
Flask web evaluation for QtRvSim

Jakub Pelc

16.3.2024

Faculty of Electrical Engineering, Czech Technical University in Prague

Installfest 2024

Goals of this project

Bonus task evaluation

The main aim for this project is to allow external participants (as

well as students) to improve their skills in computer architectures,

by solving tasks in RISC-V assembly.

The original way involved students of B35APO solving a set of

bonus tasks, which were available to submit through GitLab and

subsequently evaluated using QtRvSim.

This is unfortunately not available to the general public, and that

is the reason why this project was created.

1

https://cw.fel.cvut.cz/wiki/courses/b35apo/en/start
https://cw.fel.cvut.cz/wiki/courses/b35apo/en/homeworks/bonus/start
https://github.com/cvut/qtrvsim

Current state

Registered users can register and submit solutions to the problems

displayed on the frontpage and get immediate feedback on their

solution. Local scoreboard is displayed for each task.

This is done by running a local evaluation procedure (with the use

of QtRvSim CLI), which evaluates the correctness of the code

submitted and yields the performance as a score.

The project needed to be rather simple, for it to allow easy

modularity and optional modification in the future. It can be

expanded by more features, language support, or task types.

This is why Flask was chosen as the web framework.

2

https://github.com/cvut/qtrvsim

User interface

eval.comparch.edu.cvut.cz

3

http://eval.comparch.edu.cvut.cz

A little bit about Flask

Flask

Flask is a micro web framework written in Python. It provides a

simple way to create web applications.

As opposed to Django, Flask is not an all-inclusive framework. It is

designed to be simple and easy to use.

To start creating a web application, the only thing needed is to

have Flask installed and to have a simple python script.

4

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

return "<p>Hello, World!</p>"

5

Loading template files

We can utilize Flask to load HTML templates, instead of writing

all of our HTML code in the app.py file.

These template files should be located in the templates directory.

For this example, we will use a standard HTML register page.

6

from flask import Flask

from flask import render_template

from flask import request

app = Flask(__name__)

app.secret_key = 'e4ed89f02f3aa07a4309dbfff'

@app.route("/")

def index():

return render_template('index.html')

@app.route("/register", methods=['GET', 'POST'])

def register():

if request.method == 'POST':

return "Registered with username: " + \

request.form['username'] + " and password: " + \

request.form['password']

return render_template('register.html')
7

Jinja2 templating

This is still not ideal, as we need to create a completely new

HTML page for every route.

For this problem, we can utilize the Jinja2 templating engine to

create a base template, and then inherit from this template.

Static files (such as CSS stylesheets, or images) can also be

included.

8

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="icon" href="{{ url_for('static', filename='favicon.png') }}" type="image/x-icon">

<title>{% block title %}{% endblock title %}</title>

<link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='style.css') }}">

</head>

<body>

<main class="main-content">

{% block content %}{% endblock content %}

</main>

</body>

</html>

9

{% extends "base.html" %}

{% block title %}

The Register Page

{% endblock title %}

{% block content %}

<h2>Register</h2>

<form method="POST" action="/register">

<input type="text" name="username" placeholder="Username">

<input type="password" name="password" placeholder="Pass">

<input type="submit" value="Register">

</form>

{% endblock content %}

10

Flask sessions

The session system allows the storage of information about the

user across multiple requests.

Variables can also be passed to the template which are then used

while rendering the page.

This can be demonstrated by creating a simple login system.

11

from flask import Flask, render_template, session, redirect, url_for

from markupsafe import escape

app = Flask(__name__)

app.secret_key = 'e4ed89f02f3aa07a4309dbfff'

@app.route("/")

def index():

return render_template('index.html')

@app.route("/name/<name>")

def name(name):

session['user'] = escape(name)

return redirect(url_for('index'))

@app.route('/personal')

def personal():

logged_in = session.get('logged_in', False)

return render_template('personal.html', logged_in=logged_in)

@app.route("/login")

def login():

session['logged_in'] = True

return redirect(url_for('index'))

@app.route("/logout")

def logout():

session.clear()

return redirect(url_for('index'))

12

Database

Communication with the database

In the web application, a PostgreSQL database is used.

Only a few tables are needed to store the information about the

users, tasks, submissions and results.

PostgreSQL triggers are used to automatically update the best

score and source code.

13

Users Table

Field Type Length Default

id int 32 AUTO INCREMENT

username varchar 128 None

password varchar 128 None

email varchar 128 None

salt varchar 128 None

verification code varchar 128 None

user verified tinyint 1 0

14

GDPR

Email adresses of the users are not being saved (due to GDPR), but

during the registration process, the users are required to provide an

email address for verification purposes. So how is that achieved?

The email address is saved as a salted SHA-256 hash. This way,

the email address can we verified, but cannot be reverse engineered

to obtain the original email address.

This also allows for password reset functionality, without the need

to store the email address in a readable format. Users always need

to provide the email address, which is then checked against the

hash in the database.

15

Submissions Table

Field Type Length Default

id int 64 AUTO INCREMENT

userid int 64 None

taskid int 64 None

file text 64 None

evaluated tinyint 1 0

time datetime None current timestamp()

16

Results Table

Field Type Default

userid bigint PRIMARY

taskid bigint PRIMARY

result file text NULL

last source text NULL

best source text NULL

score last integer -1

score best integer -1

time timestamp with time zone CURRENT TIMESTAMP

result smallint -1

17

import psycopg2

import os

db_config = {

'user': os.getenv('DB_USER'),

'password': os.getenv('DB_PASSWORD'),

'host': os.getenv('DB_HOST'),

'database': os.getenv('DB_DATABASE'),

'port': os.getenv('DB_PORT'),

'sslmode': 'require',

'connect_timeout': 10

}

18

def connect():

db = psycopg2.connect(**db_config)

cursor = db.cursor()

return (db, cursor)

def get_user(username):

(db, cursor) = connect()

cursor.execute('SELECT password FROM \

users WHERE username = %s', (username,))

user = cursor.fetchone()

cursor.close()

db.close()

return user

19

Evaluation using QtRvSim

Submission evaluation

Each of the submissions is being evaluated by a qtrvsim cli

python wrapper qtrvsim.py.

For each task, a .toml file defines its structure, this file is then

parsed using an evaluator.py script. A new QtRvSim instance is

initialized with needed parameters, the instance evaluates all the

testcases declared in the task file and measures the performance of

the user’s submission.

The result, score, and the log are then displayed to the user.

20

https://gitlab.fel.cvut.cz/b35apo/qtrvsim-eval-web/-/blob/main/evaluator/qtrvsim.py
https://gitlab.fel.cvut.cz/b35apo/qtrvsim-eval-web/-/blob/main/evaluator/evaluator.py

from qtrvsim import QtRVSim

sim = QtRVSim(args="--d-regs --dump-cycles --cycle-limit 1000", submission_file="file.S")

ending_regs = {

"a1": 2,

"a2": 4,

"a3": 6,

}

starting_mem = {

"array_start": [2, 4],

}

ending_mem = {

"array_start": [2, 4, 6],

}

sim.set_reference_ending_regs(ending_regs)

sim.set_starting_memory(starting_mem)

sim.set_reference_ending_memory(ending_mem)

#sim.set_private() #optional, if set to true, does not show errors

sim.run("Testcase 1")

print(sim.get_log())

print(sim.get_scores()["cycles"] if sim.get_result() == 0 else "-1")

sim.reset()
21

[task]

name = "Task"

template = "S_templates/template.S"

description = '''

Description

The task description

'''

[arguments]

run = "--d-regs --dump-cycles --cycle-limit 1000"

[[testcases]]

name = "Testcase 1"

private = true

[[testcases.reference_regs]]

a1 = 2

a2 = 4

a3 = 6

[[testcases.starting_mem]]

array_start = [2, 4]

[[testcases.reference_mem]]

array_start = [2, 4, 6]

[score]

testcase = "Testcase 1"

22

Advanced tasks

The evaluator is also able to set a cache for the task, whose

parameters are configurable as a part of the task. This is done by

setting the maximum cache size for the task, users are then

required to configure the cache parameters.

Serial input and output can also be used.

It is also possible, to create a task in C, but this also requires a

custom Makefile to be provided in the taskfile. If custom files need

to be present at compile time, they can also be provided.

23

[task]

name = "Cache example"

template = "S_templates/cache.S"

cache_max_size = 16

[arguments]

run = "--dump-cycles --read-time 10 --cycle-limit 5000 \

--write-time 10 --burst-time 2"

24

[task]

name = "C example"

template = "S_templates/example.c"

c_solution = true

[[testcases]]

name = "test1"

[[testcases.input_uart]]

uart = "111\n222\n"

[[testcases.reference_uart]]

uart = "333\n"

[score]

testcase = "test1"

[make]

Makefile="""

#provide a rule that will compile the solution into a binary `submission`

#please provide a clean rule, this is run after evaluation

clean:

rm -f *.o *.a $(OBJECTS) $(TARGET_EXE) depend

"""

[[files]]

name = "crt0local.S"

code = """

/* minimal replacement of crt0.o which is else provided by C library */

"""

25

Mini Competition

Mini Competition

On the page

eval.comparch.edu.cvut.cz

you can try out your skills in RISC-V assembly.

For each task the best five users will acquire (6− p) points, where

p is the place they finished (according to the cycles needed to

execute their solution).

If two users finish with the same amount of cycles, their solution

will be scored with the higher amount of points.

We offer FEE CTU merch for the best users overall, who submit

their solutions before 17.3. 12:45.

26

http://eval.comparch.edu.cvut.cz

References

References

Links and references:

Flask

eval.comparch.edu.cvut.cz

comparch.edu.cvut.cz

QtRvSim repository

Web Eval repository

Slides with examples

Jakub Pelc

27

https://flask.palletsprojects.com/en/3.0.x/
http://eval.comparch.edu.cvut.cz
http://comparch.edu.cvut.cz
https://github.com/cvut/qtrvsim
https://gitlab.fel.cvut.cz/b35apo/qtrvsim-eval-web
https://github.com/kubakubakuba/if24-flask-web-eval
https://swpelc.eu

