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Abstract—In this paper, we use two approaches to solve the Perspective-Three-Point (P3P) problem: the algebraic approach and the

geometric approach. In the algebraic approach, we use Wu-Ritt’s zero decomposition algorithm to give a complete triangular

decomposition for the P3P equation system. This decomposition provides the first complete analytical solution to the P3P problem. We

also give a complete solution classification for the P3P equation system, i.e., we give explicit criteria for the P3P problem to have one, two,

three, and four solutions. Combining the analytical solutions with the criteria, we provide an algorithm, CASSC, which may be used to find

complete and robust numerical solutions to the P3P problem. In the geometric approach, we give some pure geometric criteria for the

number of real physical solutions.

Index Terms—Perspective-Three-Point problem, pose determination, analytical solutions, solution classification, geometric criteria,

Wu-Ritt’s zero decomposition method.

æ

1 INTRODUCTION

THE Perspective-n-Point (PnP) problem is originated from
camera calibration [1], [2], [3], [4]. Also known as pose

estimation, it is to determine the position and orientation of
the camera with respect to a scene object from n correspon-
dent points. It concerns many important fields such as
computer animation [5], computer vision [3], automation,
image analysis, and automated cartography [2], photogram-
metry [6], robotics [1], and model-based machine vision
system [7], etc. Fischler and Bolles [2] summarized the
problem as follows:

“Given the relative spatial locations of n control points, and
given the angle to every pair of control points from an
additional point called the Center of Perspective (CP ), find
the lengths of the line segments joining CP to each of the
control points.”

The study of thePnP problem mainly consists of two aspects:

1. Design fast and stable algorithms that can be used to
find all or some of the solutions of the PnP problem.

2. Give a classification for the solutions of the
PnP problem, i.e., give the conditions under which
the problem has one, two, three or four solutions.

There are many results for the first problem and the second

problem is still open. The aim of this paper is to give a

complete and effective solution to the above two problems

for the P3P problem.
The P3P problem is the smallest subset of control points

that yields a finite number of solutions. In 1981, Fischler and

Bolles [2] presented the RANSAC algorithm. They have
noticed that there are at most four possible solutions to the
P3P equation system. Hung et al. [8] presented an algorithm
for computing the 3D coordinates of the perspective center
relative to the camera frame. In 1991, Haralick et al. [9]
reviewed the major direct solutions up to 1991, including
six algorithms given by Grunert (1841), Finsterwalder
(1903), Merritt (1949), Fischler and Bolles (1981), Linnain-
maa et al. (1988), and Grafarrend et al. (1989), respectively.
They also give the analytical solution for the P3P problem
with resultant computation. DeMenthon and Davis [10],
[11] showed that by using approximations to the perspec-
tive, simpler computational solutions can be obtained.
Quan and Lan [4] reduced the problem to a new quartic
equation with Sylvester resultant and proposed a linear
algebra algorithm to solve the PnP problem.

One of the important research directions on the
P3P problem is its multisolution phenomenon. Fischler
and Bolles [2] presented some examples of multisolutions of
the P3P problem. In 1986, Wolfe [7] pointed out that the six
permutations of the three control points combined with
four-solution possibility can produce 24 possible camera-
triangle configurations consistent with a single perspective
view [6], [7]. Yuan [6] gave a necessary condition for the
existence of the solution for first time. In 1991, Wolfe and
Jones [12] gave a geometric explanation to this multisolution
phenomenon in the image plane under the assumption of
“canonical view.”

In 1997, Su et al. [5] applied Wu-Ritt’s zero decomposi-
tion method to find the main solution branch and some
nondegenerate branches for the P3P problem. But a
complete decomposition was not given. In [13], they used
the Sturm sequence to give some conditions to adjudicate
the number of solutions. In 1998, Yang [14] gave partial
solution classifications of the P3P problem under some
nondegenerate conditions.

The P3P problem is the most basic case of the
PnP problems. All other PnP (n > 3) problems include the
P3P problem as a special case. Therefore, a complete study of
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this problem is desirable. This paper is an effort toward this
goal. We use two approaches to solve the P3P problem: the
algebraic approach and the geometric approach. In the
algebraic approach, we apply Wu-Ritt’s zero decomposition
algorithm [15], [16], [17] to find a complete zero decomposi-
tion for the P3P equation system. This decomposition
provides the first complete analytical solution to the
P3P problem. Based on this decomposition, we give a
complete solution classification to the P3P equation system
for the first time, i.e., we give explicit criteria for the
P3P problem to have one, two, three, or four solutions. The
procedure of obtaining this classification consists of the most
difficult part of this paper. With these criteria, we introduce
the concept of stable and critical values for the input
parametric values. If a set of values is stable, then a small
variation of these values will give the same number of
solutions. Therefore, for a set of stable values, we may use the
usual floating-point calculations to enhance the computation
speed; and for a set of critical values, we may use high-
precision computation tools [18] to provide more robust
computation.

Combining the analytical solutions with the criteria, we

provide an algorithm, CASSC (Complete Analytical Solution

with the assistance of Solution Classification), which can be

used to find complete and robust numerical solutions to the

P3P problem. Our experimental results support this assertion.
In the geometric approach, we consider the three

perspective angles separately. Then, the locus of the center

of perspective point for each angle is a toroid and the center of

perspective is the intersection of three toroids. In this way, we

give some pure geometric criteria for the number of solutions

of the P3P problem. One interesting result is “the P3P problem

can have only one solution if the three perspective angles are

obtuse.” This kind of criteria is much simpler than the

algebraic one and gives some insight into the multisolution

phenomenon. On the other hand, since the field of view of

most cameras is much less than 90 degrees, this result does

not have much practical value. In any case, to find the

solutions we must use the algebraic computation approach.
The rest of the paper is organized as follows: In Section 2,

we present the zero decomposition for the P3P equation

system. In Section 3, we present the solution classification.

In Section 4, we present the CASSC algorithm and the

experimental results. In Section 5, we present the geometric

approach. In Section 6, we present the conclusions.

2 ZERO STRUCTURE FOR THE P3P EQUATION

SYSTEM

2.1 Simplification of the Equation System

Let P be the Center of Perspective, and A;B;C the control

points. Let jPAj ¼ X; jPBj ¼ Y ; jPCj ¼ Z; � ¼ ffBPC;
� ¼ ffAPC;  ¼ ffAPB; p ¼ 2 cos�; q ¼ 2 cos �; r ¼ 2 cos ;

jABj ¼ c0; jBCj ¼ a0; jACj ¼ b0. From triangles PBC, PAC,

and PAB, we obtain the P3P equation system (Fig. 1):

Y 2 þ Z2 ÿ Y Zpÿ a02 ¼ 0
Z2 þX2 ÿXZq ÿ b02 ¼ 0
X2 þ Y 2 ÿXY rÿ c02 ¼ 0:

8<: ð1Þ

A set of solutions for X;Y ; Z is called a set of physical
solutions if the following “reality conditions” are satisfied.
These conditions are assumed through out the paper.

X> 0; Y > 0; Z > 0; a0 > 0; b0 > 0; c0 > 0; a0 þ b0 >c0; a0 þ c0 >b0; b0 þc0 >a0

0<�; �;  <�; 0<�þ �þ  < 2�

�þ� >; �þ  >�; þ� >�
I0 ¼ p2 þ q2 þ r2 ÿ pqrÿ 1 6¼ 0 ðPoints P;A;B;C are not coÿplanar ½5�Þ:

8>><>>: ð2Þ

To simplify the equation system, let X ¼ xZ;
Y ¼ yZ; jABj ¼

ffiffiffi
v
p

Z; jBCj ¼
ffiffiffiffiffi
av
p

Z; jACj ¼
ffiffiffiffiffi
bv
p

Z. Since
Z ¼ jPCj 6¼ 0, we obtain the following equivalent equa-
tion system:

y2 þ 1ÿ ypÿ av ¼ 0
x2 þ 1ÿ xq ÿ bv ¼ 0
x2 þ y2 ÿ xyrÿ v ¼ 0:

8<: ð3Þ

Since jrj < 2, we have v ¼ x2 þ y2 ÿ xyr > 0. Thus, Z can be
uniquely determined by Z ¼ jABj= ffiffiffi

v
p

. Eliminating v from
(3), we have

p1 ¼ ð1ÿ aÞy2 ÿ ax2 ÿ pyþ arxyþ 1 ¼ 0
p2 ¼ ð1ÿ bÞx2 ÿ by2 ÿ qxþ brxyþ 1 ¼ 0

�
ðESÞ

which has the same number of physical solutions with (1).

Now, the P3P problem is reduced to finding the positive

solutions of two quadratic equations. As a consequence, we

obtain the following result: The P3P problem has either an

infinite number of solutions or at most four physical solutions. This

result was known before only for the “main part” of the

P3P problem.

2.2 Zero Structure for the P3P Equation System

Wu-Ritt’s zero decomposition method [15], [16], [17] is a
general method to solve systems of algebraic equations. It
may be used to represent the zero set of a polynomial
equation system as the union of zero sets of equations in
triangular form, that is, equation systems like

f1ðu; x1Þ ¼ 0; f2ðu; x1; x2Þ ¼ 0; . . . ; fpðu; x1; . . . ; xpÞ ¼ 0;

where the u could be considered as a set of parameters

and the x are the variables to be determined. As shown in

[15], solutions for an equation system in triangular form

are well-determined. For instance, the solution of an

equation system in triangular form can be easily reduced

to the solution of univariate equations. For a polynomial

set PS and a polynomial I, let ZeroðPSÞ be the set

of solutions of the equation system PS ¼ 0, and Zero

ðPS=IÞ ¼ ZeroðPSÞ ÿ ZeroðIÞ.
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Among the “reality conditions” listed in (2), I0 6¼ 0 could

be used to simplify the computation. Therefore, we consider

ZeroðES=I0Þ. Using Wu-Ritt’s zero decomposition method

[15], we decompose ZeroðES=I0Þ into 10 disjoint components:

ZeroðES=I0Þ ¼
[10

i¼1

Ci: ðDEÞ

In the above formula, Ci ¼ ZeroðTSi=TiÞ; i ¼ 1; � � � ; 9 and

C10 ¼ ZeroðTS10=T10Þ [ ZeroðTS11=T11Þ, where TSi are poly-

nomial equations in triangular form and Ti are polynomials.

TSi and Ti may be found in Appendix A.
Among the 10 components, ZeroðTS1=T1Þ is called the

main component of the P3P equation system, which is of the

following form:

f ¼ a0x
4 þ a1x

3 þ a2x
2 þ a3xþ a4 ¼ 0

g ¼ b0yÿ b1 ¼ 0:

�
ðTS1Þ

The coefficients ai and bj may be found in Appendix A. This

component has been obtained in [2], [4], [5], [9]. All other

components could be considered as degenerate cases. This is

because, in these cases, the parameters a; b; p; q; r must

satisfy certain algebraic relations. In other words, we are

considering special cases of the problem.

Compared to the main component, the “degenerate” cases

are less possible to occur. But, they are still important due to

the following reasons: Solutions satisfying some degenerate

conditions, such as aþ bÿ 1 ¼ 0 (inTS4) meaning that ffACB
is a right angle, may occur quite often if pointsA;B;C are from

man-made structures like buildings, where many right angles

exist. In the general case, the degenerate cases, such as TS2,

could be complicated and have no clear geometric meaning.

Therefore, it is difficult to tell when it will occur.
Table 1 gives the maximal number of solutions for each

component.
Since Ci and Cjði 6¼ jÞ are disjoint, to solve the equation

numerically, for a set of specific values of the parameters

p; q; r; a; b, either

ZeroðPS=I0Þ ¼ ZeroðTSk=TkÞ

if k satisfying 1 � k � 9 and Tkðp; q; r; a; bÞ 6¼ 0, or

ZeroðPS=I0Þ ¼ ZeroðTS10=T10Þ [ ZeroðTS11=T11Þ

if T10ðp; q; r; a; bÞ ¼ T11ðp; q; r; a; bÞ 6¼ 0. Since the polynomials

in TSi are of degree � 4, the solution of the P3P problem is

reduced to the solution of equation systems in triangular

form and, hence, to the solution of univariate equations of

degree � 4.
From this decomposition, we have the following

observations:

1. Since the solutions for each triangular set are well-
determined, this decomposition provides a complete
set of analytical solutions for the P3P problem.

2. From Table 1 and the analysis following the table, it is
easy to see that there are at most four distinct solutions
under the reality condition (2). Notice that this result
was proven previously only for the main component.

3. From the experimental results in Section 4, we can see
that theabove decomposition provides acomplete and
robust way to find the solutions to the P3P problem.

3 COMPLETE SOLUTION CLASSIFICATION FOR THE

P3P EQUATION SYSTEM

For polynomials fðxÞ and gðxÞ, let Vf be the number of

real solutions of fðxÞ, and Vfðg > 0Þ the number of real

solutions of fðxÞ such that g > 0. If fðxÞ has n real

solutions, then let C
ðn;jÞ
f ðg > 0Þ denote the conditions that

make fðxÞ having j real solutions such that g > 0. The

following lemmas will be used in this section.

Lemma 1 (Descartes’ Rule of Sign [19], [16]). Let f ¼Pn
i¼k aix

i; ðanak 6¼ 0Þ be a polynomial with real numbers as

coefficients. Then, the number of positive roots of f is less than

or congruent to the number of sign changes in the sequence of

coefficients an; . . . ; akðmod 2Þ.
Lemma 2 [16]. Let fðxÞ, gðxÞ be two polynomials and f of degree

n. Let

rðT Þ ¼ resultantðf; gÿ T; xÞ ¼ c
Yn
i¼1

ðgðxiÞ ÿ T Þ;

where xi; i ¼ 1; . . . ; n are the roots of fðxÞ ¼ 0. If all the

solutions of fðxÞ ¼ 0 are real, then Vfðg > 0Þ ¼ VrðT > 0Þ.

Let fiðxÞ; giðx; yÞ be the first two polynomials in TSi.
In components TSi; i ¼ 5; 6; 7; 10, fiðxÞ, and giðx; yÞ are

linear in x and y, respectively. In these cases, each component

can have only one positive solution and it is trivial to give the

conditions for them to have such solutions.
In components TSi; i ¼ 3; 4; 8; 9; 11, fiðxÞ and giðx; yÞ are

either linear or quadratic in x and y, respectively. We will

treat these cases in Section 3.1.
In component TS2, f2ðxÞ is a cubic equation and g2ðx; yÞ

is linear in y. We will treat this case in Section 3.2.
In component TS1, f1ðxÞ is a quartic equation and g1ðx; yÞ

is linear in y. We will treat this case in Section 3.3.

3.1 The Quadratic Cases

The quadratic cases may have three forms: 1) fiðxÞ is

quadratic and giðx; yÞ is linear in y, 2) fiðxÞ is linear and

giðx; yÞ is quadratic in y, and 3) fiðxÞ and giðx; yÞ are

quadratic in x and y, respectively. All of them can be treated

similarly. We will take TS9 as an illustrative example. The

equation system is

f9 ¼ ðÿ1þ aþ bÞx2 þ ðÿqaþ qÞxÿ 1þ aÿ b ¼ 0;
g9 ¼ ðÿ1þ aþ bÞy2 ÿ 1ÿ aþ qxaþ b ¼ 0;
p ¼ 0; r ¼ 0; x > 0; y > 0; aþ bÿ 1 6¼ 0:

8<: ð4Þ
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The number of solutions for the above system is the same as

the following equation system:

f9 ¼ ðÿ1þ aþ bÞx2 þ ðÿqaþ qÞxÿ 1þ aÿ b ¼ 0;
g ¼ ðÿ1þ aþ bÞð1þ aÿ qxaÿ bÞ > 0;
p ¼ 0; r ¼ 0; aþ bÿ 1 6¼ 0; x > 0:

8<: ð5Þ

We first assume that

resultantðf9; g; xÞ 6¼ 0;

resultantðf9; x; xÞ ¼ aÿ bÿ 1 6¼ 0;

and

resultantðg; x; xÞ ¼ ðaþ bÿ 1Þðaÿ bþ 1Þ 6¼ 0:

Let

r11ðT Þ ¼ resultantðf9; gÿ T; xÞ ¼ r110T
2 þ r111T þ r112;

r12ðT Þ ¼ resultantðf9; xgÿ T; xÞ ¼ r120T
2 þ r121T þ r122:

By computation, we obtain the Sylvester-Habicht sequences

[21] of ðf9; diffðf9; xÞÞ which are denoted by D11, D12, and

D13 (the discriminant), respectively. So, f9 has two real

solutions iff D13 > 0 and one real solution iff D13 ¼ 0.

Since resultantðf9; g; xÞ 6¼ 0, resultantðf9; x; xÞ 6¼ 0, and

resultantðg; x; xÞÞ 6¼ 0, we have

Vf9
¼ Vf9

ðx > 0Þ þ Vf9
ðx < 0Þ;

Vf9
ðx < 0Þ ¼ Vf9

ðx < 0; g > 0Þ þ Vf9
ðx < 0; g < 0Þ;

Vf9
ðg > 0Þ ¼ Vf9

ðx > 0; g > 0Þ þ Vf9
ðx < 0; g > 0Þ;

Vf9
ðxg > 0Þ ¼ Vf9

ðx > 0; g > 0Þ þ Vf9
ðx < 0; g < 0Þ:

8>><>>: ð6Þ

From the above equations, we obtain the following formula

for the number of physical solutions:

Vf9
ðx > 0; g > 0Þ ¼

1

2
Vf9
ðx > 0Þ þ Vf9

ðg > 0Þ þ Vf9
ðxg > 0Þ ÿ Vf9

ÿ �
:
ð7Þ

By Lemmas 1 and 2, we have the following results:

Vf9 ðx > 0Þ ¼ the number of sign changes in coefficients of f9ðxÞ;

Vf9 ðg > 0Þ ¼ the number of sign changes in coefficients of r11ðT Þ;

Vf9 ðxg > 0Þ¼ the number of sign changes in coefficients of r12ðT Þ:

If resultantðf9; g; xÞ ¼ 0, (5) becomes:

f9 ¼ ÿaqðaþ bÿ 1Þxÿ q2aþ q2a2 ÿ 2bÿ a2 þ 1þ b2 ¼ 0;
g ¼ ðÿ1þ aþ bÞð1þ aÿ qxaÿ bÞ >0;
p ¼ 0; r ¼ 0;
aþ bÿ 1 6¼ 0; x >0

8>><>>:
ð8Þ

which may have one positive solution and the condition for

that is easy to obtain. For resultantðf9; x; xÞ ¼ aÿ bÿ 1 ¼ 0

and resultantðg; x; xÞ ¼ ðaþ bÿ 1Þðaÿ bþ 1Þ ¼ 0, we can

deal with them similarly.

Theorem 3. We have the following necessary and sufficient

conditions to adjudicate the number of physical solutions

Vf9
ðx > 0; g > 0Þ of ZeroðTS9=T9Þ.

1. Equation (4) has two physical solutions iff one of the
following statements holds:

1:1: ½ p ¼ r ¼ 0; a þ b ÿ 1 > 0; q > 0; D13 > 0; �1 < 0; �2 < 0; �3 < 0�

1:2: ½ p ¼ r ¼ 0; a þ b ÿ 1 < 0; q > 0; D13 > 0; �1 > 0; �2 < 0; �3 > 0�:

2. Equation (4) has one physical solution iff one of the
following statements holds:

2:1: ½ p ¼ r ¼ 0; a ¼ 1; q þ b ÿ 2 < 0�

2:2: ½ p ¼ r ¼ 0; a ÿ b þ 1 ¼ 0; q 6¼ 0�

2:3: ½ p ¼ r ¼ 0; a ÿ b ÿ 1 ¼ 0; q > 0; q2a < 4�

2:4: ½ p ¼ r ¼ 0; a þ b ÿ 1 > 0; D13 ¼ 0; �1 < 0�

2:5: ½ p ¼ r ¼ 0; a þ b ÿ 1 < 0; D13 ¼ 0; �1 > 0�

2:6: ½ p ¼ r ¼ 0; a þ b ÿ 1 > 0; �2 ¼ 0; �1 < 0�

2:7: ½ p ¼ r ¼ 0; a þ b ÿ1 < 0; �2 ¼ 0;�1 > 0�

2:8: ½ p ¼ r ¼ q ¼ 0; ðaþ bÿ 1Þ ðaÿ bÿ 1Þ< 0; ðaþ bÿ 1Þ ða ÿ bþ 1Þ> 0�

2:9: ½ p ¼ r ¼ 0; q > 0; a ÿ b ÿ 1 > 0 ;D13 > 0; �1 < 0; �2 > 0; �3 6¼ 0�

2:10: ½ p ¼ r ¼ 0; q > 0; a ÿ b ÿ 1 > 0; D13 > 0; �1 > 0; �2 < 0; �3 6¼ 0�

2:11: ½ p ¼ r ¼ 0; q > 0; a þ b ÿ 1 > 0; D13 > 0; �1 < 0; �2 < 0; �3 6¼ 0�

2:12: ½ p ¼ r ¼ 0; q > 0; a þ b ÿ 1 > 0; D13 > 0; �1 > 0; �2 < 0; �3 6¼ 0�;

where

D13 ¼ q2ðaÿ 1Þ2 ÿ 4ðaþ bÿ 1Þðaÿ bÿ 1Þ;
�1 ¼ q2aðaÿ 1Þ ÿ 2ðaÿ bþ 1Þðaþ bÿ 1Þ;
�2 ¼ q2aÿ ðaÿ bþ 1Þ2;
�3 ¼ q2aðaÿ 1Þ2 ÿ ðaþ bÿ 1Þðbÿ 3abÿ 1ÿ 2aþ 3a2Þ:

Proof. We know that (4) has two physical solutions iff

Vf9
ðx > 0; g > 0Þ ¼ 2. From (7), this is possible iff

Vf9
ðx > 0Þ ¼ 2; Vf9

ðg > 0Þ ¼ 2; Vf9
ðxg > 0Þ ¼ 2; Vf9

¼ 2:

The first part of the Theorem 3 follows directly from these

conditions. For the second part, there are four cases.

Suppose resultantðf9; g; xÞ 6¼ 0, resultantðf9; x; xÞ 6¼ 0,

and resultantðg; x; xÞ 6¼ 0. In this case, (4) has one physical

solution iff Vf9
ðx > 0; g > 0Þ ¼ 1. From (7), (4) has one

physical solution iff one of the following conditions holds:

Vf9
ðx > 0Þ ¼ 2; Vf9

ðg > 0Þ ¼ 2; Vf9
ðxg > 0Þ ¼ 0; Vf9

¼ 2;

Vf9
ðx > 0Þ ¼ 2; Vf9

ðg > 0Þ ¼ 1; Vf9
ðxg > 0Þ ¼ 1; Vf9

¼ 2;

Vf9
ðx > 0Þ ¼ 2; Vf9

ðg > 0Þ ¼ 0; Vf9
ðxg > 0Þ ¼ 2; Vf9

¼ 2;

Vf9
ðx > 0Þ ¼ 1; Vf9

ðg > 0Þ ¼ 2; Vf9
ðxg > 0Þ ¼ 1; Vf9

¼ 2;

Vf9
ðx > 0Þ ¼ 1; Vf9

ðg > 0Þ ¼ 1; Vf9
ðxg > 0Þ ¼ 2; Vf9

¼ 2;

Vf9
ðx > 0Þ ¼ 0; Vf9

ðg > 0Þ ¼ 2; Vf9
ðxg > 0Þ ¼ 2; Vf9

¼ 2;

Vf9
ðx > 0Þ ¼ 1; Vf9

ðg > 0Þ ¼ 1; Vf9
ðxg > 0Þ ¼ 1; Vf9

¼ 1:

Analyzing these conditions will lead to some of the

conditions in part two of Theorem 3. The other three

cases are resultantðf9; g; xÞ ¼ 0, resultantðf9; x; xÞ ¼ 0,

and resultantðg; x; xÞ ¼ 0, respectively. We can deal with

them similarly. Combining the four cases will lead to the

second part of Theorem 3. tu
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3.2 The Cubic Case

For TS2, we need to consider the polynomial system:

f2 ¼ a5x
3 þ a6x

2 þ a7xþ a8;
g2 ¼ b2yÿ b3 ¼ 0;
x > 0; y > 0; a5 6¼ 0; b2 6¼ 0;

8<: ð9Þ

where the ai and bj could be found in Appendix A. The

number of solutions for the above system is the same as the

following equation system:

f2 ¼ a5x
3 þ a6x

2 þ a7xþ a8;
g ¼ b2b3 > 0
x > 0; a5 6¼ 0:

8<: ð10Þ

Let Resultantðf2; g; xÞ 6¼ 0, and Di the Sylvester-Habicht

sequences of ðf2; diffðf2ÞÞ, i ¼ 5; . . . ; 8 [21]. We know that

fðxÞ has three real solutions iff D8 > 0 [20]. Let

r7ðT Þ ¼ resultantðf2; gÿ T; xÞ ¼ r70T
3 þ r71T

2 þ r72T þ r73;

r8ðT Þ¼ resultantðf2; xgÿ T; xÞ¼ r80T
3 þ r81T

2 þ r82T þ r83:

IfD8 > 0, then by Lemmas 1 and 2, we can give the conditions

for the equation system to have one, two, or three positive

solutions. If D8 < 0, f2ðxÞ has only one real solution and two

complex solutions. By Descartes rule of sign, Vf2
ðx > 0Þ ¼ 1

iff the number of sign changes in coefficients of f2ðxÞ is 1 or 3.

Now, we consider the number of positive solutions of r7ðT Þ
and r8ðT Þ. Letx1 be real,x2,x3 be complex. If gðx2Þ is real, then

gðx3Þ is also real, and the signs of gðx2Þ and gðx3Þ are the same.

So, by the Descartes rule of sign,VrjðT > 0Þ ¼ 1 iff the number

of sign changes in coefficients of rjðxÞ is 1 or 3, j ¼ 7; 8: If

D8 ¼ 0, D7 6¼ 0, then there exists polynomial Q2ðxÞ ¼
q20xþ q21 such that f2ðxÞ ¼ cQ2ðxÞH2

3 ðxÞ, where H3ðxÞ ¼
h30xþ h31 is the pseudoremainder of f2 with diffðf2Þ for

variablex. This case is easy to solve. IfD8 ¼ 0,D7 ¼ 0,D6 6¼ 0,

then f2ðxÞ ¼ cH3
4 ðxÞ, where H4ðxÞ ¼ 3a5xþ a6.

From the above discussion, we obtain the following result.

Theorem 4. For TS2, we have the following results:

1. Equation (9) has three physical solutions iff the

following statements hold:

D8 > 0; C
ð3;3Þ
f2
ðx > 0Þ; Cð3;3Þf2

ðg > 0Þ; Cð3;3Þf2
ðxg > 0Þ

h i
:

2. Equation (9) has two physical solutions iff one of the

following statements holds:

2:1:
�
D8 > 0; C

ð3;3Þ
f2
ðx > 0Þ; Cð3;2Þ

f2
ðg > 0Þ; Cð3;2Þ

f2
ðxg > 0Þ

�
2:2:

�
D8 > 0; C

ð3;2Þ
f2
ðx > 0Þ; Cð3;3Þ

f2
ðg > 0Þ; Cð3;2Þ

f2
ðxg > 0Þ

�
2:3:

�
D8 > 0; C

ð3;2Þ
f2
ðx > 0Þ; Cð3;2Þ

f2
ðg > 0Þ; Cð3;2Þ

f2
ðxg > 0Þ

�
2:4:

h
D8 ¼ 0; D7 6¼ 0;

h31
h30

< 0; g

�
ÿh31
h30

�
> 0;

q21
q20

< 0; g
ÿq21
q20

� �
> 0

i
:

3. Equation (9) PS has one physical solution iff one of the
following statements holds:

3:1:
h
D8 ¼ 0; D7 6¼ 0;

q21

q20
< 0; g

ÿq21

q20

� �
> 0
i

3:2:
h
D8 ¼ 0; D7 6¼ 0;

h31

h30
< 0; g

ÿh31

h30

� �
> 0
i

3:3:
h
D8 ¼ 0; D7 ¼ 0; D6 6¼ 0;

a2

a1
< 0; g

ÿa2

3a1

� �
> 0
i

3:4:
h
D8 < 0; C

ð1;1Þ
f2
ðx > 0Þ; Cð1;1Þf2

ðg > 0Þ; Cð1;1Þf2
ðxg > 0Þ

i
3:5:

h
D8 > 0; C

ð3;3Þ
f2
ðx > 0Þ; Cð3;1Þf2

ðg > 0Þ; Cð3;1Þf2
ðxg > 0Þ

i
3:6:

h
D8 > 0; C

ð3;2Þ
f2
ðx > 0Þ; Cð3;2Þf2

ðg > 0Þ; Cð3;1Þf2
ðxg > 0Þ

i
3:7:

h
D8 > 0; C

ð3;2Þ
f2
ðx > 0Þ; Cð3;1Þf2

ðg > 0Þ; Cð3;2Þf2
ðxg > 0Þ

i
3:8:

h
D8 > 0; C

ð3;1Þ
f2
ðx > 0Þ; Cð3;3Þf2

ðg > 0Þ; Cð3;1Þf2
ðxg > 0Þ

i
3:9:

h
D8 > 0; C

ð3;1Þ
f2
ðx > 0Þ; Cð3;2Þf2

ðg > 0Þ; Cð3;2Þf2
ðxg > 0Þ

i
3:10:

h
D8 > 0; C

ð3;1Þ
f2
ðx > 0Þ; Cð3;1Þf2

ðg > 0Þ; Cð3;3Þf2
ðxg > 0Þ

i
:

The explicit expressions for all C
ðn;jÞ
f may be found in

Appendix B.

If Resultantðf2; g; xÞ ¼ 0, the problem becomes a quad-

ratic case and can be treated similarly as in the preceding

section.

3.3 The Quartic Case

For TS1, we need to count the number of solutions for the

following system.

f1 ¼ a0x
4 þ a1x

3 þ a2x
2 þ a3xþ a4 ¼ 0;

g1 ¼ b0yÿ b1 ¼ 0;
x > 0; y > 0; a0 6¼ 0; b0 6¼ 0;

8<: ð11Þ

where ai and bi may be found in Appendix A. Since b0 � 0

(see Appendix A), it is equivalent to count the number of

positive solutions for the following system

f1 ¼ a0x
4 þ a1x

3 þ a2x
2 þ a3xþ a4

b1 > 0
x > 0; a0 6¼ 0; b0 6¼ 0:

8<: ð12Þ

We will first assume that Resultantðf1; b1; xÞ 6¼ 0 and

Resultantðf1ðxÞ; x; xÞ 6¼ 0: Let f 0 ¼ Diffðf1; xÞ, and Di;

Ai; Bi; Ci the Sylvester-Habicht sequences of ðf1; f
0Þ,

ðf1; xf
0Þ, ðf1ðxÞ; b1f

0Þ, and ðf1ðxÞ; xb1f
0Þ, respectively, i ¼

0; ::; 4 [21]. First, let us assume D4 6¼ 0. It is known that

Vf1
¼ 4 iff D2 > 0, D3 > 0, D4 > 0 which is denoted by

C
ð4Þ
f1

[20]. Let

r1ðT Þ ¼ resultantðf1; b1 ÿ T; xÞ ¼ a4
0

Y4

i¼1

ðb1ðxiÞ ÿ T Þ

¼ r10T
4 þ r11T

3 þ r12T
2 þ r13T þ r14

r2ðT Þ ¼ resultantðf1; xb1 ÿ T; xÞ ¼ a4
0

Y4

i¼1

ðxb1ðxiÞ ÿ T Þ

¼ r20T
4 þ r21T

3 þ r22T
2 þ r23T þ r24;

where fðxiÞ ¼ 0, i ¼ 1; 2; 3; 4.
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By the Lemmas 1 and 2, we have the following results:

Vf1 ðx> 0Þ¼ the number of sign changes in coefficients of fðxÞ

Vf1 ðb1 > 0Þ¼ the number of sign changes in coefficients of r1ðT Þ

Vf1 ðxb1 > 0Þ¼ the number of sign changes in coefficients of r2ðT Þ:

By the complete discrimination method [22], Vf1
¼ 2 iff one

of the following conditions holds:

1Þ D2 > 0; D3 > 0; D4 < 0
2Þ D2 6¼ 0; D3 < 0; D4 < 0
3Þ D2 � 0; D3 > 0; D4 > 0
4Þ D2 > 0; D3 ¼ 0; D4 > 0:

8>><>>: ð13Þ

We denote one of the conditions by C
ð2Þ
f1
: It is clear that there

are the following results:

Vf1
ðx > 0Þ ÿ Vf1

ðx < 0ÞÞ ¼ 1

2h
signðA1Þ þ signðA1A2Þ þ signðA2A3Þ þ signðA3A4Þ

i
;

Vf1
ðb1 > 0Þ ÿ Vf1

ðb1 < 0Þ ¼ 1

2h
signðB1Þ þ signðB1B2Þ þ signðB2B3Þ þ signðB3B4Þ

i
;

Vf1
ðxb1 > 0Þ ÿ Vf1

ðxb1 < 0Þ ¼ 1

2h
signðC1Þ þ signðC1C2Þ þ signðC2C3Þ þ signðC3C4Þ

i
:

Since Resultantðf1; b1; xÞ 6¼ 0; and Resultantðf1ðxÞ;
x; xÞ 6¼ 0, we have

Vf1
ðx > 0Þ ¼ 1

2h
Vf1
þ signðA1Þ þ signðA1A2Þ þ signðA2A3Þþ signðA3A4Þ

i
;

Vf1
ðb1 > 0Þ ¼ 1

2h
Vf1
þ signðB1Þþ signðB1B2Þ þ signðB2B3Þþ signðB3B4Þ

i
;

Vf1
ðxb1 > 0Þ ¼ 1

2h
Vf1
þ signðC1Þ þ signðC1C2Þ þ signðC2C3Þ þ signðC3C4Þ

i
:

For any two equations fðxÞ and gðxÞ, if ResultantðfðxÞ;
gðxÞ; xÞ 6¼ 0, then

VfðxÞ ¼ VfðxÞ gðxÞ > 0Þ þ VfðxÞðgðxÞ < 0
ÿ �

:

Then, we have

Vf1
ðx > 0; b1 > 0Þ ¼

1

2
Vf1
ðx > 0Þ þ Vf1

ðb1 > 0Þ þ Vf1
ðxb1 > 0Þ ÿ Vf1

ÿ �
:

So, for a0 6¼ 0 and D4 6¼ 0, we can solve the equation system

completely. Note that D4 is the discriminant for f1. From the

above discussion, we have proven.

Theorem 5. For a0 6¼ 0, D4 6¼ 0, we have

1. Equation (11) has four physical solutions iff

C
ð4;4Þ
f1
ðx > 0Þ,Cð4;4Þf1

ðb1 > 0Þ, Cð4;4Þf1
ðxb1 > 0Þ, and C

ð4Þ
f1

hold.

2. Equation (11) has three physical solutions iff one of the
following statements holds:

2:1: C
ð4;4Þ
f1
ðx > 0Þ; Cð4;3Þf1

ðb1 > 0Þ; Cð4;3Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
2:2: C

ð4;3Þ
f1
ðx > 0Þ; Cð4;4Þf1

ðb1 > 0Þ; Cð4;3Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
2:3: C

ð4;3Þ
f1
ðx > 0Þ; Cð4;3Þf1

ðb1 > 0Þ; Cð4;3Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
:

3. Equation (11) has two physical solutions iff one of the
following statements holds:

3:1: C
ð2;2Þ
f1
ðx > 0Þ; Cð2;2Þf1

ðb1 > 0Þ; Cð2;2Þf1
ðxb1 > 0Þ; Cð2Þf1

h i
3:2: C

ð4;4Þ
f1
ðx > 0Þ; Cð4;2Þf1

ðb1 > 0Þ; Cð4;2Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
3:3: C

ð4;3Þ
f1
ðx > 0Þ; Cð4;3Þf1

ðb1 > 0Þ; Cð4;2Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
3:4: C

ð4;3Þ
f1
ðx > 0Þ; Cð4;2Þf1

ðb1 > 0Þ; Cð4;3Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
3:5: C

ð4;2Þ
f1
ðx > 0Þ; Cð4;4Þf1

ðb1 > 0Þ; Cð4;2Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
3:6: C

ð4;2Þ
f1
ðx > 0Þ; Cð4;3Þf1

ðb1 > 0Þ; Cð4;3Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
3:7: C

ð4;2Þ
f1
ðx > 0Þ; Cð4;2Þf1

ðb1 > 0Þ; Cð4;4Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
:

4. Equation (11) has one physical solution iff one of the
following statements holds:

4:1: C
ð2;2Þ
f1
ðx > 0Þ; Cð2;1Þf1

ðb1 > 0Þ; Cð2;1Þf1
ðxb1 > 0Þ; Cð2Þf1

h i
4:2: C

ð2;1Þ
f1
ðx > 0Þ; Cð2;2Þf1

ðb1 > 0Þ; Cð2;1Þf1
ðxb1 > 0Þ; Cð2Þf1

h i
4:3: C

ð2;1Þ
f1
ðx > 0Þ; Cð2;1Þf1

ðb1 > 0Þ; Cð2;2Þf1
ðxb1 > 0Þ; Cð2Þf1

h i
4:4: C

ð4;4Þ
f1
ðx > 0Þ; Cð4;1Þf1

ðb1 > 0Þ; Cð4;1Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:5: C

ð4;3Þ
f1
ðx > 0Þ; Cð4;2Þf1

ðb1 > 0Þ; Cð4;1Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:6: C

ð4;3Þ
f1
ðx > 0Þ; Cð4;1Þf1

ðb1 > 0Þ; Cð4;2Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:7: C

ð4;2Þ
f1
ðx > 0Þ; Cð4;3Þf1

ðb1 > 0Þ; Cð4;1Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:8: C

ð4;2Þ
f1
ðx > 0Þ; Cð4;2Þf1

ðb1 > 0Þ; Cð4;2Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:9: C

ð4;2Þ
f1
ðx > 0Þ; Cð4;1Þf1

ðb1 > 0Þ; Cð4;3Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:10: C

ð4;1Þ
f1
ðx > 0Þ; Cð4;4Þf1

ðb1 > 0Þ; Cð4;1Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:11: C

ð4;1Þ
f1
ðx > 0Þ; Cð4;3Þf1

ðb1 > 0Þ; Cð4;2Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:12: C

ð4;1Þ
f1
ðx > 0Þ; Cð4;2Þf1

ðb1 > 0Þ; Cð4;3Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
4:13: C

ð4;1Þ
f1
ðx > 0Þ; Cð4;1Þf1

ðb1 > 0Þ; Cð4;4Þf1
ðxb1 > 0Þ; Cð4Þf1

h i
:

The explicit expressions for all C
ðn;jÞ
f may be found in

Appendix B.
If D4 ¼ 0 and D3 6¼ 0, then we know that there exists a

polynomial Q1ðxÞ ¼ q10x
2 þ q11xþ q12 such that f1ðxÞ ¼

cQ1ðxÞH2
1 ðxÞ, whereH1ðxÞ ¼ D3xþ �D3D3. LetDQ1

¼ resultant
ðQ1; diffðQ1Þ; xÞ. IfDQ1

> 0, thenQ1ðxÞ has two different real

solutions. Let
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r3ðT Þ ¼ resultantðQ1; b1 ÿ T; xÞ ¼ r30T
2 þ r31T þ r32;

r4ðT Þ ¼ resultantðQ1; xb1 ÿ T; xÞ ¼ r40T
2 þ r41T þ r42:

By Lemmas 1 and 2, we have:

VQ1
ðx> 0Þ¼ the number of sign changes in coefficients of Q1ðxÞ

VQ1
ðb1 > 0Þ¼ the number of sign changes in coefficients of r3ðT Þ

VQ1
ðxb1 > 0Þ¼ the number of sign changes in coefficients of r4ðT Þ:

Similarly, we have

VQ1
ðx > 0; b1 > 0Þ ¼ 1

2h
VQ1
ðx > 0Þ þ VQ1

ðb1 > 0Þ þ VQ1
ðxb1 > 0Þ ÿ VQ1

�
:

If DQ1
¼ 0, then Q1ðxÞ ¼ q0

ÿ
xþ q11

2q10

�2
.

For D4 ¼ 0 and D3 ¼ 0, D2 6¼ 0, let H1ðxÞ ¼ D2x
2 þ

�D2D2xþ ��D2D2
�D2D2. Then, f1ðxÞ ¼ cH2

1ðxÞ: IfDH1
> 0, thenVH1

¼ 2. Let

r5ðT Þ ¼ resultantðH1; b1 ÿ T; xÞ ¼ r50T
2 þ r51T þ r52;

r6ðT Þ ¼ resultantðH1; xb1 ÿ T; xÞ ¼ r60T
2 þ r61T þ r62:

Similar to the above discussion, we can solve VH1
ðx > 0;

b1 > 0Þ. If D4 ¼ 0, D3 ¼ 0, D2 ¼ 0, D1 6¼ 0, then f1ðxÞ ¼ cH4
2 ,

whereH2ðxÞ ¼ 4a0xþ a1.
From the above discussion, we can obtain the following

theorem.

Theorem 6. For D4 ¼ 0, we have

1. Equation (11) has three physical solutions iff"
D3 6¼ 0;ÿ

�D3D3

D3
> 0; b1 ÿ

�D3D3

D3

� �
> 0; DQ1

> 0; C
ð2;2Þ
Q1
ðx > 0Þ; Cð2;2ÞQ1

ðb1 > 0Þ; Cð2;2ÞQ1
ðxb1 > 0Þ

#
holds;

2. Equation (11) has two physical solutions iff one of the
following statements holds:

2:1:

h
D3 6¼ 0; DQ1

¼ 0;
q11
q10
< 0;b1

ÿ
ÿq11
q10

�
;

�D3D3
D3
< 0; b1

ÿ
ÿ

�D3D3
D3

�i
2:2:

h
D3 6¼ 0; DQ1

> 0; C
ð2;2Þ
Q1
ðx> 0Þ; Cð2;2Þ

Q1
ðb1 > 0Þ; Cð2;2Þ

Q1
ðxb1 > 0Þ

i
2:3:

h
D3 ¼ 0; D2 6¼ 0; DH1

> 0; C
ð2;2Þ
H1
ðx> 0Þ; Cð2;2Þ

H1
ðb1 > 0Þ; Cð2;2Þ

H2
ðxb1 > 0Þ

i
2:4:

h
D3 6¼ 0; DQ1

> 0;
�D3D3
D3
< 0; b1

ÿ
ÿ

�D3D3
D3

�
;

> 0; C
ð2;2Þ
Q1
ðx> 0Þ;Cð2;1Þ

Q1
ðb1 > 0Þ; Cð2;1Þ

Q1
ðxb1 > 0Þ

i
2:5:

h
D3 6¼ 0; DQ1

> 0;
�D3D3
D3
< 0; b1

ÿ
ÿ

�D3D3
D3

�
> 0; C

ð2;1Þ
Q1
ðx>0Þ; Cð2;1Þ

Q1
ðb1 > 0Þ;Cð2;1Þ

Q1
ðxb1 > 0Þ

i
2:6:

h
D3 6¼ 0; DQ1

> 0;
�D3D3
D3
< 0; b1

ÿ
ÿ

�D3D3
D3

�
> 0; C

ð2;1Þ
Q1
ðx> 0Þ; Cð2;1Þ

Q1
ðb1 > 0Þ; Cð2;2Þ

Q1
ðxb1 > 0Þ

i
:

3. Equation (11) has one physical solution iff one of the
following statements holds:

3:1:

h
D3 6¼ 0;

�D3D3
D3
< 0; b1

ÿ
ÿ �D3D3
D3

�
> 0

i
3:2:

h
D3 6¼ 0; DQ1

¼ 0;ÿ q11
q10
> 0; b1

ÿ
ÿq11
q10

�
> 0

i
3:3:

h
D3 ¼ 0; D2 ¼ 0; D1 6¼ 0;

a1
a0
< 0; b1

ÿ
ÿa1
4a0

�
> 0

i
3:4:

h
D3 ¼ 0; D2 6¼ 0; DH2

¼ 0;
�D2D2
D2
< 0; b1

ÿ
ÿ �D2D2
D2

�
> 0

i
3:5:

h
D3 6¼ 0; DQ1

> 0; C
ð2;2Þ
Q1
ðx> 0Þ; Cð2;1Þ

Q1
ðb1 > 0Þ; Cð2;1Þ

Q1
ðxb1 > 0Þ

i
3:6:

h
D3 6¼ 0; DQ1

> 0; C
ð2;1Þ
Q1
ðx> 0Þ; Cð2;2Þ

Q1
ðb1 > 0Þ; Cð2;1Þ

Q1
ðxb1 > 0Þ

i
3:7:

h
D3 6¼ 0; DQ1

> 0; C
ð2;1Þ
Q1
ðx> 0Þ; Cð2;1Þ

Q1
ðb1 > 0Þ; Cð2;2Þ

Q1
ðxb1 > 0Þ

i
3:8:

h
D3 ¼ 0; D2 6¼ 0; DH1

> 0; C
ð2;2Þ
H1
ðx> 0Þ; Cð2;1Þ

H1
ðb1 > 0Þ; Cð2;1Þ

H2
ðxb1 > 0Þ

i
3:9:

h
D3 ¼ 0; D2 6¼ 0; DH1

> 0; C
ð2;1Þ
H1
ðx> 0Þ; Cð2;2Þ

H1
ðb1 > 0Þ; Cð2;1Þ

H2
ðxb1 > 0Þ

i
3:10:

h
D3 ¼ 0; D2 6¼ 0; DH1

> 0; C
ð2;1Þ
H1
ðx> 0Þ; Cð2;1Þ

H1
ðb1 > 0Þ; Cð2;2Þ

H2
ðxb1 > 0Þ

i
:

The explicit expressions for all C
ðn;jÞ
f may be found in

Appendix B.
If Resultantðf1; b1; xÞ ¼ 0, then the equation system

becomes the following form

f11 ¼ a10x
3 þ a11x

2 þ a12xþ a13 ¼ 0;
b11 ¼ b10x

4 þ b11x
3 þ b12x

2 þ b13xþ b14 > 0;
x > 0

8<: ð14Þ

which can be treated with the method in Section 3.2. We
may solve the case for Resultantðf1; x; xÞ ¼ 0 and
Resultantðf1; b1; xÞ ¼ 0 similarly.

3.4 A Special Case of the P3P Problem

Let us assume that a ¼ b ¼ 1 and r ¼ q. Since the formulas,
in this case are quite simple, we may have an intuitive idea
about the distribution of the solutions. The P3P equation
system becomes

f ¼ ÿx2 ÿ pyþ qxyþ 1
g ¼ ÿy2 ÿ qxþ pxyþ 1:

�
ð15Þ

Using Wu-Ritt’s method, this equation system has the
following two components:

f1 ¼ x2 ÿ qxþ pÿ 1
f2 ¼ yÿ 1

�
ð16Þ

g1 ¼ ðÿ1þ q2Þx2 þ ðÿq ÿ qpÞxþ 1þ p
g2 ¼ yÿ qxÿ 1:

�
ð17Þ

It is clear that the number of positive solutions of (16) is
determined by f1ðxÞ ¼ 0. Notice that f1ðxÞ is a quadratic
equation in x, we have the following results:

. Equation system (16) has one positive solution iff,

q > 0
1
2 p ¼

4þq2

4

�
or p < 1:

. Equation system (16) has two positive solutions iff,

q > 0 and
4þ q2

4
> p > 1:
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Now, we will discuss (17). Let g ¼ qxþ 1.

R1ðtÞ ¼ resultantðg1;gÿt;xÞ¼ðq2ÿ1Þt2þðq2ÿq2pÿ2Þtþðq2ÿ1Þ
R2ðtÞ ¼ resultantðg1;xgÿt;xÞ¼R20t

2þR21tþR22:

�
ð18Þ

Here, R20 ¼ ðq ÿ 1Þ2ðq þ 1Þ2, R21 ¼ ÿqð1þ pÞðq2pÿ 2q2 þ 3Þ,
R22 ¼ ðq ÿ 1Þðq þ 1Þð1þ pÞ. Denote the discriminant of g1 by

�. We have

� ¼ ð1þ pÞðq2pÿ 3q2 þ 4Þ:

By Descartes rules of sign, (17) has two positive solutions iff

q > 1 and p > 3ÿ 4

q2
:

Otherwise, ES2 has no positive solution.
We still need to consider the reality conditions (2):

0 < �; � < �, 0 < �þ 2� < 2�, and 2� > �, which can be

reduced to

ÿ 2 < p < 2; -2 < q < 2; q2 ÿ 2 < p:

Combining the above conditions, we have the following

classification for the P3P problem:

1. Point P has four solutions, iff

2 > q > 1;
4þ q2

4
> p > 1; and p > 3ÿ 4

q2
:

2. Point P has three solutions, iff

1 < q <
ffiffiffi
2
p

3ÿ 4
q2 < p � 1

(
or

1 < q < 2

p ¼ 4þq2

4 :

�

3. Point P has two solutions, iff

0 < q � 1

1 < p < 4þq2

4

(
or

1 < q < 2
4þq2

4 < p < 2

(

or

ffiffiffi
2
p

< q < 2

1 < p � 3ÿ 4
q2 and p > q2 ÿ 2:

(

4. Point P has one solution, iff

ÿ
ffiffiffi
3
p

< q < 1 or
ffiffiffi
2
p
� q <

ffiffiffi
3
p

q2 ÿ 2 < p < 1

�
or

1 < q <
ffiffiffi
2
p

q2 ÿ 2 < p � 3ÿ 4
q2

(

or
0 < q � 1 or

ffiffiffi
2
p
� q <

ffiffiffi
3
p

p ¼ 1

�
or

0 < q � 1

p ¼ 4þq2

4 :

�

Fig. 2 is the solution distribution diagram for this special
case. L1 is p ¼ 4þq2

4 , L2 is p ¼ q2 ÿ 2, and L3 is p ¼ 3ÿ 4
q2 .

Table 2 shows where the solutions come from for each
region.

Here are some general observations from this diagram.
The P3P most probably will have one solution. The
probabilities to have two, three, and four solutions decrease
in order. The P3P problem tends to have more solutions when
the three perspective angles are small. The most complicated
case occurs when the three perspective angles are almost
equal to the correspondent inner angles of triangle ABC.

4 EXPERIMENTAL RESULTS ON THE ALGEBRAIC

METHOD

Two sets of formulas are given in Sections 2 and 3,
respectively. In this section, we will show how to combine
them to obtain more robust numerical solutions.

In Section 2, we give a set of complete analytical
solutions to the P3P problem. Previous methods only give
the main component, which, although covering most of the
cases, may not provide solutions in many cases. With these
formulas, numerical solutions to the P3P problems could be
found in all cases. The solution of the P3P problem is
reduced to the computation of ZeroðTSi=TiÞ. The main
component ZeroðTS1=T1Þ has been studied in previous
work [9], [4], in which we need to solve a quartic equation.
To solve cases ZeroðTSi:TiÞ; i > 1, we need to solve
equations with degrees � 3. To solve linear and quadratic
equations is trivial. For the cubic and quartic equations, we
may write their roots as formulas with radicals. Because
these formulas involve

ffiffiffiffiffiffiffi
ÿ1
p

, it is generally difficult to
distinguish real roots from complex roots. In Section 3, we
also give explicit formulas to determine the number of real
positive roots. Combining these formulas with the solutions
in radical form gives us an efficient and stable method to
solve these equations.

Based on the criteria obtained in Section 3, we introduce
the concept of stable and critical values for the parameters.
For a condition C in these criteria, letFðCÞbe the set of� such
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that one of the following formulas: � > 0, � < 0, � 6¼ 0 occurs
in C. For instance, let C be Condition 1.1 in Theorem 3. Then,

FðCÞ ¼ faþ bÿ 1; q;D13;�1;�2;�3g:

A set of values for the parameters a; b; p; q; r is said to be stable
for condition C if for each � 2 FðCÞ, j�ða; b; p; q; rÞj > �,
where � > 0 is a small number, say 1 percent of the value
range of the parameters. Otherwise, it is critical. Basically
speaking, the critical values are those which will approxi-
mately vanish the expressions in FðCÞ. Therefore, the
probability for the occurrence of the critical values is near
zero.

If a set of values is stable, then a small variation of these
values will give the same number of solutions. On the
contrary, for a set of critical values, a small variation may lead
to changes in the number of solutions. Therefore, for a set of
stable values, we may use usual floating-point calculations to
enhance the computation speed; and for a set of critical values,
we may use high-precision computation tools provided by
symbolic computation software or by other special tools, like
the exact geometric computation method [18].

From the above discussion, we propose the following the
CASSC algorithm.

CASSC Algorithm

Input: A set of values for parameters a; b; p; q; r.

Output: The physical solutions.

S1 In this step, we will decide which of the 10 components in
(DE) will provide the solution. Let ESi be the set of
polynomials in TSi involving the parameters a; b; p; q; r
only. Then, for a set of parameter values a; b; p; q; r, the
solutions will be provided byCk ifESkða; b; p; q; rÞ ¼ 0 and
tk ¼ jTkða; b; p; q; rÞj 6¼ 0. In practice, we use the criteria:
jP ða; b; p; q; rÞj < 10ÿ4m for each P 2 ESk and tk > 10ÿ2m,
where m ¼ maxða; b; p; q; rÞ. We will find the smallest k
such that the above conditions are satisfied. If no such k
exits, then there exists no solution. Otherwise, goto S2.

S2 Determine the number of physical solutions with the
criteria given in Section 3. Let N be the number and � the
criterion used to determine this number. If N ¼ 0, the
algorithm terminates. Otherwise goto S3.

S3 In this step, we will decide the digits of precisions used
in the computation. With the criterion � obtained in
Step S2, we may determine whether a; b; p; q; r are stable

values. If they are stable, let M ¼ 16 (usual floating-point
number); otherwise, let M ¼ 40.

S4 Find all the solutions of TSk ¼ 0 using high precision
numbers with M digits.

S5 If the number of solutions obtained in S4 is the same as
N , then these are the solutions. Otherwise, we need to
select N “right” solutions from them. We first replace a
complex number uþ vi in the solutions with u if v is very
small, say jvj < 10ÿ4m. Then, we select the N largest
positive solutions. According to Step S2, this is possible.

The following experiments are done with Maple. The
first experiment is to show the stability of the criteria in
Section 3. These formulas use arithmetic operations (+, -, *)
only and are of moderate size. The computation will be
robust. Also, from the above analysis, only for critical
values of the parameters, the computation will be unstable.
We also know that the probability for the occurrence of the
critical values is near zero. This observation gives another
assurance that the computation is stable. The following
experimental results support this statement.

The parameters a, b, p, q, and r are randomly generated
within some ranges by a random number generator in
Maple 7. We take a, b 2 ð 1

10 10Þ, and p, q, r 2 ðÿ2 2Þ. One
hundred trials are carried out and 100 sets of parameters are
generated for each trial. For each set of parametric values,
two results are computed: one with the original parametric
values; the other with the parametric values perturbed by
random noises in certain level. In trial i, let ni be the number
of the parametric values such that the two results are the
same and let kniÿnkn (here, n ¼ 100) be the relative sets error.
Fig. 3a gives the median, mean, and standard deviation of
the relative errors w.r.t. varying noises. We observe that the
algorithm yields very graceful degradation with increasing
noises and are, therefore, very stable.

The second experiment concerns the stability of the
whole CASSC algorithm. We choose three sets of parametric
values S1 ¼ fa ¼ 0:6; b ¼ 0:5; p ¼ r ¼ 0; q ¼ 0g, S2 ¼ fa ¼
1; b ¼ 1; p ¼ 1:2; r ¼ 1:2; q ¼ 1:3g, and S3 ¼ fa ¼ 1:35; b ¼
1:65; p ¼ 1:2; r ¼ 1:0; q ¼ 1:67g. We choose n ¼ 100 random
numbers as noises nearing each of the seven numbers:
e1 ¼ 0:08, e2 ¼ 0:1, e3 ¼ 0:12, e4 ¼ 0:14, e5 ¼ 0:16, e6 ¼ 0:18,
e7 ¼ 0:2 and compute the solutions for S1, S2, and S3 with
our algorithm. Let ni be the number of parametric values
near ei which give different number of solutions with the
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original parametric values, and knik
n the relative sets error.

The experimental results are illustrated in Fig. 3b. It is easy
to check that S3 is stable and S1; S2 are critical. The
experimental results strongly support the fact that our
definition of stable and critical values is meaningful. From
Fig. 3b, we see that even for a set of stable values (S3), the
computation may be unstable. This is caused by the high
noise level. The computation is stable for noises less that
10 percent of the value range of the parameters, which is
quite reasonable.

We test our algorithm with a larger set of samples. For a
set of solutions obtained with the algorithm, we substitute
them into (ES) and check whether the substituted values
are zero or not. We take 100 sets of parameters randomly.
The maximal substituted value into ðESÞ is 0:3 � 10ÿ10 for
the equation systems which is satisfactory.

We also tested the speed for the CASSC algorithm, which
should be fast for the following reasons. Steps S1, S2, and S3
only involve the evaluation of rational expressions of
moderate size. Step S4 is to solve univariate equations of
degrees at most four. Step S5 is computationally trivial. We
test our algorithm with 100 randomly chosen samples. The
average running time for Steps S1, S3, and S5 is almost zero;
the average running time for Step S2 is 0.011 second; the
average running time for Step S4 is 0.013 second. The data is
collected with Maple V on a PC with a 2G CPU. Step S4, which
is to solve the quartic equations, is the most time consuming
step. Note that this step is needed in most previous
approaches to solving the P3P problem. The implementation
is based on the interpreter language of Maple for symbolic
computation which is known to be much slower than
implementations with C languages for the tasks mentioned
above. As a conclusion, the CASSC algorithm is quite fast.
There is no problem to provide realtime solutions to the
P3P problem.

5 THE GEOMETRIC APPROACH

Let us consider the three conditions � ¼ ffBPC, � ¼ ffAPC,
and  ¼ ffAPB separately. The set of all P satisfying
condition ffAPB ¼  is part of a toroid (part-toroid) S

0

AB.
Similarly, we can define S

0

AC and S
0

BC . Because the three
part-toroids are symmetric with the plane ABC, we need
only consider what happens on one side of plane ABC. Let
SAB denote the half of S

0

AB which is on one side of
plane ABC. We can similarly define SAC and SBC .

We divide the problem into two steps: First, we
determine the intersection curve CA of surfaces SAB and
SAC ; then, we determine the intersection of CA with SBC .
We have solved the first step completely. For the second
step, we have some partial results.

5.1 Determine CA ¼ SAB \ SAC
Let dABiABi ( dABeABe) denote the intersection of SAB and planeABC

which is on the same (opposite) side ofABwith pointC. Since

the axes of symmetry for part-toroids S0AB and S0AC meet in

pointA and pointA is also on the part-toroids, from the shape

of the part-toroid each branch ofCA must pass through plane

ABC. That is, CA must meet with plane ABC. Curve CA

intersects with plane ABC in at most four points: J ¼ dABeABe

\dACeACe;H ¼ dABeABe \ dACiACi;K ¼ dABiABi \ dACeACe, and I ¼ dABiABi \ dACiACi.

Please note that, in some cases (e.g., in Fig. 7), pointAmay not

be onCA. In this case, pointA is on the intersection curve of the

parts of the toroids that are excluded by us.

From now on, we also use A;B;C to denote the angles of

ffA; ffB; ffC. We first give the existence conditions for points J ,

H, K, and I.

. Point J exists if � þ  < A (Fig. 4). In Fig. 4,

ffBJA ¼ , ffCJA ¼ �, and ffBJC ¼ � þ . If � þ 
is large enough, dABeABe and dACeACe will have no

intersection point. If � þ  ¼ A, dABeABe is tangent todACeACe at point A. If � þ  < A, the intersection ofdABeABe and dACeACe will exist.
. Point H. There are two cases. If B < �, then point B

is outside of SAC and H1 exists if B < � and � þ
A < : In Fig. 5, ffBH1A ¼ , ffCH1A ¼ �. To ensure
the existence of H1,  must be greater than � þA. If
 ¼ � þA, dACiACi is tangent to dABeABe at point A. If
� < B, then point B is inside SAC and H2 exists if
� < B and  < � þA.

. Point K. There are two cases. K1 exists if C <  and
 þA < �: K2 exists if  < C and � <  þA.

. Point I. There are two cases: I1 exists if B < �;C < ,
and � þ  þA < 2� (Fig. 6). I2 exists if � < B and
 < C (Fig. 6).
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We will now give a classification of CA by counting the

intersections ofCA with planeABC. Suppose that S;U; V are

points. We use EðSÞ (EðSÞ) to denote the existence (non-

existence) condition of point S. Notation S n ðU; V Þ means

that ifS exists, thenU and V will not exist. NotationS;U ) V

means that, if S andU exist, then V exists. From the results in

the preceding sections, we have the following conclusion:

J n ðK1; H1Þ
H1 n ðJ;K1; H2; I2Þ; H2 n ðH1; I1Þ
K1 n ðJ;H1; K2; I2Þ; K2 n ðK1; I1Þ
I1 n ðI2; K2; H2Þ; I2 n ðI1; K1; H1Þ
K2; H2 ) I2; J; I2 ) H2; K2:

8>>>><>>>>: ð19Þ

. CA intersects plane ABC in four points. From the
above analysis, the four points must come from
H1; H2; K1; K2; I1; I2; and J . SinceH1 n ðH2Þ; K1nðK2Þ
and I1n ðI2Þ, the fourth point must be J . From J n
ðK1; H1Þ; K2 and H2 must exist. Finally, from
K2; H2 ) I2 we get the fourth point I2. So, the four
points areJ;H2; K2; I2. Then, the condition of this case
should be EðJÞ \ EðH2Þ \ EðK2Þ \ EðI2Þ \ EðH1Þ \
EðK1Þ \EðI1Þwhich is equivalent to EðJÞ \ EðI2Þ by
(19). That is,

� þ  < A; � < B; and  < C:

In this case, CA consists of two spatial curves: one is
from point J to I2 and the other is fromH2 toK2. Fig. 7
shows the case in theABC plane and the spatial case.
Note that, in this case, point A is not on the curves.

. CA intersects plane ABC in three points. From
J n ðK1; H1Þ, we know that, if J exists, at lease one of
H2 andK2 should exist. Actually only one ofH2 andK2

can exist. Otherwise, from K2; H2 ) I2 we know that
there will be four points! Then, we know that eitherH2

or K2 exists. From H2 n ðH1; I1Þ and K2 n ðK1; I1Þ, we
know that I2 must exist. Since J; I2 ) H2; K2, point J
mustnotexist.SinceH1 n ðH2Þ; K1n ðK2ÞandI1n ðI2Þ, if
we assume thatH1 exists, fromH1 n ðJ;K1; H2; I2Þwe
know that the other two points are K2 and I1. This
contradicts toK2 n ðK1; I1Þ. Thus,H2 must exist. From
H2 n ðH1; I1Þ, we know the other two points areK2 and
I2. The condition of this case should be

EðH2Þ \ EðK2Þ \EðI2Þ
\ EðJÞ \ EðH1Þ \ EðK1Þ \EðI1Þ:

Using (19) we can simplify this condition to

EðH2Þ \ EðK2Þ \ EðJÞ. That is,

j� ÿ j < A < � þ ;B < �; and�  < C:

In this case, CA consists of two spatial curves: one is

from A to I2 and the other is from H2 to K2. Since the

detailed analysis is the same, we will omit it below.
. CA intersects plane ABC in two points. There are

five subcases.

Case 1. The intersections are J;K2 (J;H2) if

� þ  < A
B < �
 < C

8<: � þ  < A
� < B
C < 

8<:
0@ 1A:

In this case, CA consists of one spatial curve from

J to K2 (J to H2).
Case 2. The intersections are J; I1 if

� þ  < A;B < �; and C < :

In this case, CA consists of one spatial curve from

J to I1.
Case 3. The intersections are H2; K1 (H1; K2) if

 þA < �
� < B
C < 

8<: � þA < 
B < �
 < C

8<:
0@ 1A:

In this case, CA consists of one spatial curve from

H2 to K1 (or H1 to K2).
Case 4. The intersections are K1; I1 (H1; I1) if

 þA < �
B < �
C < 
� þ  þA < 2�

8>><>>:
� þA < 

B < �
C < 
� þ  þA < 2�

8>><>>:
0BB@

1CCA:
In this case, CA consists of one spatial curve from

K1 to I1 (H1 to I1).
Case 5. The intersections are K2; I2 (H2; I2) if

� þA < 
� < B
 < C

8<:  þA < �
� < B
 < C

8<:
0@ 1A:

In this case, CA consists of one spatial curve from

K2 to I2 (H2 to I2).
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. CA intersects plane ABC in one point. We need to
consider two subcases.

Case 1. The intersection is H2 (K2) if

j� ÿ j < A < � þ 
� < B
C < 

8<: j� ÿ j < A < � þ 
B < �
 < C

8<:
0@ 1A:

In this case, CA consists of one spatial curve from
A to H2 (A to K2).

Case 2. The intersection is I1 if

j� ÿ j < A < � þ ;B < �;C < ; and � þ  þA
< 2�:

In this case, CA consists of one spatial curve from
A to I1.

5.2 Determine CA \ SBC
Determining the intersection of CA and SBC is much more
difficult than determining CA. We will discuss the reason in
Section 6. Here, we will report some partial results.

Lemma 7. The P3P problem has one or three solutions if CA
consists of one spatial curve and the two intersection points of
plane ABC and CA are not in the same side of SBC .

Proof. Since CA is a continuous spatial curve and the two
intersection points of plane ABC and CA are not in the
same side of SBC , CA must intersect SBC for odd times. In
addition, the maximum number of solutions is four, hence
the problem has a unique solution or three solutions. tu

Lemma 8. If �,  (�; �; ; �) are obtuse angles and � > A
(� > B;  > C), then the P3P problem can only have one or
three solutions.

Proof. See Fig. 8. We have ffBI1A ¼  > �
2 , ffCI1A ¼ � > �

2 .
Point I1 is on the same side of BC with point A.
According to the “reality condition,” we know that
�þ � þ  < 2�, which implies that point I1 is inside SBC .
Condition � > A means that point A is in the outside of
SBC . Thus, the result follows from Lemma 7. tu

Theorem 9. Under the reality conditions (2), if �, �, and  are
obtuse, then the P3P problem can only have one solution.
Furthermore if A < �;B < �;C < , then the P3P problem
has a unique solution.

Proof. From Lemma 8, we know that the problem will have
one or three solutions since �, �, and  are obtuse and at
least one of A;B;C is acute. Since the three angles are all
obtuse, the three part-toroids and their intersection
curves are concave. This implies that they can only have

one intersection point. If A < �;B < �;C < , from
Section 5.1, point I1 must exist. Similar to Lemma 8,
points A and I1 must be in different sides of SBC . Similar
to the proof of Lemma 7, a solution must exist. tu

6 CONCLUSION

In this paper, we give a complete and robust algorithm
CASSC to find the numerical solutions for the P3P problem.
This algorithm is based on two sets of formulas obtained by
us. The first is a set of complete analytical solutions to the
P3P problem. The second is a set of formulas to determine
the number of real positive solutions to the P3P problem.

We also give partial geometric criteria for the number of
solutions of the P3P problem. This kind of results, like
Theorem 9, involves linear inequalities only and, hence, is
simpler and more intuitive than the algebraic approach. To
find a complete geometric classification for the P3P problem
is a still challenging problem. There might be two
difficulties in doing so. The complete results reported in
Section 5.1 are based on geometric intuition coming from a
dynamic geometry software: Geometry Expert [23].
Using Geometry Expert, we can see clearly how dABiABi anddABeABe change when changing the six free parameters
continuously. But for the 3D case, there is still no adequate
software to get an intuitive idea of how CA looks like. Also,
it is doubtful that the complete classification of the
P3P problem can be expressed with linear inequalities only.

APPENDIX A
The triangular sets in the zero decomposition for the
P3P problem.

a0x
4þa1x

3þa2x
2þa3xþa4;

b0yÿb1:

�
ðTS1Þ

a5x
3þa6x

2þa7xþa8;

b2yÿb3;

a2þðÿ2þ2bÿbr2Þaÿ2bþb2þ1:

8><>: ðTS2Þ

ðr2p2ÿ4pqrþr2q2Þx2þð4p2qÿp2r2qÞxÿ4p2þr2p2;

b4yÿb5;

ðÿ4p2þ4pqrþr2p2þr2q2ÿr3pqÿ4q2Þaþr2p2ÿ4pqrþ4q2;

ðÿ4p2þ4pqrþr2p2þr2q2ÿr3pqÿ4q2Þbþr2q2þ4p2ÿ4pqr:

8>>><>>>: ðTS3Þ

ðp2bþq2bÿp2Þx2þðÿ4bqþp2qÞxþ4bÿp2;

pyþqxÿ2;

aþbÿ1;

r:

8>>><>>>: ðTS4Þ

qxÿ1;

pyÿ1;

ðp2þq2Þaÿq2;

ðp2þq2Þbÿp2;

r:

8>>>>>><>>>>>>:
ðTS5Þ

qxÿ1;

pyÿ1;

ðp4ÿ2p2q2þq4Þaÿp2q2ÿq4;

ðp4ÿ2p2q2þq4Þbÿp2q2ÿp4;

ðp2þq2Þrÿ4pq:

8>>>>>><>>>>>>:
ðTS6Þ
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ðp2qÿ2prÞxÿp2þr2;

pyÿ1;

ð4r2þp2q2þp4ÿr4ÿp3qrþpr3qÿ4qprÞb

þ2pr3qÿ2p2r2þ2p3qrÿp2q2r2ÿp4ÿr4:

8>>><>>>: ðTS7Þ

ð2pr3qÿ2p2r2þ4br2þp2q2bþp4bÿr4bþ2p3qrÿp2q2r2ÿp4ÿr4ÿ

p3qrbþr3pbqÿ4qbprÞx2þðÿq2r3pbþ2pq2brþ2p2r2qþp2q3r2þr4qþqr4b

þp4qÿ2bpr3þ3qr2bp2ÿ4r2bqþ8rpbÿ2rbp3ÿ2p3q2rÿ4bp2qÿ2r3pq2Þx

ÿp2q2r2þ2pr3qþ2p3qrÿp4ÿr4ÿ2p2r2ÿ4qbprþq2br2þ4bp2;

ðÿqprþp2þr2Þyþpqxÿ2rxÿ2pþqr:

8>>>>>><>>>>>>:
ðTS8Þ

ðÿ1þaþbÞx2þðÿqaþqÞxÿ1þaÿb;

ðÿ1þaþbÞy2ÿ1ÿaþqxaþb;

p;

r:

8>>><>>>: ðTS9Þ

ð2prÿp2qÞxÿr2þp2;

pyÿ1;

ðÿpqr3þr4þrp3qÿ4r2ÿp2q2þ4rpqÿp4Þaþp2q2ÿ4rpqþ4r2;

ðÿpqr3þr4þrp3qÿ4r2ÿp2q2þ4rpqÿp4Þbþ

p4þr4þ2r2p2þp2r2q2ÿ2rp3qÿ2pqr3:

8>>>>>><>>>>>>:
ðTS10Þ

rxÿp;

ðÿp2r2þr3qpÿr4Þy2þðp3r2ÿp2r3qþr4pÞy

ðÿpqr3þr4þrp3qÿ4r2ÿp2q2þ4rpqÿp4Þaþp2q2ÿ4rpqþ4r2;

ðÿpqr3þr4þrp3qÿ4r2ÿp2q2þ4rpqÿp4Þbþ

p4þr4þ2r2p2þp2r2q2ÿ2rp3qÿ2pqr3:

8>>>>>><>>>>>>:
ðTS11Þ

Here,

a0 ¼ÿ2bþb2þa2þ1ÿbr2aþ2baÿ2a

a1 ¼ÿ2bqaÿ2a2qþbr2qaÿ2qþ2bqþ4aqþpbrþbrpaÿb2rp

a2 ¼ q2þb2r2ÿbp2ÿqpbrþb2p2ÿbr2aþ2ÿ2b2ÿabrpqþ2a2ÿ4aÿ2q2aþq2a2Þ

a3 ¼ÿb2rpþbrpaÿ2a2qþqp2bþ2bqaþ4aqþpbrÿ2bqÿ2q

a4 ¼ 1ÿ2aþ2bþb2ÿbp2þa2ÿ2ba;

a5 ¼ðaprþ2qaÿrpbþ2bqÿ2qÿar2qþpr;

a6 ¼ðÿ2q2þr2ÿ4þr2q2ÿpqrÞaþbr2ÿp2ÿbq2þbp2þ2q2þ4ÿpqrÿ4b;

a7 ¼ð6qþprÿ2r2qÞaþprÿ6qÿrpbþ2bqþqp2;

a8 ¼ 4ÿ4aÿp2þar2;

b0 ¼ bðp2aÿp2þbp2þpqrÿqarpþar2ÿr2ÿbr2Þ2;

b1 ¼ðð1ÿaÿbÞx2þðqaÿqÞxþ1ÿaþbÞðða2r3þ2br3aÿbr5aÿ2ar3þr3þb2r3ÿ2r3bÞx3þ

ðpr2þpa2r2ÿ2br3qaþ2r3bqÿ2r3qÿ2par2ÿ2pr2bþr4pbþ4ar3qþbqar5ÿ2r3a2q

þ2r2pbaþb2r2pÿr4pb2Þx2þðr3q2þr5b2þrp2b2ÿ4ar3ÿ2ar3q2þr3q2a2þ

2a2r3ÿ2b2r3ÿ2p2brþ4par2qþ2ap2rbÿ2ar2qbpÿ2p2arþrp2ÿbr5aþ2pr2bqþ

rp2a2ÿ2pqr2þ2r3ÿ2r2pa2qÿr4qbpÞxþ4ar3qþpr2q2þ2p3baÿ4par2þ

ÿ2r3bqÿ2p2qrÿ2b2r2pþr4pbþ2pa2r2ÿ2r3a2qÿ2p3aþp3a2þ2pr2þp3þ2br3qa

þ2qp2brþ4qarp2ÿ2par2q2ÿ2p2a2rqþpa2r2q2ÿ2r3qÿ2p3bþp3b2ÿ2p2brqaÞ;

b2 ¼ bðÿ4ar3þ4r3þar5ÿ2p3qþ4rp2ÿ6pqr2ÿ4rp2bÿ4p2arþ6par2qþ

2p2rq2þ2p2ar3þ2p3bqþ2p3qaþp4arþp2ar3q2ÿ2p2rq2aÿp2rbq2ÿ

2p3ar2qÿ2par4qþ2pr2bqÞ;

b3 ¼ððÿ1þaþbÞx2þðÿqaþqÞxÿ1þaÿbÞððÿpar3þar4qÿ2ar2qÿ2r2bqþ2r2qÿpr3þ

r3bpÞx2þðÿr2p2aþ2r3paqþ4ar2ÿr4q2aÿar4ÿ2qarpþ2ar2q2ÿr4bþr2bq2þr3pq

þ2pqrþ4r2bÿ2qpbrÿ2r2q2ÿ4r2Þxÿp3arþ2ar4qÿpar3q2þ2p2ar2qÿ2par3þ2prq2a

ÿ2p2aqÿ6ar2qþ4aprÿpr3þ4pbrþprbq2ÿ2r2bqÿ2prq2þ2qp2ÿ2bqp2ÿ4prþ6r2qÞ;

b4 ¼ r2p2ðrq2þp2rÿ4pqÞðp2ÿpqrþr2þq2ÿ4Þ;

b5 ¼ r2qððrp2þrq2ÿr2pqÞxþpr2ÿ4pÞððrp2þrq2ÿ4pqÞxþq2pÿqp2rþp3Þ;

I1 ¼ a0;I2 ¼ b0;I3 ¼ a5;I4 ¼ b2;I5 ¼ r;I6 ¼ rpÿ4pqþrq2;I7 ¼ p;I8 ¼ðp2þq2Þbÿp2:

T1 ¼ I0I1I2;T2 ¼ I0I2I3I4;T3 ¼ I0I2I4I5I6I7;T4 ¼ I0I2I4I6I7I8;

T5 ¼ I0I2I4I6I7;T6 ¼ I0I2I4I5I7;T7 ¼ I0I2I3;T8 ¼T7;T9 ¼ I0I1;T10 ¼ I0I1;T11 ¼ I0I1:

APPENDIX B
The explicit formulas for the conditions in the theorems in
Section 3 can be found at http://www.mmrc.iss.ac.cn/
~xgao/paper/appendix.ps.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their valuable suggestions that led to the addition of Section 4
and other improvements. This work is supported in part by
Chinese National Science Foundation under an outstanding
youth grant (No. 69725002) and by a National Key Basic
Research Project of China (No. G1998030600).

REFERENCES

[1] M.A. Abidi and T. Chandra, “A New Efficient and Direct Solution
for Pose Estimation Using Quadrangular Targets: Algorithm and
Evaluation,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 17, no. 5, pp. 534-538, May 1995.

[2] M.A. Fishler and R.C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartomated Cartography,” Comm. ACM, vol. 24,
no. 6, pp. 381-395, 1981.

[3] R. Horaud, B. Conio, and O. Leboulleux, “An Analytic Solution
for the Perspective 4-Point Problem,” Computer Vision, Graphics,
and Image Processing, vol. 47, pp. 33-44, 1989.

[4] L. Quan and Z. Lan, “Linear N-Point Camera Pose Determina-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21,
no. 8, pp. 774-780, Aug. 1999.

[5] C. Su, Y. Xu, H. Li, and S. Liu, “Application of Wu’s Method in
Computer Animation,” Proc. Fifth Int’l Conf. CAD/CG, vol. 1,
pp. 211-215, 1997.

[6] J.S.C. Yuan, “A General Photogrammetric Method for Determin-
ing Object Position and Orientation,” IEEE Trans. Robotics and
Automation, vol. 5, no. 2, pp. 129-142, 1989.

[7] W.J. Wolfe, D. Mathis, C. Weber, and M. Magee, “The Perspective
View of Three Points,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 13, no. 1, pp. 66-73, Jan. 1991.

[8] Y. Hung, P. Yeh, and D. Harwood, “Passive Ranging to Known
Planar Points Sets,” Proc. IEEE Int’l Conf. Robotics and Automation,
vol. 1, pp. 80-85, 1985.

[9] R.M. Haralick, C. Lee, K. Ottenberg, and M. Nolle, “Analysis and
Solutions of The Three Point Perspective Pose Estimation
Problem,” Proc. Int’l Conf. Computer Vision and Pattern Recognition,
pp. 592-598, 1991.

[10] D. DeMenthon and L.S. Davis, “Exact and Approximate Solutions
of the Perspective-Three-Point Problem,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 14, no. 11, pp. 1100-1105,
Nov. 1992.

[11] D.F. DeMenthon and L.S. Davis, “Model-Based Object Pose in 25
Lines of Code,” Int’l J. Computer Vision, vol. 15, pp. 123-141, 1995.

[12] W.J. Wolfe and K. Jones, “Camera Calibration Using the
Perspective View of a Triangle,” Proc. SPIE Conf. Automation
Inspection Measurement, vol. 730, pp. 47-50, 1986.

[13] C. Su, C.Y. Xu, H. Li, and S. Liu, “Necessary and Sufficient
Condition of Positive Root Number of P3P Problem,” Chinese J.
Computer Sciences, vol. 21, pp. 1084-1095, 1998 (in Chinese).

[14] L. Yang, “A Simplified Algorithm for Solution Classification of the
Perspective-three-point Problem,” MM-Preprints, MMRC, Acade-
mia Sinica, no. 17, pp. 135-145, 1998.

[15] W.T. Wu, Basic Principles of Mechanical Theorem Proving in
Geometries, vol. I: Part of Elementary Geometries, Beijing: Science
Press, (in Chinese), 1984, English version, Berlin: Springer, 1995.

942 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on March 15,2025 at 23:26:39 UTC from IEEE Xplore.  Restrictions apply. 



[16] B. Mishra, Algorithmic Algebra, pp. 297-381, Berlin: Springer, 1993.
[17] D. Wang, “An Implementation of the Characteristic Set Method in

Maple,” Automated Practical Reasoning: Algebraic Approaches,
J. Pfalzgraf and D. Wang, eds., pp. 187-201, New York: Springer,
Wien, 1995.

[18] C.K. Yap, “Robust Geometric Computation,” Handbook of Discrete
and Computational Geometry, J.E. Goodman and J. O’Rourke, eds.,
pp. 653-668, CRC Press, 1997.

[19] J. Bochnak, M. Coste, and M.F. Roy, Real Algebraic Geometry.
Berlin: Springer, 1998.

[20] D.S. Arnon, “Geometric Reasoning with Logic and Algebra,”
Artificial Intelligence, vol. 37, pp. 37-60, 1988.

[21] A.M. Cohen, H. Cuypers, and H. Sterk, Some Tapas of Computer
Algebra, pp. 121-167, Berlin: Springer, 1999.

[22] L. Yang, J.Z. Zhang, and X.R. Hou, Non-Linear Equation System and
Automated Theorem Proving, pp. 137-176, Shanghai: Shanghai Press
of Science, Technology, and Education, 1996.

[23] X.S. Gao, J.Z. Zhang, and S.C. Chou, Geometry Expert, Taipai,
Taiwan: Nine Chapter Pub., 1998 (in Chinese).

Xiao-Shan Gao received the PhD degree from
the Chinese Academy of Sciences in 1988. He is
a professor in the Institute of Systems Science,
Academia Sinica. He has published more than 70
research papers and two monographs. His
research interests include: automated reasoning,
symbolic computation, and intelligent CAD and
CAI (computer aided instruction). Web page:
http://www.mmrc.iss.ac.cn/~xgao. His a member
of the IEEE and the IEEE Computer Society.

Xiao-Rong Hou received the MS degree in
mathematics from the Chengdu Institute of
Computer Applications, Academia Sinica. He is
now a professor of mathematics and computer
science at the University of Science and Tech-
nology of China and at Ningbo University of
China. His research interests include symbolic
computation, real algebraic geometry, automated
reasoning, and intelligent software technology.

Jianliang Tang received the MS degree from
GuangXi Normal University of China in 2000.
Currently, he is finishing his PhD thesis at the
Institute of Systems Science, Academia Sinica.
His research interests include camera calibration
and symbolic computation.

Hang-Fei Cheng received the BS degree from the University of Science
and Technology of China in 1995 and the MS degree from the Institute
of Systems Science in 1998. He is now a PhD candidate at
Pennsylvania State University.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

GAO ET AL.: COMPLETE SOLUTION CLASSIFICATION FOR THE PERSPECTIVE-THREE-POINT PROBLEM 943

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on March 15,2025 at 23:26:39 UTC from IEEE Xplore.  Restrictions apply. 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


