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A B S T R A C T

In this paper, we present a novel dense SLAM system based on depth-event fusion, aiming to address the chal
lenge of online dense reconstruction in challenging environments. To achieve robust camera tracking, we devise 
a hybrid depth-event pose estimation framework based on random optimization, which estimates all states 
jointly. Notably, we introduce an innovative 3D-2D edge alignment method based on particle swarm optimi
zation, specifically tailored for event cameras, to tackle the highly non-linear pose estimation problem. 
Furthermore, we implement a dynamic update mechanism for both geometric and intensity edges of the 3D 
reconstruction, enabling efficient and accurate management of edge information. Our method represents the first 
depth-event dense SLAM system employing a random optimization paradigm, achieving robust performance 
even with high-speed camera motion, specifically linear velocities exceeding 1 m/s and/or angular velocities 
exceeding 2 rad/s. The system achieves accurate and globally consistent dense mapping with a maximum spatial 
resolution of 2 mm, while maintaining real-time performance at approximately 30 FPS for simultaneous local
ization and 3D reconstruction. Through extensive evaluations on synthetic and real-world datasets, particularly 
on our newly constructed DEveSet dataset, we demonstrate the superior performance of our proposed method 
compared to state-of-the-art techniques such as InfiniTAM, ROSEFusion, and DEVO. Contact us for access to the 
DEveSet download link.

1. Introduction

Real-time 3D mapping in unknown enclosed environments by 
intelligent mobile systems (e.g., unmanned aerial vehicles, UAV) is 
crucial for tasks such as emergency response (Boguslawski et al., 2022; 
Robin R. Murphy, 2021), resource exploration (Biggie et al., 2023; Petrá 
\vcek et al., 2021), and archaeological surveys (Cao et al., 2023; Xia and 
Dong, 2023). However, fast-moving mobile platforms often encounter 
challenges such as weak texture, low illumination, and motion blur in 
environments like subterranean enclosed spaces, which degrade the 
robustness of localization systems (Gou et al., 2023; Zuo et al., 2024). 
Existing research (Agha et al., 2021; Azpúrua et al., 2022; Hudson et al., 
2021; Tranzatto et al., 2022a, 2022b) typically addresses these chal
lenges by integrating sensors like cameras, LiDAR, or inertial measure
ment units (IMU). However, considering portability, cameras are often 
the preferred sensors for external perception. Therefore, exploring 
vision-only solutions in challenging conditions remains a significant 

research direction.
Among vision-only solutions, depth-based methods (Newcombe 

et al., 2011; Prisacariu et al., 2017; Whelan et al., 2016) are commonly 
employed for simultaneous localization and mapping (SLAM) in low- 
light environments. This is because RGB images acquired in such con
ditions often fail to provide the environmental information necessary for 
traditional RGB-based SLAM methods, as illustrated in Fig. 1. However, 
depth-based methods still face challenges concerning robustness and 
localization accuracy when dealing with fast camera motion (Zhang 
et al., 2021) and degradation of scene geometry (Gou et al., 2023). 
Consequently, researchers have begun to explore methods that incor
porate other specialized vision sensors. Event cameras (also known as 
dynamic vision sensors, DVS), with their high dynamic range and tem
poral resolution, offer a promising alternative. They can robustly cap
ture geometric and intensity edges in challenging conditions, remaining 
unaffected by motion blur (Gallego et al., 2019). This complements the 
limitations of depth cameras in perceiving intensity features, as shown 
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in Fig. 1, further supporting the feasibility of depth-event fusion for 
addressing localization and mapping in challenging scenarios. However, 
since event cameras only output intensity change information, photo- 
consistency-based fusion methods (Bryner et al., 2019) cannot be 
directly applied, and feature extraction (Messikommer et al., 2022) re
mains unstable. Furthermore, the lack of rich intensity features and 
photometric information in depth images prevents some event-based 
fusion methods (Bryner et al., 2019; Gehrig et al., 2018) designed for 
conventional RGB-event data from being directly applied to depth-event 
fusion. Additionally, the limited spatial resolution and low signal-to- 
noise ratio of event cameras also pose challenges for constructing 
high-density, high-quality 3D maps. A recent study (Zuo et al., 2024, 
2022) achieved reliable pose estimation based on semi-dense map ge
ometry through a 2D-3D registration by directly optimizing the edges 
generated from both event and depth images. However, fast camera 
motion can lead to large rotations, making camera pose optimization 
highly non-linear and prone to trapping gradient descent methods in 
local optima (Schmidt and Niemann, 2001). This makes robust pose 
estimation in challenging conditions difficult, which is crucial for dense 
reconstruction.

This paper presents DEveFusion, a novel Depth-Event Fusion 
approach for robust cross-modal pose estimation, enabling online dense 
3D reconstruction in challenging conditions. We leverage depth images 
to construct a global dense volumetric map and dynamically maintain a 
local active map within a view frustum. Upon acquiring a new depth- 
event data pair, we perform a weighted update of the active map, 
ensuring the global consistency of the reconstructed map. Camera pose 
is optimized by jointly minimizing the distances between depth image 
projections and reconstructed voxels in the active map, and between 3D 
edges in the active map and their 2D projections onto the event image. 
Specifically, our contributions are as follows: 

• We develop a unified hybrid depth-event pose estimation framework 
based on random optimization, where all states are estimated jointly 
without initialization.

• We propose a novel 3D-2D edge alignment method based on random 
particle swarm optimization to address the highly non-linear pose 
estimation problem, achieving accurate pose estimation while 
maintaining high computational efficiency.

• We introduce a surface edge update and extraction strategy that 
dynamically updates both geometric and intensity edges of the 3D 
reconstructed surface. This strategy enables fast and accurate edge 
extraction from the dense reconstruction without traversing the 
entire map.

The remainder of this paper is structured as follows: Section 2 re
views related work. Section 3 introduces preliminaries, including the 
overall framework and depth-event data pre-processing. Section 4
elaborates on the scene representation and reconstruction process. 
Section 5 details the random optimization-based pose estimation 
method. Section 6 presents evaluation experiments and results. Finally, 
Section 7 concludes this work. This paper represents a significant 
extension of our previous work (Gou et al., 2023).

2. Related work

In this section, we review related work in the field of visual SLAM 
(vSLAM) that utilizes the fusion of RGB-D cameras and event cameras. 
We will provide separate overviews of RGB-D camera-based SLAM, 
event camera-based SLAM, and their fusion methods, followed by a 
discussion of the current issues and challenges within this field.

2.1. RGB-D camera-based SLAM

Methods fusing depth and RGB images typically employ dense 

Fig. 1. Challenging scenarios and results. The first column demonstrates challenging illumination conditions in the maze and karst sequences, with slight motion blur 
also visible in the maze sequence. The garage sequence exhibits pronounced motion blur due to fast camera motion under indoor illumination. The second column 
shows the event camera’s time surface map (TSM), aligned with the RGB-D images after extrinsic calibration, which highlights the event camera’s ability to capture 
edges even in low-light environments. The third column illustrates the edge reconstruction of the scene, encompassing both geometric edges and intensity edges on 
the 3D support plane. The fourth column presents the dense reconstruction within the current view frustum.
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photometric alignment (Endres et al., 2014; Kerl et al., 2013; Stein
brücker et al., 2011), a process that relies on extensive parallel 
computation. Moreover, such methods often suffer performance degra
dation in challenging visual conditions, such as low-light environments 
and/or fast camera motion, which can lead to motion blur or imaging 
failures in RGB images (Dai et al., 2016; Mur-Artal et al., 2015; Mur- 
Artal and Tardós, 2016). Due to the active imaging advantages of 
depth images, depth-only methods (Newcombe et al., 2011; Whelan 
et al., 2016) demonstrate potential in dark environments. These 
methods generally employ gradient descent to directly solve for local 
optima in pose estimation (Bylow et al., 2013; Dai et al., 2016), making 
them prone to tracking failures when fast camera motion leads to highly 
non-linear pose optimization. Zhang et al. (2021) exploited the fact that 
depth images are less affected by fast camera motion (they do not exhibit 
motion blur like RGB images) and achieved tracking of fast-moving 
cameras in lightless environments through random particle swarm 
optimization for pose estimation. However, this method requires pro
cessing high frame-rate dense depth images, and despite the authors’ 
design of particle swarm templates (PST) to accelerate particle sam
pling, it still demands substantial computational resources and energy 
consumption. Building upon this, Gou et al. (2023) devised a planar- 
constrained particle swarm optimization method for pose estimation, 
achieving tracking of high-speed camera motion on resource- 
constrained UAV onboard computing devices and extending the scope 
of scene reconstruction. Their surface reconstruction module is similar 
to the one presented in this paper. Despite the initial success of depth- 
based methods in tracking and mapping applications within chal
lenging conditions, some limitations remain. Firstly, as existing depth- 
only methods rely entirely on geometric information, they inevitably 
fail when consecutive frames lack distinctive geometric features (Gou 
et al., 2023; Zhang et al., 2021). Secondly, depth-based methods become 
ineffective when depth information is severely missing due to light 
reflection or absorption. Lastly, tracking failures can also occur under 
extremely high-speed motion (e.g., ~5m/s in (Zhang et al., 2021)).

2.2. Event-based SLAM

Event cameras, with their potential to overcome the inherent limi
tations of frame-based cameras in challenging conditions such as low- 
light and fast camera motion, have garnered significant research inter
est in the field of vSLAM (Huang et al., 2023). Most event-based vSLAM 
systems follow the basic workflow of PTAM (Klein and Murray, 2007), 
consisting of two main components: camera tracking and mapping, 
which are responsible for estimating camera pose and reconstructing the 
3D scene map, respectively. However, achieving 6 degrees of freedom 
(DoF) pose estimation using event cameras remains a challenging 
problem. Before tackling general 6-DoF pose estimation, researchers 
extensively investigated constrained pose estimation scenarios, such as 
pure rotation (Cook et al., 2011; Gallego and Scaramuzza, 2017; Kim 
et al., 2014; Reinbacher et al., 2017) and planar motion (Liu et al., 2020; 
Peng et al., 2021; Weikersdorfer et al., 2013; Weikersdorfer and Con
radt, 2012) (up to 3-DoF). Kim et al. (2016) proposed a sophisticated 
framework comprising three decoupled probabilistic filters to estimate 
intensity, depth, and pose, respectively, representing the first complete 
6-DoF solution. Subsequently, a series of geometry-based solutions 
(Rebecq et al., 2018, 2017a; Wang et al., 2021) emerged, leveraging 
geometric features in the scene for pose estimation without relying on 
intensity estimation. To fully exploit the temporal resolution advantage 
of event cameras, probability filter-based pose optimization methods 
(Gallego et al., 2016; Kim et al., 2014; Weikersdorfer and Conradt, 
2012) have achieved minimal latency, albeit with complex event rep
resentations. In contrast, frame-based techniques (Bryner et al., 2019; 
Gallego and Scaramuzza, 2017) typically achieve more accurate results 
through non-linear optimization at the expense of latency and suscep
tibility to local optima. Our proposed method employs a frame-based 
filtering approach (particle filtering), enabling globally optimal pose 

estimation while balancing time efficiency and simplicity of event rep
resentation. The aforementioned methods are all based on single event 
camera setups. Zhou et al. (2020) released the first stereo visual 
odometry algorithm for event cameras, ESVO, which provided inspira
tion for the design of our tracking module.

The mapping module in vSLAM aims to reconstruct a sparse, semi- 
dense, or dense 3D map. Generally, event-based vSLAM methods 
consider the 3D map generated from all event data as a semi-dense scene 
map (Rebecq et al., 2017a; Zuo et al., 2022). However, some methods 
(Guan et al., 2022; Kueng et al., 2016) opt to construct efficient sparse 
maps using a subset of events to improve time efficiency and accuracy. 
Since the 2D perspective of an event camera inherently lacks complete 
3D information about the world scene, event-based vSLAM algorithms 
typically cannot generate dense 3D maps (Huang et al., 2023). Overall, 
the map information obtained solely from events is usually of poor 
quality, motivating our proposed hybrid depth-event dense reconstruc
tion method.

2.3. Hybrid camera-event solutions

Due to the complexity of event data, event cameras are often used in 
conjunction with other sensors in vSLAM, such as IMUs (Gentil et al., 
2020; Mueggler et al., 2017b; Zhu et al., 2017), standard cameras, or 
depth cameras. This paper focuses solely on the combination of event 
cameras and depth cameras. Since intensity images (i.e., RGB images) 
provided by standard cameras contain rich static features, while event 
cameras offer high temporal resolution, an intuitive approach is to 
extract features from intensity images and track them using event data 
(Gehrig et al., 2018; Kueng et al., 2016; Tedaldi et al., 2016). Commonly 
used features include point features (Alzugaray and Chli, 2018; Li et al., 
2019; Mueggler et al., 2017a; Vasco et al., 2016) and line features 
(Chamorro et al., 2022; Everding and Conradt, 2018; Guan et al., 2022; 
Valeiras et al., 2019). However, methods relying on intensity images as 
the core do not fully leverage event data and may fail due to motion blur. 
To address the challenge of insufficient effective feature extraction 
caused by image blur, several methods that process images and events 
separately have been proposed (Mahlknecht et al., 2022; Rebecq et al., 
2017b; Vidal et al., 2017). However, these methods often lead to inac
curate local event maps and severe robustness issues if adverse visual 
conditions persist for extended periods or in environments where in
tensity images are unavailable (e.g., dark environments). Weikersdorfer 
et al. (2014) extended their previous work (Weikersdorfer et al., 2013) 
by incorporating depth information to adapt to extreme conditions. 
However, their method is based on an outdated low-resolution event 
camera model, operates within limited scene sizes, and cannot generate 
dense 3D maps. A recent work introduced DEVO (Zuo et al., 2024, 
2022), a visual odometry algorithm combining a high-resolution event 
camera and a depth camera to accurately construct semi-dense 3D local 
maps. Due to the highly non-linear nature of the problem caused by 
large rotations resulting from fast camera motion, the gradient descent 
method used by DEVO to directly optimize the equations struggles to 
perform well in such conditions. Furthermore, direct optimization 
methods can only achieve local optima (Zhou et al., 2020). Additionally, 
DEVO estimates pose by merging multiple local maps into a global map, 
which can accumulate errors over time. To the best of our knowledge, 
our work represents the first depth-event dense SLAM method based on 
a random optimization framework.

3. Preliminaries

This section provides an overview of our proposed hybrid depth- 
event dense SLAM framework based on random optimization, fol
lowed by a detailed description of the pre-processing steps and methods 
required for both depth and event data.
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3.1. Framework overview

The proposed DEveFusion comprises three main components: data 
preparation, surface reconstruction, and pose estimation. Its workflow is 
illustrated in Fig. 2. During the data preparation stage, the input event 
stream is represented as a time surface map (TSM) for efficient and ac
curate edge extraction and alignment. Concurrently, surface measure
ments are performed on the input depth image to obtain spatial positions 
and structural information for 2D pixels, which are then aligned with the 
TSM edges, denoted as E . Details of data preparation are presented in 
Sections 3.2 and 3.3, respectively. In the surface reconstruction stage, a 
hierarchical voxel map, S , representing the scene is reconstructed using 
the vertices map with edge information (VME), denoted as V e, obtained 
from the surface measurements. Scene edge information is stored within 
voxels and dynamically updated during subsequent processes, as 
detailed in Section 4. Surface reconstruction relies on a stable and ac
curate camera pose, s*, thus pose estimation runs in parallel with surface 
reconstruction. The pose estimation module takes the partition normal 
map (PNM), P , and V e from surface measurements, as well as the 
reconstructed scene map, S , and its 3D edges, S e, as inputs. Tracking is 
performed by constructing a truncated signed distance field (TSDF) (cf. 
Section 5.2) and a time surface distance field (tsDF) (cf. Section 5.3) 
within the current visible region. Based on a pre-sampled particle 
swarm, we intelligently sample and evaluate particle energy values 
within TSDF and tsDF. During the optimization process, we minimize 
the particle energy within the joint TSDF and tsDF field (cf. Section 5.4) 
to progressively converge towards the optimal solution, thereby 
achieving pose optimization. Finally, we extract the dense scene 
reconstruction result from the global voxel map.

3.2. Time surface maps

We represent an event mathematically as ei = [ xi, ti, pi ]
T
, i ∈ N, 

where ei denotes an event with polarity ti occurring at location xi at time 
pi. Since individual event data carries limited information and is sus
ceptible to noise, events are often transformed into alternative repre
sentations to aggregate meaningful information for vSLAM, thereby 
improving the signal-to-noise ratio (Huang et al., 2023). Within regular 
time intervals, events are commonly aggregated into three potential 
representations: voxel grids (Mostafavi et al., 2021; Zhu et al., 2018b), 
event frames (Rebecq et al., 2017a; Ye et al., 2020), and time surface 
maps (TSM) (Lagorce et al., 2017). In this paper, we adopt the TSM 
representation for events to efficiently and accurately perceive edge 
information within the scene.

A TSM, T (x, t), is a 2D image, Ie, where the value at each pixel 
location, x, is determined by an exponential decay function: 

T(x, t) = exp
(

−
t − tlast(x)

τ

)

,# (1) 

where t represents the timestamp at any given moment, and tlast(x) ≤ t 
represents the timestamp of the last triggered event at location x. A 
larger T (x, t) value indicates a more recent event, represented by 
brighter pixels during visualization (as shown in Fig. 1), thereby 
emphasizing locations with recent motion. τ is a decay rate constant 
determined empirically in experiments.

3.3. Depth surface measurement

Similar to our previous work, the purpose of surface measurement is 
to pre-process the input depth image, Id, and generate the vertices map, 
V , normal map, N , and partition normal map, P , required for subse
quent steps (cf. (Gou et al., 2023) Section 3.1 for a detailed explanation). 
In this paper, we introduce a crucial addition by incorporating edge 
information to guide map reconstruction and camera tracking. There
fore, we propose the construction of a vertices map with edge infor
mation (VME).

We build the VME for the current depth frame in two steps. First, let 
T dep( • ) = T

(
•, tdep

)
be the TSM generated from the event stream at 

the exposure time of the depth image, Id. We select E dep =
{
xs.t.

T dep(x) > δ
}

as edge pixels, based on the assumption that high-gradient 
edges in the TSM are more likely to trigger events. δ is a threshold 
constant, and balancing τ and δ helps prevent the extracted edges from 
being too thin and ensures close alignment with the true edges. Then, we 
warp the pixels in the depth map, Id, to E dep using a simple reprojection 
formula(Gou et al., 2025; Zuo et al., 2024), as follows: 

xe = KeT • Id
(
xd) • K− 1

d xd,# (2) 

where Ke/d are the pre-calibrated intrinsic matrices of the event and 
depth cameras, respectively. The transformation matrix, T, between the 
two sensors is obtained through extrinsic calibration of the event and 
depth cameras. xd represents an arbitrary point in the depth map, Id

(
xd)

is its corresponding depth value, and xe is its corresponding point on the 
TSM. We determine whether xe belongs to the pixel set E dep. If so, the 
corresponding depth pixel, xd, is marked as an edge point on the vertices 
map; otherwise, no action is taken. Finally, we obtain a vertices map 
with edge information, V e.

4. Surface reconstruction

Unlike other event-based mapping methods that acquire sparse or 
semi-dense scene point clouds, our hybrid depth-event module re
constructs a dense 3D map. To improve algorithm efficiency and 
conserve graphics processing unit (GPU) memory, we construct a hier
archical sparse representation for the scene surface and maintain a dy
namic submap within the active space (c.f. Section 4.1). Furthermore, to 
ensure consistent edge reconstruction, we propose an edge-weighted 
reconstruction and fusion method (c.f. Section 4.2).

4.1. Surface representation

We construct a multi-resolution level voxel representation for the 
scene based on surface roughness, utilizing a hash table for efficient 
access to voxels at each level. Initially, we divide the voxel size into three 
resolution levels, L0,L1, and L2, from coarse to fine, assigning different 
levels of voxels within the volume for depth measurements from the 
depth image. Notably, if edge measurements from the VME are assigned 
to the coarsest level, L0, it indicates that these edge details cannot be 
captured by the depth camera (e.g., graffiti on a wall). Prioritizing these 
points for pose estimation enhances system robustness, as discussed in 

Fig. 2. Overview of our proposed simultaneous localization and dense mapping 
(Dense SLAM) pipeline.
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detail in Section 5.4. If a voxel corresponding to a depth measurement in 
the current frame has already been allocated, its data is globally fused 
with historical data, as detailed in Section 4.2. After voxel memory 
allocation, we quantitatively assess the roughness of all surface voxels to 
determine whether they need to be subdivided to a finer level or merged 
into a coarser level.

We employ an efficient bi-directional GPU-CPU data stream scheme 
(Kähler et al., 2015; Nießner et al., 2013) to manage the reconstructed 
volume. We introduce the concept of “active space,” which refers to the 
map space within the field of view of the current camera. The recon
struction results within the active space are referred to as the view 
frustum dense map (VFDM), as illustrated in Fig. 3. During system 
operation, we dynamically transfer voxels in the inactive space to CPU 
memory. When these voxels reappear within the active space, they are 
reloaded into GPU memory.

4.2. Surface fusion

For voxels observed multiple times by different frames, we fuse and 
update their internally stored values to maintain global consistency in 
the reconstruction. In previous voxel-based dense reconstruction sys
tems, voxel internal parameters typically only include the TSDF value, F, 
and its weight, Wf (Newcombe et al., 2011). Unlike previous methods, 
we introduces a novel approach by incorporating edge attributes, E, and 
their weights, We, as voxel parameters, enabling them to participate 
throughout the scene surface reconstruction and update process to 
effectively leverage edge information from events. If a spatial point, p, is 
observed as an edge point in the k-th frame, Ek(p) is set to “true” and 
remains unchanged in subsequent updates. For the edge point weight, 
Wk

e (p), we define an efficient update method: 

Wk
e (p) = Wk− 1

e (p) + WRk
e (p),# (3) 

where we simply set WRk
e (p) = 1, and Wk− 1

e (p) represents the weight 
from the last time p appeared in the VFDM. In practice, we observe that 
due to minor errors in edge extraction, the same 3D point might be 
identified as an edge point in some frames’ VFDMs but not in others. Our 
proposed edge weight update method effectively handles this situation. 
During particle adaptability evaluation (c.f. Section 5.4), we prioritize 
edge points with larger weights, minimizing the adverse effects of edge 
extraction errors without incurring additional computational costs. We 

utilize the method from our previous work (Gou et al., 2023) to update F 
and Wf .

5. Pose estimation

This section defines the pose estimation problem based on particle 
swarm optimization (c.f. Section 5.1) and describes the construction of 
the TSDF (c.f. Section 5.2) and tsDF (c.f. Section 5.3) for particle 
filtering. In Section 5.4, we further elaborate on how to combine the 
energy functions of the TSDF and tsDF to guide the particle swarm 
covers the optimal solution, thus achieving pose optimization.

5.1. Problem statement

Building upon the VFDM generated by the surface reconstruction 
module, we can now elaborate on the 6-DoF pose estimation module. We 
employ particle swarm optimization (PSO) for pose estimation. PSO is a 
random optimization method that transforms the objective function into 
a target probability density function (PDF). It then simulates the PDF by 
randomly generating a set of particles through sequential importance 
sampling and utilizes swarm intelligence to guide their movement, ul
timately aiming for the sampled particles to cover the optimal value of 
the objective function. Since particle swarm sampling and updating are 
computationally expensive, we utilize a PST for sampling and updating. 
Notably, the core of PSO lies in designing an effective system dynamic 
function to drive the particle swarm towards favorable local optima.

Given an aligned depth image, It
d, and a time surface map, It

e, at time 
t, as well as the current VFDM, S t, our task is to compute the 6-DoF 
camera pose, [Rt |tt ] ∈ SE(3), of It

d and It
e in the global coordinate sys

tem, where R ∈ SO(3) and t ∈ R3 represent the 3D rotation and trans
lation in the global coordinate system, respectively. In PSO, we define 

the state as the camera pose, s = (R, t) =
(

qx, qy, qz, x, y, z
)

, where 
(

qx,

qy, qz

)
are the imaginary parts of the rotation quaternion, and t =

(x, y, z)T. We pre-sample a fixed number of particles uniformly in the 6D 
state space, referred to as the particle swarm template (PST) (Zhang 
et al., 2021), denoted by Ω. Our objective is to find the optimal camera 
pose, (R*, t*) ∈ Ω, that maximizes the likelihood of observing It

d and It
e: 

(R*, t*) = argmax
R,t

(
It
d, I

t
e|R, t

)
.# (4) 

Fig. 3. Illustration of the view frustum dense map (VFDM). The green area is the VFDM of the k-th depth frame, which represents the dense reconstruction visible 
within the field of view of the current depth image. The orange box represents the dense reconstruction of the corresponding pixel area on the depth image. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

G. Gou et al.                                                                                                                                                                                                                                     



ISPRS Journal of Photogrammetry and Remote Sensing 223 (2025) 328–343

333

To achieve this, we define a new particle fitness evaluation function, 
F

(
si

t
)
, also known as the system dynamic function, which assesses the 

fitness of It
d and It

e to S t under the i-th particle state in Ω. This function 
drives the PST’s movement and scaling, ultimately leading to the pro
gressive coverage of the optimal solution. F

(
si

t
)

is defined as: 

F
(
si

t
)
= λ1G TSDF + λ2G tsDF,# (5) 

where the two energy terms, G TSDF and G tsDF, represent the TSDF and 
tsDF, respectively. The parameters λ1 and λ2 are system adaptive pa
rameters that can be dynamically adjusted according to changes in the 
scene without manual intervention, as detailed in Section 5.4.

5.2. Particle fitness by TSDF

Our TSDF energy function for particle fitness evaluation is based on a 
depth frame-to-model error metric. This method assesses the quality of a 
particle, i, represented by its pose state, 

[
Ri|ti], by measuring the 

alignment between Id and the TSDF within the VFDM. For each pixel, 
xd

uv, in Id with a depth value of Id
(
xd

uv
)
, we can obtain its corresponding 

3D point, Pd
uv, in the current frame’s camera coordinate system: 

Pd
uv = Id

(
xd

uv
)
•K− 1

d xd
uv.# (6) 

In the surface measurement module, we store the value of Pd
uv in the 

corresponding pixel of the vertices map, V . Then, we transform the 
points in V to the global coordinate system based on 

[
Ri|ti]: 

Pg
uv = RiPd

uv + ti.# (7) 

Next, we use these projected points to query the TSDF values, ψ
(
Pg

uv
)
, in 

the VFDM. If the camera pose is correct, the sum of all projected points’ 
TSDF values should be close to zero, as the TSDF represents the distance 
from a spatial point to the scene surface (Newcombe et al., 2011). 
Therefore, our objective can be transformed into finding the camera 
pose, [R*|t*], that minimizes the distance between each 3D point in V 

and the zero-crossing surface of the TSDF: 

(R*, t*) = argmin
R,t

∑

(u,v)∈V
ψ
(
Pg

uv
)2
.# (8) 

In implementation, unlike previous methods, we select edge pixels from 
the projected vertices map with edge information, V e, to reduce the 
computational burden of fitness evaluation, which is typically the most 
time-consuming part of random optimization. To avoid erroneous low 
overall TSDF values caused by an insufficient number of valid projected 
points, we normalize the sum of TSDF values: 

(R*, t*) = argmin
R,t

∑
(u,v)∈V e

ψ
(
Pg

uv
)2

⃒
⃒Oe

d

⃒
⃒

,# (9) 

where Oe
d is the set of valid edge 3D points in V e that participate in 

fitness evaluation, i.e., the edge pixels that overlap between the current 
and previous depth frames. Our optimization objective is to minimize 
Eq. (9). Therefore, we define the objective function, G TSDF, within the 
TSDF as: 

G TSDF = exp

⎛

⎝ −

∑
(u,v)∈Oe

d
ψ
(
RiPd

uv + ti
)2

⃒
⃒Oe

d

⃒
⃒

⎞

⎠.# (10) 

5.3. Particle fitness by tsDF

Building on the geometric 3D-2D registration method for maps and 
events (Zhou et al., 2020), we define a novel model-to-frame error 
metric based on the tsDF. This error metric is utilized in random 

optimization to evaluate the fitness of particle states, representing one of 
the most significant contributions of this work. This metric assesses the 
alignment between edges in Ie and model edges under the state 

[
Ri|ti]. 

Unlike previous methods that rely on aligning semi-dense maps gener
ated from edge depths with events (Zuo et al., 2024), our approach can 
accurately and efficiently extract 3D edge points from an arbitrary voxel 
map to establish correspondences with events, making it suitable for 
dense reconstruction.

The TSM encodes the motion history of scene edges, with higher 
values at current edge locations compared to previous ones. Conversely, 
the inverse TSM exhibits smaller values at edges in the current frame. 
Therefore, we define the tsDF at time tcur as: 

T ( • ) = 1 − T(•, tcur).# (11) 

For each reconstructed edge point, Pe
m, in the VFDM, we can transform 

its coordinates to the camera coordinate system using 
[
Ri|ti] and then 

project it onto the TSM to obtain the 2D projection point, xe
uv, of the 

reconstructed edge point: 

xe
uv = Ke

(
Ri − 1( Pe

m − ti)
)
,# (12) 

where Ke is the intrinsic matrix of the event camera. Consequently, we 
define the objective function, G tsDF, within the tsDF as: 

G tsDF = exp

⎛

⎜
⎝ −

∑
m∈S e

T

(
Ke

(
Ri − 1( Pe

m − ti
) ))2

|S e|

⎞

⎟
⎠,# (13) 

where S e is the set of valid 3D edge points in the current frame’s VFDM 
that are visible in the previous frame’s VFDM. In implementation, we 
determine this visibility relationship by checking whether the voxels in 
the current VFDM have undergone GPU-CPU data exchange. Notably, if 
a projected point has no corresponding pixel value, x̃, on the TSM, i.e., 
T (x̃, t) = 0, then T (x̃, t) = 1. This indicates that the model edge point 
has no corresponding edge on the TSM, significantly reducing the fitness 
of G tsDF.

5.4. Joint fitness evaluation

We innovatively propose jointly evaluating particle fitness using 
both the G TSDF and G TSDF energy terms. To achieve this joint evaluation, 
we define adaptive parameters, λ1 and λ2, in Eq. (5). The main idea is to 
weight the contribution of each energy term based on the voxel edge 
attributes (geometric or intensity edges). We first select a certain num

ber, N, of 3D points based on the edge weights, Wcur
e

(
pj

)
, j ∈ N, of each 

voxel in the current VFDM, in descending order, for projection and 
fitness calculation. This approach reduces the influence of edge uncer
tainty on fitness calculation while lowering computational costs. Then, 
we calculate the proportion, ω, of voxels at level L0 within the selected 
set of edge voxels: 

ω =
Np

N
,# (14) 

where Np is the number of voxels at level L0 in the voxel set. The 
magnitude of the parameter ω reflects the planar intensity edge infor
mation that the depth camera cannot effectively capture. This infor
mation helps to improve the robustness of visual odometry in scenes 
with degraded geometric features. Therefore, under the same condi
tions, the voxel set should prioritize including such 3D points. It is 
important to note that we limit the range of ω to 0.5 ≤ ω < 1. This is 
because when the ω decreases, it indicates that there are rich geometric 
features in the scene, and edge voxels contain both intensity edges and 
geometric edges. Therefore, in this case, we adopt equal weights to 
evaluate the merits of particles, that is, the evaluation results of particles 
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are determined by two energy terms with the same weights, to ensure 
the accuracy of pose estimation. Another possibility for a decrease in the 
ω is that both geometric features and intensity features in the scene are 
degraded. At this time, we also use equal weights to handle the particle 
optimization problem to avoid over-reliance on any one feature, thereby 
ensuring the stability of the algorithm. Thus, we define: 

λ1 = 1 − ω, λ2 = 1 − λ1.# (15) 

It is evident that the adaptive parameters λ1 and λ2 are continuously 
adjusted; this dynamic adjustment of parameters will be maintained 
throughout the entire operational cycle of the system without requiring 
manual intervention. It is worth noting that the TSM is defined as an 
exponential decay function of time in Eq. (1), limiting the tsDF values to 
the range of 0 to 1. In contrast, the TSDF directly records the distance 
from a point to the zero-crossing surface. Therefore, we also need to 
normalize G TSDF: 

G TSDF = exp

⎛

⎝ −

∑
(u,v)∈Oe

d
ψ
(
RiPd

uv + ti
)2

μ2
⃒
⃒Oe

d

⃒
⃒

⎞

⎠,# (16) 

where μ is the truncation distance of the TSDF (Newcombe et al., 2011). 
In implementation, both energy terms, G TSDF and G TSDF, are calculated 
concurrently. Fig. 4 illustrates our pose estimation process. Before par
ticle fitness evaluation, we filter the original particle swarm template, Ω, 
to obtain a candidate particle set (CPS) and utilize the PNM for fast 
coarse localization (Gou et al., 2023) to improve the efficiency of 
random optimization. Similar to (Zhang et al., 2021), driven by our 
designed system dynamic function, the PST is iteratively scaled and 
moved until the optimal pose, [R*|t*], is found: 

[R*|t*] =
(
si

t |max
(
F

(
si

t

) ) )
= max(λ1G TSDF + λ2G tsDF).# (17) 

6. Experimental evaluation

All our experiments were conducted on an embedded computing 
device, the NVIDIA Jetson Orin NX 16 GB. This device features an octa- 
core ARM Cortex-A78AE CPU, is equipped with 16 GB LPDDR5 RAM, 
and has an NVIDIA Ampere architecture GPU with 1024 CUDA cores, 
providing a computational power of 100 TOPS. Its compact size and 
lightweight design make it particularly suitable for use in small un
manned aerial vehicles. We set the voxel resolution to three levels: L0 =

8mm,L1 = 4mm,L2 = 2mm. L2 offers a very high level of detail, enabling 

dense 3D reconstruction with a maximum spatial resolution of 2mm. We 
found that setting the truncation range of the TSDF to three times the 
voxel size of level L0, i.e., μ = 24mm, yields favorable reconstruction 
results. These parameters can be adjusted flexibly according to specific 
task requirements.

To comprehensively evaluate the performance of our proposed 
method, we designed a series of experiments, comparing it with existing 
methods both quantitatively and qualitatively. To enhance the credi
bility of the experimental results, we did not apply any additional code 
acceleration optimizations to the proposed method and ensured that the 
same input data was used for comparison with other methods. To ensure 
the best performance of competing methods, we strictly adhered to the 
default parameter settings provided by their authors. Additionally, we 
conducted ablation studies to validate the core design of our method, 
analyzing the contributions and roles of each module.

6.1. Benchmark

To validate the effectiveness of our proposed method more broadly, 
we investigated relevant datasets. Publicly available datasets like 
MVSEC (Zhu et al., 2018a), VECtor (Gao et al., 2022), and ViViD++ (Lee 
et al., 2022) provide synchronized event streams and depth camera se
quences (or alternatives to depth cameras), along with ground-truth 
trajectories. Specifically, MVSEC offers sequences with varying motion 
speeds under the same scene and lighting conditions. ViViD++ includes 
sequences with different motion speeds and illumination conditions 
within the same scene. VECtor provides diverse sequences with varying 
motion speeds, texture features, and illumination conditions, as sum
marized in Table 1. We tested our proposed method against state-of-the- 
art (SOTA) approaches on these sequences and extended the experi
mental scope to several large-scale, self-collected sequences to 
comprehensively validate its performance.

We introduce a self-collected dataset called DEveSet, which com
prises sequences with diverse texture, motion, and lighting conditions. 
The scenes are named karst、maze, and garage, respectively. The karst 
scene is located in an underground karst cave, maze features outdoor 
labyrinth walls with graffiti, and garage is situated in an urban under
ground parking lot. Data acquisition was performed in each scene under 
varying motion speeds, with illumination conditions categorized as 
light, dim, and dark. The karst cave has dim lighting, the garage has 
ample lighting, and the maze scene was captured during both daytime 
and nighttime. These sequences were collected using a custom-designed 
multi-sensor system consisting of a high-resolution event camera 

Fig. 4. Overview of our proposed pose estimation pipeline. Black arrows represent data flow within the data pre-processing module. Purple arrows indicate the data 
flow for filtering the Candidate Particle Set (CPS), which is a preparatory step for particle swarm optimization. Green and orange arrows represent the data flow for 
particle fitness evaluation using the TSDF and tsDF, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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(Prophesee EVK4) and an RGB-D sensor (Intel Realsense D435i), with 
detailed specifications listed in Table 2. The multi-sensor system was 
deployed on both handheld and UAV platforms (as shown in Fig. 5) and 
underwent rigorous intrinsic and extrinsic calibration using calibration 
tools (Gao et al., 2022; Oth et al., 2013). Given the difficulty of capturing 
camera trajectories under limited illumination and high-speed motion 
using visual motion capture systems, we adopted a similar approach to 
previous studies (Zhang et al., 2021) and acquired high-precision 3D 
laser-scanned dense reconstruction models of the scenes as ground- 
truth. The accuracy of pose estimation is indirectly evaluated by 
calculating the error between the dense reconstruction model and the 
laser-scanned model.

6.2. Comparisons with SOTA in challenge condition

We compared our proposed method with the current SOTA methods 
InfiniTAM (Prisacariu et al., 2017), ROSEFusion (Zhang et al., 2021), 
Canny-EVT (Zuo et al., 2024), and DEVO (Zuo et al., 2022). InfiniTAM 
and ROSEFusion utilize depth-only data as input; Canny-EVT in
corporates both event and RGB data; while DEVO, most similar to our 
method in terms of input, uses depth maps and event data, as shown in 
Table 3. All methods utilize event camera and RGB-D camera data as 
input. We first conducted a qualitative comparison of the methods’ 
performance, followed by a quantitative evaluation of our proposed 
method against the SOTA in terms of density, accuracy, and efficiency.

A qualitative comparison with the SOTA methods provides an intu
itive assessment of our proposed method’s performance. We selected 
two challenging illumination sequences, ViViD++_aggressive_dim and 
VECtor_hdr_fast, from public datasets with ground-truth trajectories to 
compare the trajectory tracking performance of different methods, as 
shown in Fig. 6. The results demonstrate that DEveFusion outperforms 
other competing methods across all sequences.

Although Canny-EVT utilizes event inputs with high dynamic range 
and high temporal resolution, its camera tracking module relies on a 
semi-dense edge 3D reconstruction created by monocular ORB-SLAM 
(Mur-Artal et al., 2015). However, due to insufficient scene illumination 
and the highly dynamic nature of platform motion, the tracking per
formance of monocular ORB-SLAM is significantly affected by motion 
blur and a lack of edge features. As a result, it fails to generate the semi- 
dense map required for effective Canny-EVT tracking, thereby hinder
ing accurate camera localization. This is because stable and reliable 
texture features are difficult to capture under such conditions. In 

contrast, methods relying on depth as input are more adaptable to light- 
limited environments as depth sensors actively capture the scene’s 
geometric features. However, methods solely dependent on geometric 
feature information for pose estimation experience tracking failures 
when encountering geometrically degraded scenes (e.g., VECtor_hdr_
fast), even with abundant intensity features present.

Our DEveFusion method fuses both depth and event data for pose 
estimation. When geometric features are degraded, the intensity edges 
captured by the event sensor significantly enhance the system’s 
robustness. DEVO, which also utilizes depth and event data as input, 
demonstrates good camera tracking performance in geometrically 
degraded scenes as long as stable intensity features exist and supports 
faster linear camera motion speeds (>1 m/s). Unfortunately, the crea
tors of DEVO have not publicly released their code for testing. However, 
their report (Zuo et al., 2022) indicates that the DEVO system becomes 
vulnerable when the camera moves with high angular velocities 
(approximately > 2 rad/s), struggling to handle large-magnitude rota
tional motion. This is because the highly non-linearity introduced by 
large rotations hinders the convergence of gradient descent methods, 
leading to tracking failures. Large-magnitude rotational motion is 
prevalent in agile UAV movements, especially in indoor scenarios. Our 
proposed DEveFusion addresses the pose estimation problem with 
depth and event data fusion through PST filtering within a unified 
random optimization framework, significantly improving the system’s 
pose estimation capabilities in complex environments.

Canny-EVT and DEVO ultimately generate semi-dense point clouds, 
lacking detailed scene information, while InfiniTAM, ROSEFusion, and 
our proposed DEveFusion achieve dense reconstruction, as indicated in 
Table 3. We focus our comparison on the dense reconstruction results 
and conduct a qualitative evaluation of these three dense reconstruction 
methods on our self-collected dataset, DEveSet, as shown in Fig. 7. We 
select three sequences: karst_uneven_mid with mid-speed motion, gara
ge_empty_fast with fast motion, and maze_night_fast, covering diverse 
motion speeds, environmental features, and illumination conditions. 
The results demonstrate that our DEveFusion successfully reconstructs 
these three challenging scenes, while the other two methods fail.

ROSEFusion can track fast camera motion within a specified range, 
but reconstruction is terminated when the camera trajectory exceeds the 
preset cube, limiting its applicability in large-scale scenes (e.g., kar
st_uneven_mid). The maze_night_fast sequence is particularly challenging 
as the scene consists almost entirely of flat graffiti walls, lacking struc
tural variations. This leads to severe degradation of depth sensor mea
surements, rendering InfiniTAM and ROSEFusion, which rely solely on 
structural information, unable to achieve successful reconstruction. 
Despite this, our method still achieves good reconstruction quality, 
thanks to our hybrid algorithm and the graffiti features on the walls. 
When the depth camera input deteriorates, the scene intensity features 
captured by the event camera maintain the robustness of the system. The 
garage_empty_fast sequence is also challenging as it contains only a few 

Table 1 
Statistics on scene characteristics (maximum linear velocity vmax, maximum angular velocity ωmax, illumination situations Illum., geometric Geo.Feat. and texture 
Tex.Feat. features) for different benchmark datasets.

Sequences vmax(m/s) ωmax(rad/s) Illum. Geo.Feat. Tex.Feat.

MVSEC_indoor_flying 2.00 1.12 light poor rich
ViViD++_aggressive 1.62 2.11 light/dim/dark mid mid
VECtor_robot_fast 1.62 3.77 light mid mid
VECtor_desk_fast 1.73 2.55 light rich rich
VECtor_sofa_fast 1.73 2.51 light rich rich
VECtor_hdr_fast 0.91 2.26 dim poor rich

VECtor_mountain_fast 1.45 2.57 light poor rich
DEveSet_garage_full 2.43 4.58 light rich mid

DEveSet_garage_empty 2.61 4.37 light poor poor
DEveSet_maze_day 4.29 5.73 light poor rich
DEveSet_maze_night 3.58 5.02 dark poor rich
DEveSet_karst_flat 3.14 4.85 dim mid poor

DEveSet_karst_uneven 2.38 4.29 dim rich poor

Table 2 
Specifications of sensors used in the custom sensor setup.

Sensor Resolution Frame Rate

Intel Realsense D435i 640 × 480 30 FPS
Prophesee EVK4 1280 × 720 −
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repetitive structures and lacks sufficient intensity features, causing some 
drift in our method as well. Since our current system does not include 
loop closure detection and global optimization modules, it is unable to 
correct pose drift, resulting in localized distorted deformations in the 
reconstruction, as shown in Fig. 7. In the quantitative assessment of pose 
estimation accuracy, the errors are also significantly higher than those of 
other sequences, as indicated in Table 5. The intense and abrupt motion 
leads to significant pose differences between consecutive frames, 
causing non-linear optimization methods that rely on initial values to 
fall into local optima or even fail to converge. This is one of the reasons 
why InfiniTAM cannot provide competitive results on fast camera mo
tion sequences. Although ROSEFusion exhibits significant advantages 
in tracking fast camera motion, its success heavily relies on rich geo
metric features in the scene. Large flat walls and ground are the primary 
causes of its system crashes. The highly intertwined nature of its tracking 
and mapping modules contributes to the failure of reconstruction in such 
challenging scenarios.

Our quantitative comparison experiments evaluate the performance 
of DEveFusion against SOTA methods in terms of accuracy and speed. 
We utilize the absolute trajectory error (ATE) metric to assess the ac
curacy of different methods on publicly available datasets with ground- 
truth trajectories. The results are summarized in Table 4. Overall, our 
method demonstrates the best performance. Except for ROSEFusion, all 
other compared methods failed to complete tests on all sequences in the 
public datasets. The primary reasons for tracking failures are chal
lenging lighting conditions, motion speeds, and scene textures.

In Table 4, the fast motion in the MVSEC sequences is the main cause 
of failure for Canny-EVT and InfiniTAM. Moreover, the degradation of 
geometric features in the scene also has a detrimental effect on Infin
iTAM, which relies entirely on geometric features for tracking. Thanks 
to its random optimization framework, ROSEFusion successfully tracks 
all sequences, but its tracking accuracy is significantly compromised by 
geometric feature degradation. Our method maintains system stability 
and accuracy by relying on abundant intensity features in the scene 
when encountering geometric information degradation. The ViV
iD++_aggress. sequence is extremely challenging due to the fast camera 

motion in a feature-poor environment, leading to tracking failures for 
Canny-EVT and InfiniTAM. The tracking accuracy of our method is also 
affected but remains superior among the compared methods. Unlike 
MVSEC and ViViD++, the small-scale sequences in the VECtor dataset 
reduce the difficulty of tracking. The favorable illumination conditions 
also increase the likelihood of success for methods relying on photo
metric information, enabling Canny-EVT to perform well on these se
quences. Our method, utilizing both depth and event information as 
input, maintains high robustness and competitive tracking accuracy. 
This is attributed to our proposed hybrid depth-event random optimi
zation framework.

The plots in Fig. 8 provide a detailed analysis of per-frame pose ac
curacy for six representative sequences. Specifically, we use the trans
lation error (TE) (rotation error manifests as translation error during 
camera movement) to measure the pose error for each frame and plot the 
percentage of frames with pose TE below different thresholds. The re
sults demonstrate that our method achieves more accurate per-frame 
pose estimation compared to the three competing methods. In the 
highly challenging sequence (ViViD++_aggress.), the per-frame pose 
accuracy of all methods declines. However, within an error threshold of 
less than 20cm, our method still achieves a 50 % success rate for tracked 
frames. Under the same conditions, ROSEFusion’s success rate is less 
than 9 %, while InfiniTAM fails to complete all tracking tasks.

In Table 5, we further compare the performance on 12 self-collected 
sequences. Since these sequences only provide LiDAR-based ground- 
truth reconstructions, we focus on evaluating the reconstruction quality, 
specifically completeness and accuracy relative to the ground-truth 
reconstruction. The reconstruction quality is most intuitively reflected 
in the completeness of the scene model. The experimental results 
demonstrate that our method consistently outperforms the other two 
alternative methods in challenging environments. The visual results of 
the dataset reconstruction are presented in Fig. 7.

The completeness of the model reflects the robustness of the corre
sponding system in the scene. Its value is closely related to the scene’s 
size and the extent of the ground-truth reconstruction. For example, 
even with the same reconstructed area, a larger scene (such as maze) will 
result in a lower completeness value. Under the same scene, varying 
illumination conditions and motion speeds can lead to tracking failures, 
which are the primary cause of reduced reconstruction completeness. 
Additionally, another possibility for incomplete reconstruction is that 
the camera motion exceeds the system’s preset reconstruction range. 
This situation only occurs in methods that require a predefined recon
struction area, such as ROSEFusion’s performance in the two long 
karst_uneven sequences. It should be noted that since the 3D laser scan
ning range is generally larger than the visual sensor’s capture range, the 
scene model completeness values in Table 5 cannot reach 100 %.

We assess the model’s accuracy by calculating the average distance 
between the reconstructed model and the LiDAR-based ground-truth 

Fig. 5. Custom sensor system with event camera and RGB-D sensor mounted on handheld and drone platforms for the self-collected datasets.

Table 3 
Statistics on input data (color image C, depth image D and Event data E), pose 
optimization methods (non-linear optimization n-L and particle filter PF) and 
result map density for different methods.

Canny- 
EVT

DEVO InfiniTAM ROSEFusion DEveFusion

Input 
data

C + E D + E D D D + E

Pose opt. n-L n-L n-L PF PF
Map 

density
Semi- 
dense

Semi- 
dense

Dense Dense Dense
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Fig. 6. Tracked camera trajectories (dotted curves) for two public dataset sequences and the ground-truth trajectories (solid curves) are overlaid for reference 
purpose. Compared to the competing methods, our method provides robust and reliable pose estimation performance.
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reconstruction. In Table 5, our method exhibits superior performance in 
reconstruction surface accuracy compared to the two competing 
methods, indicating that the proposed DEveFusion achieves higher pose 
estimation accuracy in challenging scenarios. It is important to clarify 
that since the reconstruction accuracy only measures the root mean 
squared error (RMSE) of the overlapping (inlier) regions between the 
reconstructed surface and the ground-truth surface, the values for the 
three methods are relatively close. In our evaluation, the inlier threshold 
is set to 15cm.

Our method demonstrates excellent competitiveness under varying 
motion speeds and in scenes with feature degradation. This is attributed 
to the proposed fusion framework, which enables the system to adapt to 
scenes with either geometric or intensity feature degradation, or both. 
For instance, in the garage_empty sequence, where both geometric and 
intensity features exhibit some degree of degradation, the accuracy of all 
compared methods decreases significantly. However, our method still 

completes the reconstruction of the entire sequence. In contrast, the 
other two methods terminate the mapping process shortly after the 
sequence begins due to tracking loss, preventing the accumulation of 
large errors and resulting in accuracy values numerically close to our 
results. This further highlights the advantage of our method in terms of 
global consistency. It is important to note that our system does not yet 
incorporate loop closure detection and global optimization modules. 
Our fusion method also demonstrates impressive performance in 
handling sequences with extremely fast camera motion. For example, in 
the maze_day_fast sequence from the DEveSet dataset, which exhibits the 
highest motion speed, our method shows greater model completeness 
and pose estimation accuracy. This is attributed to the exceptionally 
high temporal resolution of event data, which we incorporate into the 
random optimization pose estimation framework. Even when fast cam
era motion causes significant loss of depth information, the tsDF con
structed based on stable event edges continues to provide effective 

Fig. 7. Dense 3D reconstruction results for three challenge condition scenarios sequences of the self-collected datasets. For each sequence, our method demonstrates 
higher completeness and consistency in the reconstruction results.

Table 4 
Comparing the accuracy (ATE cm) of camera tracking on the challenge sequences of the public datasets. The best and the second-best results are highlighted in bold 
and italic, respectively. ‘-’ indicates that the tracking was failed or no test data.

Sequences Canny-EVT DEVO InfiniTAM ROSEFusion DEveFusion

MVSEC_indoor_flying1 45.6 20.58 − 8.37 9.50
MVSEC_indoor_flying2 79.80 11.33 − 42.37 5.40
MVSEC_indoor_flying3 − 10.60 − 20.53 5.03
MVSEC_indoor_flying4 − 13.16 − 31.05 13.29
ViViD++_aggress._light − − − 35.84 34.85
ViViD++_aggress._dim − − − 53.68 28.24
ViViD++_aggress._dark − − − 30.39 30.84
VECtor_robot_fast 9.07 − 5.37 5.26 4.09
VECtor_desk_fast 5.80 − 10.24 9.98 6.49
VECtor_sofa_fast 1.29 − 22.10 20.54 4.46
VECtor_hdr_fast − − 21.78 14.04 4.62
VECtor_mountain_fast 2.14 − 11.72 11.91 5.65

G. Gou et al.                                                                                                                                                                                                                                     



ISPRS Journal of Photogrammetry and Remote Sensing 223 (2025) 328–343

339

particle evaluation performance, thereby ensuring the stability of the 
pose estimation system.

Our system achieves real-time 3D reconstruction at approximately 
30FPS on an embedded device, comparable to the performance of many 
real-time 3D reconstruction systems running on graphics workstations, 
as shown in Table 6. The SOTA high frame rate 3D reconstruction sys
tem, InfiniTAM, can operate at an ultra-high frame rate exceeding 
1000FPS on advanced graphics workstations and maintains a speed of 
around 60FPS even on resource-constrained embedded devices. ROSE
Fusion achieves a real-time reconstruction efficiency of 30FPS on the 
same workstation, but its frame rate drops below 8FPS in our embedded 
test environment, failing to meet the requirements for real-time recon
struction. This is mainly due to the significant computational overhead 
incurred by particle swarm fitness evaluation during its random opti
mization process. Thanks to our proposed key design elements, our 

system maintains a real-time reconstruction frame rate of approximately 
30FPS even when employing a random optimization method. We will 
elaborate on and analyze this in the ablation experiments (c.f. Section 
6.3).

It is important to note that the frame rate of the system is not con
stant but fluctuates with scene changes. For scenes rich in geometric 
features, the point cloud registration-based InfiniTAM algorithm con
verges more easily, resulting in higher efficiency. Conversely, the frame 
rate of ROSEFusion decreases in geometrically rich scenes. This may be 
because, under the particle fitness evaluation mechanism, scenes with 
simple geometric features are more likely to guide the particle swarm to 
converge rapidly to a local optimum, quickly generating a “less 
rigorous” solution. This is also one of the reasons why such methods 
exhibit decreased accuracy in scenes with simple geometric features. 
The opposite is true for scenes with rich geometric features. The effi
ciency trend of our method across different feature scenes aligns more 
closely with the latter. In summary, our method not only significantly 
improves the accuracy and robustness of pose estimation but also 
maintains high computational efficiency.

Table 5 
Comparing the reconstruction completeness (Compl. %) and accuracy (Acc. cm) 
of alternative methods and our method over the DEveSet dataset. The best and 
the second-best results are highlighted in bold and italic, respectively.

Sequences InfiniTAM ROSEFusion DEveFusion

Compl. Acc. Compl. Acc. Compl. Acc.

garage_full_mid 23.59 8.94 91.32 5.07 90.68 4.28
garage_full_fast 14.52 9.90 90.27 5.89 91.10 4.73
garage_empty_mid 15.92 10.24 14.96 9.57 84.33 9.01
garage_empty_fast 15.21 11.97 15.33 9.88 85.48 9.66
maze_day_mid 9.47 9.52 11.52 10.11 94.39 5.19
maze_day_fast 8.59 9.63 10.90 9.97 93.71 5.07
maze_night_mid 11.29 8.23 9.81 7.14 95.25 4.89
maze_night_fast 9.29 8.03 11.07 7.35 93.22 5.50
karst_flat_mid 28.97 7.18 73.62 6.22 89.31 4.95
karst_flat_fast 12.73 7.37 74.88 6.84 88.63 5.32
karst_uneven_mid 36.16 6.61 44.08 6.92 90.38 4.13
karst_uneven_fast 11.91 8.41 43.37 7.39 91.22 4.77

Fig. 8. Comparing percentage of frames under increasing tolerance of translation error of per-frame pose on six representative sequences of the public dataset. Our 
method achieves significantly higher success rate of per-frame pose tracking than alternative methods.

Table 6 
Comparing the running efficiency (frame per seconds, FPS) of alternative 
methods and our method over the mid-speed sequences of the DEveSet dataset. 
The best and the second-best results are highlighted in bold and italic, 
respectively.

Sequences InfiniTAM ROSEFusion DEveFusion

garage_full_mid 67.82 5.25 31.86
garage_empty_mid 57.76 7.81 33.23
maze_day_mid 60.79 5.40 34.95
maze_night_mid 61.34 5.32 34.28
karst_flat_mid 62.84 5.08 32.32
karst_uneven_mid 74.07 4.57 29.79
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6.3. Ablation studies

We conducted a series of ablation studies to validate the necessity of 
several key design choices in our method. These include the hybrid 
depth-event pose estimation framework, the random optimization-based 
3D-2D edge alignment mechanism, the surface edge update and 
extraction scheme, and the surface edge point selection strategy.

6.3.1. Pose estimation framework
The key to the success of our method in handling motion tracking in 

scenes with degraded geometric features lies in the meticulously 
designed hybrid depth-event pose estimation framework. The core al
gorithm is shown in Eq. (5), through which we incorporate both event 
data and depth information into a unified pose estimation framework. 
To validate the effectiveness of this core algorithm design, we compared 
the complete method with an algorithm that does not include the event 
term (representing our previous work (Gou et al., 2023)). To ensure a 
fair comparison, all methods utilize the same number and resolution of 
PSTs.

To compare with the results in Table 6, we evaluated the perfor
mance of both methods on six mid-speed sequences, including four se
quences with degraded geometric features. Table 7 summarizes the 
reconstruction accuracy and efficiency of the two methods across 
different sequences. The statistics demonstrate that the hybrid method 
achieves a significant improvement in accuracy compared to the depth- 
only method, especially in scenes with degraded geometric features. 
Additionally, the reflection or absorption of light in the environment can 
lead to significant loss of depth information, which may result in a 
decline in system performance or even failure. This adverse effect is 
often present in artificial environments, such as the reflective mirrors 
commonly found in garage scenes, as well as the transparent glass and 
black bodies of vehicles in the garage_full scenario. In this work, we 
categorize both geometric feature degradation and the conditions of 
depth information loss under the term “geometric information de
grades”. In challenging conditions, our method exhibits satisfactory 
robustness, reflected in its near 100 % tracking success rate (TSR). In 
contrast, the depth-only method suffers from a lower TSR due to 
tracking loss. This improvement is attributed to the design of the hybrid 
framework: when geometric information degrades, the event tracking 
mechanism maintains the accuracy and robustness of the system. In 
terms of efficiency, the efficiency of our system decreases slightly 
compared to the depth-only method due to the introduction of more 
observation information, but it still maintains a real-time frame rate of 
30FPS. Overall, our hybrid framework design strikes a good balance 
between performance and efficiency.

6.3.2. Random optimization-based 3D-2D edge alignment
In our core algorithm design, we achieve pose optimization by 

aligning the depth image with the reconstructed model and the recon
structed 3D edges with the 2D edges in the TSM. This problem is 
formulated as a mathematical optimization problem in Eq. (17). The 

alignment method between the depth image and the reconstructed 
model has been discussed in our previous work (Gou et al., 2023), so this 
paper focuses only on the 3D-2D edge alignment between reconstructed 
edges and TSM edges.

We propose to optimize the single-frame camera pose by maximizing 
the observation likelihood instead of using non-linear optimization 
methods commonly used in current event-based SLAM systems (Zuo 
et al., 2024). To validate the effectiveness of our design, we compare the 
accuracy and robustness of the two optimization methods within our 
hybrid framework, as shown in Table 8. In fast-motion sequences, the 
non-linear optimization method exhibits lower reconstruction accuracy, 
as the highly non-linearity makes pose estimation prone to falling into 
local optima. The robustness of the non-linear optimization method also 
faces severe challenges. Its TSR is below 50 % in the maze and karst 
sequences, which contain significant rotational motion. The karst 
sequence is particularly challenging due to its complex natural terrain. 
Our UAV data acquisition platform’s autonomous obstacle avoidance 
and exploration in this scene involve substantial rotational motion, 
leading to the failure of the non-linear optimization method.

6.3.3. Surface edge update and extraction
A prerequisite for performing 3D-2D edge alignment is extracting 

sufficient edges from the dense reconstruction. To improve the accuracy 
and efficiency of edge extraction, a key design in this work is the surface 
edge update and extraction scheme based on edge reconstruction, as 
shown in Eq. (3). We demonstrate the superiority of our method by 
comparing it with a method that directly extracts point cloud edges by 
traversing the dense reconstruction results.

Table 9 presents the comparison results of the two methods in terms 
of tracking accuracy and time consumption. We select representative 
sequences from four test datasets for comparison and implement the 
traversal-based point cloud edge extraction method using functions from 
the Open3D open-source library (Zhou et al., 2018). The point cloud- 
based edge traversal method can only extract sharp geometric edges 
from the dense reconstruction results, while our edge reconstruction 
scheme can dynamically update both geometric and intensity edges of 
the 3D reconstructed surface, as shown in Fig. 9. In sequences with 
degraded geometric features (e.g., MVSEC and VECtor_hdr), the edge 
traversal method leads to sensor tracking failure due to a lack of suffi
cient features. On the other hand, in sequences with relatively rich 

Table 7 
Comparing the accuracy (Acc. cm), running efficiency (frame per seconds, FPS) 
and tracking success rate (TSR %) of the depth-only method and the hybrid 
depth-event method over the mid-speed sequences of the DEveSet dataset. The 
best results are highlighted in bold.

Sequences Depth-only Hybrid depth-event

Acc. FPS TSR Acc. FPS TSR

garage_full_mid 5.49 50.79 94.3 4.28 31.86 100.0
garage_empty_mid 10.78 58.41 15.3 9.01 33.23 97.6
maze_day_mid 9.20 54.29 23.8 5.19 34.95 100.0
maze_night_mid 6.79 52.78 19.4 4.89 34.28 100.0
karst_flat_mid 6.87 49.33 88.6 4.95 32.32 100.0
karst_uneven_mid 7.51 42.97 57.2 4.13 29.79 100.0

Table 8 
Comparing the accuracy (Acc. cm) and tracking success rate (TSR %) of the non- 
linear optimization method and the random optimization method over the fast 
sequences of the DEveSet dataset. The best results are highlighted in bold.

Sequences Non-lin. Opt. Ran. Opt.

Acc. TSR Acc. TSR

garage_full_fast 10.03 75.3 4.73 100.0
garage_empty_fast 13.71 62.9 9.66 91.7
maze_day_fast 11.64 47.9 5.07 100.0
maze_night_fast 10.39 39.8 5.50 95.0
karst_flat_fast 9.42 45.2 5.32 96.3
karst_uneven_fast 9.38 27.1 4.77 100.0

Table 9 
Comparing the accuracy (Acc. cm) and time consumption of the edge traversal 
method and the edge reconstruction method over the representative sequences 
of the test dataset. The best results are highlighted in bold. ‘-’ indicates that the 
tracking was failed.

Sequences Edge traversal Edge recon.

Acc. Time Acc. Time

MVSEC − 6.9 s 5.03 1.9 ms
ViViD++ 56.89 8.1 s 30.84 1.8 ms
VECtor − 6.5 s 4.62 2.1 ms
DEveSet 6.02 7.2 s 4.13 2.6 ms
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geometric features (e.g., ViViD++ and DEveSet_karst_uneven), although 
the comparison method can also extract sufficient geometric edges, the 
edge extraction accuracy limits the improvement of the overall system 
accuracy. Notably, our edge reconstruction scheme can extract edges 
directly from the dense reconstruction results without traversing the 
entire reconstruction, achieving extremely fast edge extraction speed. 
This makes real-time applications of the system feasible.

6.3.4. Surface edge point selection
Complex textures and highly dynamic platform motion have been 

shown to have significant negative impacts on event streams (Zuo et al., 
2024). Furthermore, we also observed that during close-range scanning, 
especially in low-light environments (e.g., DEveSet_maze_night), changes 
in the infrared light emitted by the RGB-D camera are easily captured by 
the event camera, producing noise points in the event stream that are 
difficult to filter out, as shown in Fig. 10(b). Fortunately, our proposed 
weighted edge reconstruction method exhibits strong robustness against 

such random noise points. In our edge point selection mechanism, these 
sporadic random noise points are not selected to participate in the 
particle fitness evaluation calculations because their edge weights are 
unlikely to exceed the weights of true edges. Random edge point se
lection methods are sensitive to noise and easily susceptible to noise 
interference, causing the optimization process to fall into local optima or 

Fig. 9. Edges extracted results: (a) edge traversal method; (b) edge reconstruction method. The latter extracts more intensity edges located on the support plane in 
addition to geometric edges.

Fig. 10. Visualization of (a) an scene image and (b) the aligned TSM after extrinsic calibration, along with corresponding residual maps for randomly selected edge 
points and weighted selected edge points. Gray represent points on the aligned TSM, while colored represent the reprojected points.

Table 10 
Comparing the accuracy (Acc. cm) of the randomly selected edge points strategy 
and the weighted selected edge points strategy over the representative se
quences of the test dataset. The best results are highlighted in bold.

Sequences Rand. Sel. Wgt. Sel.

MVSEC 9.33 5.40
ViViD++ 37.82 28.24
VECtor 5.17 4.09
DEveSet 10.69 4.89
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even fail to converge because the alignment might not correspond to 
actual scene edges. Table 10 demonstrates the impact of weighted and 
random edge point selection strategies on system tracking accuracy. In 
general, when the noise level in the event stream is high, the edge point 
selection strategy has a greater impact on system accuracy; conversely, 
the impact is smaller when the noise level is low.

7. Conclusion and discussion

This paper presents a dense visual SLAM solution suitable for sce
narios where photometric information is unavailable. Event cameras, 
with their high dynamic range, high temporal resolution, and low power 
consumption, are considered a promising alternative vision sensor. 
Recent research has demonstrated the potential advantages of event- 
based visual SLAM in challenging conditions. However, due to their 
reliance on traditional visual SLAM frameworks, these methods have 
limitations in tracking fast motion and adapting to diverse scenes. 
Furthermore, the limited spatial resolution of event data restricts the 
reconstruction of high-quality 3D maps. This paper demonstrates how 
the proposed method effectively utilizes event cameras to overcome 
these limitations.

We have developed a unified hybrid depth-event pose estimation 
framework based on random optimization, capable of effectively 
handling those problems. The complementary combination of depth and 
event information fully leverages both geometric and intensity infor
mation within the scene. The proposed fusion mechanism enhances the 
system’s adaptability to degraded environments. Using depth data, we 
achieve dense 3D reconstruction of the scene and, through the proposed 
edge reconstruction strategy, ingeniously establish a tight coupling be
tween dense reconstruction and pose estimation. In summary, we have 
built a hybrid depth-event dense SLAM system and conducted extensive 
tests in challenging scenarios. The method achieves a good balance 
between performance and efficiency.

We hope that this work will enhance the capabilities of versatile 
intelligent mobile systems in autonomous exploration and mapping 
across various challenging conditions. In future work, we plan to 
incorporate IMU signals to further enhance the system’s robustness and 
reliability in extremely harsh environments where both geometric and 
intensity features are degraded. Integrating IMU signals with visual 
signals within a unified random optimization framework presents an 
exciting research direction. Currently, we are exploring the develop
ment of a loop closure detection and global pose optimization module 
that does not rely on photometric information to eliminate pose drift 
accumulated during prolonged system operation. Another pressing issue 
is how to integrate this method with online 6-DoF motion planning to 
achieve autonomous reconstruction for intelligent mobile systems (e.g., 
UAVs).
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