - By default, systemd attempts a restart after 100ms. You can specify the
number of seconds to wait before attempting a restart.
By default, when you configure Restart=always, systemd gives up restarting your
service if it fails to start more than 5 times within a 10 seconds interval. This can be
customized using

StartLimitBurst=5
StartLimitIntervalSec=10

Or by setting theStartLimitIntervalSec=0 systemd will attempt to restart your
service forever. Now it is good idea to set RestartSec= at least to 1 second no to put
too much stress on the server if something goes wrong with the service.

Exercise continue

Go google how to make the previous MyhttpServer.service entirely controlled by a regular1.
unprivileged user.
transform your service to be triggered by .socket unit2.

2024/11/12 10:10 13/13 Systemd

Wiki on milixis.xyz - https://milixis.xyz/

From:
https://milixis.xyz/ - Wiki on milixis.xyz

Permanent link:
https://milixis.xyz/doku.php?id=nos:semminar6

Last update: 2024/11/12 08:50

https://milixis.xyz/
https://milixis.xyz/doku.php?id=nos:semminar6

	Systemd
	History
	Not everybody has switched.
	Design

	Basic info
	Other functions of systemd

	Units introduction
	Available unit types

	Basic usage
	The @ sign

	Basic Unit Management
	Enabling or Disabling Units
	Unit status overview
	Overview of the System State

	Viewing Log Information
	more logs
	UTC timestamps

	Logs by systemd unit
	Log output formats
	Logs by priority or by user

	Unit config files
	Modifying Unit Files
	Masking & unmasking units

	Using Targets
	targets continue

	Stopping or Rebooting
	Exercise - Creating own service
	Turning a command into a service
	Exercise continue

