
Event-Based Vision: A Survey
Guillermo Gallego , Senior Member, IEEE, Tobi Delbr€uck , Fellow, IEEE, Garrick Orchard ,

Chiara Bartolozzi ,Member, IEEE, Brian Taba, Andrea Censi, Stefan Leutenegger ,

Andrew J. Davison, J€org Conradt , Senior Member, IEEE,

Kostas Daniilidis , Fellow, IEEE, and Davide Scaramuzza , Senior Member, IEEE

Abstract—Event cameras are bio-inspired sensors that differ fromconventional frame cameras: Insteadof capturing images at a fixed rate,

they asynchronouslymeasure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the

brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order ofms),

very high dynamic range (140 dB versus 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced

motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras,

such as low-latency, high speed, and high dynamic range. However, novelmethods are required to process the unconventional output of

these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-basedvision,

with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras.We present event

cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision

(feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition).We also discuss the

techniques developed to process events, including learning-based techniques, aswell as specialized processors for these novel sensors,

such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the

search for amore efficient, bio-inspired way for machines to perceive and interact with the world.

Index Terms—Event cameras, bio-inspired vision, asynchronous sensor, low latency, high dynamic range, low power

Ç

1 INTRODUCTION AND APPLICATIONS

“THE brain is imagination, and that was exciting to me; I
wanted to build a chip that could imagine something.”1

that is how Misha Mahowald, a graduate student at Caltech

in 1986, started to work with Prof. CarverMead on the stereo
problem from a joint biological and engineering perspective.
A couple of years later, in 1991, the image of a cat in the cover
of Scientific American [1], acquired by a novel “Silicon Reti-
na” mimicking the neural architecture of the eye, showed a
new, powerful way of doing computations, igniting the
emerging field of neuromorphic engineering. Today, we still
pursue the same visionary challenge: understanding how
the brain works and building one on a computer chip. Cur-
rent efforts include flagship billion-dollar projects, such as
the Human Brain Project and the Blue Brain Project in
Europe and the U.S. BRAIN (Brain Research through
Advancing Innovative Neurotechnologies) Initiative.

This paper provides an overview of the bio-inspired tech-
nology of silicon retinas, or “event cameras”, such as [2], [3],
[4], [5], with a focus on their application to solve classical as
well as new computer vision and robotic tasks. Sight is, by far,
the dominant sense in humans to perceive the world, and,
together with the brain, learn new things. In recent years, this
technology has attracted a lot of attention from academia and
industry. This is due to the availability of prototype event cam-
eras and the advantages that they offer to tackle problems that
are difficult with standard frame-based image sensors (that
provide stroboscopic synchronous sequences of pictures),
such as high-speed motion estimation [6], [7] or high dynamic
range (HDR) imaging [8].

Event cameras are asynchronous sensors that pose a para-
digm shift in the way visual information is acquired. This is
because they sample light based on the scene dynamics,
rather than on a clock that has no relation to the viewed
scene. Their advantages are: very high temporal resolution
and low latency (both in the order of microseconds), very

� Guillermo Gallego is with the Technische Universit€at Berlin, 10623 Berlin,
Germany and also with the Einstein Center Digital Future, 10117 Berlin,
Germany. E-mail: guillermo.gallego@tu-berlin.de.

� Tobi Delbr€uck is with the Department of Information Technology and Elec-
trical Engineering, ETH Zurich, 8092 Z€urich, Switzerland, and also with
the Institute of Neuroinformatics, University of Zurich and ETH Zurich,
8057 Z€urich, Switzerland. E-mail: tobi@ini.uzh.ch.

� Garrick Orchard is with Intel Labs, Santa Clara, CA 95054-1549 USA
E-mail: garrick.orchard@intel.com.

� Chiara Bartolozzi is with the Istituto Italiano di Tecnologia, 16163 Gen-
ova, Italy. E-mail: chiara.bartolozzi@iit.it.

� Brian Taba is with IBM Research, San Jose, CA 95120 USA
E-mail: btaba@us.ibm.com.

� Andrea Censi is with theDepartment ofMechanical and Process Engineering,
ETHZurich, 8092 Z€urich, Switzerland. E-mail: acensi@ethz.ch.

� Stefan Leutenegger and Andrew J. Davison are with Imperial College London,
SW7 2BULondon, U.K. E-mail: s.leutenegger@imperial.ac.uk, ajd@doc.ic.ac.
uk.

� J€org Conradt is with the KTH Royal Institute of Technology, 114 28 Stock-
holm, Sweden. E-mail: jconradt@kth.se.

� Kostas Daniilidis is with the University of Pennsylvania, Philadelphia, PA
19104 USA. E-mail: kostas@cis.upenn.edu.

� Davide Scaramuzza is with the University of Zurich, 8050 Z€urich, Switzer-
land. E-mail: sdavide@ifi.uzh.ch.

Manuscript received 13 Apr. 2019; revised 2 Feb. 2020; accepted 22 June 2020.
Date of publication 10 July 2020; date of current version 3 Dec. 2021.
(Corresponding author: Guillermo Gallego.)
Recommended for acceptance by P. Favaro.
Digital Object Identifier no. 10.1109/TPAMI.2020.3008413

1. https://youtu.be/FKemf6Idkd0?t=67

154 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2672-9241
https://orcid.org/0000-0002-2672-9241
https://orcid.org/0000-0002-2672-9241
https://orcid.org/0000-0002-2672-9241
https://orcid.org/0000-0002-2672-9241
https://orcid.org/0000-0001-5479-1141
https://orcid.org/0000-0001-5479-1141
https://orcid.org/0000-0001-5479-1141
https://orcid.org/0000-0001-5479-1141
https://orcid.org/0000-0001-5479-1141
https://orcid.org/0000-0002-1243-2711
https://orcid.org/0000-0002-1243-2711
https://orcid.org/0000-0002-1243-2711
https://orcid.org/0000-0002-1243-2711
https://orcid.org/0000-0002-1243-2711
https://orcid.org/0000-0003-3465-6449
https://orcid.org/0000-0003-3465-6449
https://orcid.org/0000-0003-3465-6449
https://orcid.org/0000-0003-3465-6449
https://orcid.org/0000-0003-3465-6449
https://orcid.org/0000-0002-7998-3737
https://orcid.org/0000-0002-7998-3737
https://orcid.org/0000-0002-7998-3737
https://orcid.org/0000-0002-7998-3737
https://orcid.org/0000-0002-7998-3737
https://orcid.org/0000-0001-5998-9640
https://orcid.org/0000-0001-5998-9640
https://orcid.org/0000-0001-5998-9640
https://orcid.org/0000-0001-5998-9640
https://orcid.org/0000-0001-5998-9640
https://orcid.org/0000-0003-0498-0758
https://orcid.org/0000-0003-0498-0758
https://orcid.org/0000-0003-0498-0758
https://orcid.org/0000-0003-0498-0758
https://orcid.org/0000-0003-0498-0758
https://orcid.org/0000-0002-3831-6778
https://orcid.org/0000-0002-3831-6778
https://orcid.org/0000-0002-3831-6778
https://orcid.org/0000-0002-3831-6778
https://orcid.org/0000-0002-3831-6778
mailto:guillermo.gallego@tu-berlin.de
mailto:tobi@ini.uzh.ch
mailto:garrick.orchard@intel.com
mailto:chiara.bartolozzi@iit.it
mailto:btaba@us.ibm.com
mailto:acensi@ethz.ch
mailto:s.leutenegger@imperial.ac.uk
mailto:ajd@doc.ic.ac.uk
mailto:ajd@doc.ic.ac.uk
mailto:jconradt@kth.se
mailto:kostas@cis.upenn.edu
mailto:sdavide@ifi.uzh.ch
https://youtu.be/FKemf6Idkd0?t=67


high dynamic range (140 dB versus 60 dB of standard cam-
eras), and low power consumption. Hence, event cameras
have a large potential for robotics and wearable applications
in challenging scenarios for standard cameras, such as high
speed and high dynamic range. Although event cameras
have become commercially available only since 2008 [2], the
recent body of literature on these new sensors2 as well as
the recent plans for mass production claimed by companies,
such as Samsung [5] and Prophesee,3 highlight that there is
a big commercial interest in exploiting these novel vision
sensors for mobile robotic, augmented and virtual reality
(AR/VR), and video game applications. However, because
event cameras work in a fundamentally different way from
standard cameras, measuring per-pixel brightness changes
(called “events”) asynchronously rather than measuring
“absolute” brightness at constant rate, novel methods are
required to process their output and unlock their potential.

Applications of Event Cameras. Typical scenarios where event
cameras offer advantages over other sensingmodalities include
real-time interaction systems, such as robotics or wearable elec-
tronics [10], where operation under uncontrolled lighting con-
ditions, latency, and power are important [11]. Event cameras
are used for object tracking [12], [13], surveillance andmonitor-
ing [14], and object/gesture recognition [15], [16], [17]. They are
also profitable for depth estimation [18], [19], structured light
3D scanning [20], optical flow estimation [21], [22], HDR image
reconstruction [8], [23], [24] and Simultaneous Localization and
Mapping (SLAM) [25], [26], [27]. Event-based vision is a grow-
ing field of research, and other applications, such as image
deblurring [28] or star tracking [29], [30], will appear as event
cameras becomewidely available [9].

2 PRINCIPLE OF OPERATION OF EVENT CAMERAS

In contrast to standard cameras, which acquire full images
at a rate specified by an external clock (e.g., 30 fps), event
cameras, such as the Dynamic Vision Sensor (DVS) [2], [31],
[32], [33], [34], respond to brightness changes in the scene
asynchronously and independently for every pixel (Fig. 1b).
Thus, the output of an event camera is a variable data-rate
sequence of digital “events” or “spikes”, with each event
representing a change of brightness (log intensity)4 of pre-
defined magnitude at a pixel at a particular time5 (Fig. 1b)
(Section 2.4). This encoding is inspired by the spiking nature
of biological visual pathways (Section 3.3).

Each pixel memorizes the log intensity each time it sends
an event, and continuously monitors for a change of suffi-
cient magnitude from this memorized value (Fig. 1a). When
the change exceeds a threshold, the camera sends an event,
which is transmitted from the chip with the x; y location, the

time t, and the 1-bit polarity p of the change (i.e., brightness
increase (“ON”) or decrease (“OFF”)). This event output is
illustrated in Figs. 1b, 1e and 1f.

The events are transmitted from the pixel array to periph-
ery and then out of the camera using a shared digital output
bus, typically by using address-event representation (AER)
readout [37], [38]. This bus can become saturated, which per-
turbs the times that events are sent. Event cameras have
readout rates ranging from 2 MHz [2] to 1200 MHz [39],
depending on the chip and type of hardware interface.

Event cameras are data-driven sensors: their output
depends on the amount of motion or brightness change in
the scene. The faster the motion, the more events per second
are generated, since each pixel adapts its delta modulator
sampling rate to the rate of change of the log intensity signal
that it monitors. Events are timestamped with microsecond
resolution and are transmitted with sub-millisecond latency,
whichmake these sensors react quickly to visual stimuli.

The incident light at a pixel is a product of scene illumi-
nation and surface reflectance. If illumination is approxi-
mately constant, a log intensity change signals a reflectance
change. These changes in reflectance are mainly the result
of the movement of objects in the field of view. That is why
the DVS brightness change events have a built-in invariance
to scene illumination [2].

Comparing Bandwidths of DVS Pixels and Frame-Based Cam-
era. Although DVS pixels are fast, like any physical

Fig. 1. Summary of the DAVIS camera [4], comprising an event-based
dynamic vision sensor (DVS [2]) and a frame-based active pixel sensor
(APS) in the same pixel array, sharing the same photodiode in each
pixel. (a) Simplified circuit diagram of the DAVIS pixel (DVS pixel in red,
APS pixel in blue). (b) Schematic of the operation of a DVS pixel, con-
verting light into events. (c)-(d) Pictures of the DAVIS chip and USB cam-
era. (e) A white square on a rotating black disk viewed by the DAVIS
produces grayscale frames and a spiral of events in space-time. Events
in space-time are color-coded, from green (past) to red (present). (f)
Frame and overlaid events of a natural scene; the frames lag behind the
low-latency events (colored according to polarity). Images adapted
from [4], [35]. A more in-depth comparison of the DVS, DAVIS, and ATIS
pixel designs can be found in [36].

2. https://github.com/uzh-rpg/event-based_vision_resources [9]
3. http://rpg.ifi.uzh.ch/ICRA17_event_vision_workshop.html
4. Brightness is a perceived quantity; for brevity we use it to refer to

log intensity since they correspond closely for uniformly-lighted scenes.
5. Nomenclature: “Event cameras” output data-driven events that

signal a place and time. This nomenclature has evolved over the past
decade: originally they were known as address-event representation
(AER) silicon retinas, and later they became event-based cameras. In
general, events can signal any kind of information (intensity, local spa-
tial contrast, etc.), but over the last five years or so, the term “event cam-
era” has unfortunately become practically synonymous with the
particular representation of brightness change output by DVS’s.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 155

https://github.com/uzh-rpg/event-based_vision_resources
http://rpg.ifi.uzh.ch/ICRA17_event_vision_workshop.html


transducer, they have a finite bandwidth: if the incoming light
intensity varies too quickly, the front-endphotoreceptor circuits
filter out the variations [40]. The rise and fall time that is analo-
gous to the exposure time in standard image sensors is the
reciprocal of this bandwidth. Fig. 2 shows an example of mea-
sured DVS pixel frequency response (DVS128 in [2]). The mea-
surement setup (Fig. 2a) uses a sinusoidally-varying generated
signal to measure the response. Fig. 2b shows that, at low fre-
quencies, the DVS pixel produces a certain number of events
per cycle. Above some cutoff frequency, the variations are fil-
tered out by the photoreceptor dynamics, and thus the number
of events per cycle drops. This cutoff frequency is a monotoni-
cally increasing function of light intensity. At the brighter light
intensity, the DVS pixel bandwidth is about 3 kHz, equivalent
to an exposure time of about 300 ms. At 1000� lower intensity,
the DVS bandwidth is reduced to about 300Hz. Evenwhen the
LED brightness is reduced by a factor of 1,000, the frequency
response of DVS pixels is ten times higher than the 30 Hz
Nyquist frequency from a 60 fps image sensor. Also, the frame-
based camera aliases frequencies above the Nyquist frequency
back to the baseband, whereas the DVS pixel does not due to
the continuous time response.

2.1 Event Camera Designs

This section presents the most common event camera
designs. The actual devices (commercial or prototype cam-
eras such as the DAVIS240) are summarized in Section 2.5.

The first silicon retina was developed by Mahowald and
Mead at Caltech during the period 1986-1992, in Ph.D. thesis
work [41] that was awarded the prestigious Clauser prize.6

Mahowald and Mead’s sensor had logarithmic pixels, was
modeled after the three-layer Kufler retina, and produced as
output spike events using the AER protocol. However, it suf-
fered from several shortcomings: each wire-wrapped retina
board required precise adjustment of biasing potentiometers;
there was considerable mismatch between the responses of
different pixels; and pixels were too large to be a device of
practical use. Over the next decade the neuromorphic com-
munity developed a series of silicon retinas. These develop-
ments are summarized in [36], [38], [42], [43].

The DVS event camera [2] had its genesis in a frame-based
silicon retina design where the continuous-time photorecep-
tor was capacitively coupled to a readout circuit that was
reset each time the pixel was sampled [44]. More recent

event camera technology has been reviewed in the electron-
ics and neuroscience literature [10], [36], [38], [45], [46], [47].
Although surprisingly many applications can be solved by
only processing DVS events (i.e., brightness changes), it
became clear that some also require some form of static out-
put (i.e., “absolute” brightness). To address this shortcom-
ing, there have been several developments of cameras that
concurrently output dynamic and static information.

The Asynchronous Time Based Image Sensor (ATIS) [3], [48]
has pixels that contain a DVS subpixel (called change detec-
tion CD) that triggers another subpixel to read out the abso-
lute intensity (exposure measurement EM). The trigger
resets a capacitor to a high voltage. The charge is bled away
from this capacitor by another photodiode. The brighter the
light, the faster the capacitor discharges. The ATIS intensity
readout transmits two more events coding the time between
crossing two threshold voltages, as in [49]. This way, only
pixels that change provide their new intensity values. The
brighter the illumination, the shorter the time between these
two events. The ATIS achieves large static dynamic range
(> 120 dB). However, the ATIS has the disadvantage that
pixels are at least double the area of DVS pixels. Also, in
dark scenes the time between the two intensity events can
be long and the readout of intensity can be interrupted by
new events ([50] proposes a workaround to this problem).

The widely-used Dynamic and Active Pixel Vision Sensor
(DAVIS) [4], [51] illustrated in Fig. 1 combines a conven-
tional active pixel sensor (APS) [52] in the same pixel with
DVS. The advantage over ATIS is a much smaller pixel size
since the photodiode is shared and the readout circuit only
adds about 5 percent to the DVS pixel area. Intensity (APS)
frames can be triggered at a constant frame rate or on
demand, by analysis of DVS events, although the latter is
seldom exploited.7 However, the APS readout has limited
dynamic range (55dB) and like a standard camera, it is
redundant if the pixels do not change.

Since the ATIS and DAVIS pixel designs include a DVS
pixel (change detector) [36] we often use the term “DVS” to
refer to the binary-polarity event output or circuitry, regard-
less of whether it is from a DVS, ATIS or DAVIS design.

2.2 Advantages of Event Cameras

Event cameras offer numerous potential advantages over
standard cameras:

High Temporal Resolution. monitoring of brightness
changes is fast, in analog circuitry, and the read-out of the
events is digital, with a 1 MHz clock, i.e., events are detected
and timestamped with microsecond resolution. Therefore,
event cameras can capture very fast motions, without suf-
fering from motion blur typical of frame-based cameras.

Low Latency. Each pixel works independently and there is
no need to wait for a global exposure time of the frame: as
soon as the change is detected, it is transmitted. Hence,
event cameras have minimal latency: about 10 ms on the lab
bench, and sub-millisecond in the real world.

Low Power. Because event cameras transmit only bright-
ness changes, and thus remove redundant data, power is
only used to process changing pixels. At the die level, most

Fig. 2. “Event transfer function” from a single DVS pixel in response to
sinusoidal LED stimulation. The background events cause additional ON
events at very low frequencies. The 60 fps camera curve shows the
transfer function including aliasing from frequencies above the Nyquist
frequency. Figure adapted from [2].

6. http://www.gradoffice.caltech.edu/current/clauser
7. https://github.com/SensorsINI/jaer/blob/master/src/eu/

seebetter/ini/chips/davis/DavisAutoShooter.java

156 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

http://www.gradoffice.caltech.edu/current/clauser
https://github.com/SensorsINI/jaer/blob/master/src/eu/seebetter/ini/chips/davis/DavisAutoShooter.java
https://github.com/SensorsINI/jaer/blob/master/src/eu/seebetter/ini/chips/davis/DavisAutoShooter.java


cameras use about 10 mW, and there are prototypes that
achieve less than 10 mW. Embedded event-camera systems
where the sensor is directly interfaced to a processor have
shown system-level power consumption (i.e., sensing plus
processing) of 100mW or less [17], [53], [54], [55].

High Dynamic Range (HDR). The very high dynamic
range of event cameras (> 120 dB) notably exceeds the 60
dB of high-quality, frame-based cameras, making them able
to acquire information from moonlight to daylight. It is due
to the facts that the photoreceptors of the pixels operate in
logarithmic scale and each pixel works independently, not
waiting for a global shutter. Like biological retinas, DVS pix-
els can adapt to very dark as well as very bright stimuli.

2.3 Challenges Due to the Novel Sensing Paradigm

Event cameras represent a paradigm shift in acquisition of
visual information. Hence, they pose the challenge of design-
ing novel methods (algorithms and hardware) to process the
acquired data and extract information from it in order to
unlock the advantages of the camera. Specifically:

1) Coping with different space-time output: The output of
event cameras is fundamentally different from that
of standard cameras: events are asynchronous and
spatially sparse, whereas images are synchronous
and dense. Hence, frame-based vision algorithms
designed for image sequences are not directly appli-
cable to event data.

2) Coping with different photometric sensing: In contrast to
the grayscale information that standard cameras pro-
vide, each event contains binary (increase/decrease)
brightness change information. Brightness changes
depend not only on the scene brightness, but also on
the current and past relative motion between the
scene and the camera.

3) Coping with noise and dynamic effects: All vision sen-
sors are noisy because of the inherent shot noise in
photons and from transistor circuit noise, and they
also have non-idealities. This situation is especially
true for event cameras, where the process of quantiz-
ing temporal contrast is complex and has not been
completely characterized.

Therefore, new methods need to rethink the space-time,
photometric and stochastic nature of event data. This poses
the following questions: What is the best way to extract
information from the events relevant for a given task? and
How can noise and non-ideal effects be modeled to better
extract meaningful information from the events?

2.4 Event Generation Model

An event camera [2] has independent pixels that respond to
changes in their log photocurrent L ¼: log ðIÞ (“brightness”).
Specifically, in a noise-free scenario, an event ek ¼: ðxk; tk; pkÞ
is triggered at pixel xk ¼: ðxk; ykÞ> and at time tk as soon as the
brightness increment since the last event at the pixel, i.e.,

DLðxk; tkÞ ¼: Lðxk; tkÞ � Lðxk; tk � DtkÞ; (1)

reaches a temporal contrast threshold �C (Fig. 1b), i.e.,

DLðxk; tkÞ ¼ pk C; (2)

where C > 0, Dtk is the time elapsed since the last event at
the same pixel, and the polarity pk 2 fþ1;�1g is the sign of
the brightness change [2].

The contrast sensitivity C is determined by the pixel bias
currents [56], [57], which set the speed and threshold vol-
tages of the change detector in Fig. 1 and are generated by
an on-chip digitally-programmed bias generator. The
sensitivity C can be estimated knowing these currents [56].
In practice, positive (“ON”) and negative (“OFF”) events
may be triggered according to different thresholds, Cþ; C�.
Typical DVS’s [2], [5] can set thresholds between 10 to 50
percent illumination change. The lower limit on C is deter-
mined by noise and pixel-to-pixel mismatch (variability);
setting C too low results in a storm of noise events, starting
from pixels with low values of C. Experimental DVS’s with
higher photoreceptor gain are capable of lower thresholds,
e.g., 1 percent [58], [59], [60]; however these values are only
obtained under very bright illumination and ideal condi-
tions. Fundamentally, the pixel must react to a small change
in the photocurrent in spite of the shot noise present in this
current. This shot noise limitation sets the relation between
threshold and speed of the DVS under a particular illumina-
tion and desired detection reliability condition [60], [61].

Events and the Temporal Derivative of Brightness. Eq. (2)
states that event camera pixels set a threshold on magnitude
of the brightness change since the last event happened. For
a small Dtk, such an increment (2) can be approximated
using Taylor’s expansion by DLðxk; tkÞ � @L

@t ðxk; tkÞDtk,
which allows us to interpret the events as providing infor-
mation about the temporal derivative

@L

@t
ðxk; tkÞ � pk C

Dtk
: (3)

This is an indirect way of measuring brightness, since with
standard cameras we are used to measuring absolute
brightness. Note that DVS events are triggered by a change
in brightness magnitude (2), not by the brightness deriva-
tive (3) exceeding a threshold. The above interpretation
may be taken into account to design physically-grounded
event-based algorithms, such as [7], [23], [24], [28], [62], [63],
[64], [65], as opposed to algorithms that simply process
events as a collection of points with vague photometric
meaning.

Events are Caused by Moving Edges. Assuming constant
illumination, linearizing (2) and using the brightness con-
stancy assumption one can show that events are caused by
moving edges. For small Dt, the intensity increment (2) can
be approximated by8

DL � �rL � vDt; (4)

that is, it is caused by a brightness gradient rLðxk; tkÞ ¼
ð@xL; @yLÞ> movingwith velocity vðxk; tkÞ on the image plane,
over a displacementDx ¼: vDt.

Probabilistic Event Generation Models. Eq. (2) is an ideal-
ized model for the generation of events. A more realistic

8. Eq. (4) can be shown [66] by substituting the brightness constancy
assumption (i.e., optical flow constraint) @L

@t ðxðtÞ; tÞ þ rLðxðtÞ; tÞ � _xðtÞ ¼
0; with image-point velocity v � _x, in Taylor’s approximation
DLðx; tÞ ¼: Lðx; tÞ � Lðx; t� DtÞ � @L

@t ðx; tÞDt.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 157



model takes into account sensor noise and transistor mis-
match, yielding a mixture of frozen and temporally varying
stochastic triggering conditions represented by a probability
function, which is itself a complex function of local illumina-
tion level and sensor operating parameters. The measure-
ment of such probability density was shown in [2] (for the
DVS128), suggesting a normal distribution centered at the
contrast thresholdC. The 1swidth of the distribution is typi-
cally 2-4 percent temporal contrast. This event generation
model can be included in emulators [73] and simulators [74]
of event cameras, and in event processing algorithms [24],
[66]. Other probabilistic event generation models have been
proposed, such as: the likelihood of event generation being
proportional to the magnitude of the image gradient [75] (for
scenes where large intensity gradients are the source of most
event data), or the likelihood being modeled by a mixture
distribution to be robust to sensor noise [7]. Future even
more realistic models may include the refractory period (i.e.,
the duration in time that the pixel ignores log brightness
changes after it has generated an event; the larger the refrac-
tory period the fewer events are produced by fast moving
objects), and bus congestion [76].

2.5 Event Camera Availability

Table 1 summarizes the most popular or recent cameras.
The numbers therein are approximate since they were not
measured using a common testbed. Event camera character-
istics are considerably different from other CMOS image
sensor (CIS) technology, and so there is a need for an agree-
ment on standard specifications to be better used by
researchers. As Table 1 shows, since the first practical event
camera [2] there has been a trend mainly to increase spatial
resolution, increase readout speed, and add features, such
as: gray level output (in ATIS and DAVIS), integration with
an Inertial Measurement Unit (IMU) [77] and multi-camera
timestamp synchronization [78]. IMUs act as a vestibular
sense that may improve camera pose estimation, as in
visual-inertial odometry. Only recently has the focus turned
more towards the difficult task of reducing pixel size for
economical mass production of sensors with large pixel
arrays. In this respect, 3D wafer stacking fabrication has the
biggest impact in reducing pixel size and increasing the fill
factor.

Pixel Size. The most widely used event cameras have
quite large pixels: 40 mm (DVS128), 30 mm (ATIS), 18.5 mm
(DAVIS240, DAVIS346) (Table 1). The smallest published
DVS pixel [68] is 4.86 mm; while conventional global shutter
industrial APS are typically in the range of 2 mm to 4 mm.
Low spatial resolution is certainly a limitation for applica-
tion, althoughmany of the seminal publications are based on
the 128� 128 pixel DVS128 [2]. The DVS with largest pub-
lished array size has only about 1Mpixel spatial resolution
(1280� 960 pixels [39]). Event camera pixel size has shrunk
pretty closely following feature size scaling, which is
remarkable considering that a DVS pixel is a mixed-signal
circuit, which generally do not scale following technology.
However, achieving even smaller pixels is difficult and may
require abandoning the strictly asynchronous circuit design
philosophy that the cameras started with [79]. Camera cost is
constrained by die size (since silicon costs about $5-$10/cm2

in mass production), and optics (designing new mass pro-
duction miniaturized optics to fit a different sensor format
can cost tens of millions of dollars).

Fill Factor. A major obstacle for early event camera mass
production prospects was the limited fill factor of the pixels
(i.e., the ratio of a pixel’s light sensitive area to its total area).
Because the pixel circuit is complex, a smaller pixel area can
be used for the photodiode that collects light. For example, a
pixel with 20 percent fill factor throws away 4 out of 5 pho-
tons. Obviously this is not acceptable for optimum perfor-
mance; nonetheless, even the earliest event cameras could
sense high contrast features under moonlight illumina-
tion [2]. Early CIS sensors dealt with this problem by includ-
ing microlenses that focused the light onto the pixel
photodiode. What is probably better, however, is to use
back-side illumination technology (BSI). BSI flips the chip so
that it is illuminated from the back, so that in principle the
entire pixel area can collect photons. Nearly all smartphone
cameras are now back illuminated, but the additional cost of
BSI fabrication has meant that only recently BSI event cam-
eras were demonstrated [39], [68], [69], [80]. BSI also brings
problems: light can create additional ‘parasitic’ photocur-
rents that lead to spurious ‘leak’ events [56].

Cost. Currently, a practical obstacle to adoption of event
camera technology is the high cost of several thousand dol-
lars per camera, similar to the situation with early time of

TABLE 1
Comparison of Commercial or Prototype Event Cameras

Values are approximate since there is no standard measurement testbed.

158 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



flight, structured lighting and thermal cameras. The high
costs are due to non-recurring engineering costs for the sili-
con design and fabrication (even when much of it is pro-
vided by research funding) and the limited samples
available from prototype runs. It is anticipated that this
price will drop precipitously once this technology enters
mass production, as shown by the “Samsung SmartThings
Vision” consumer-grade home monitoring device: it con-
tains an event camera [5] and sells for 100 dollars.

3 EVENT PROCESSING

One of the key questions of the paradigm shift posed by
event cameras is how to extract meaningful information
from the event data to fulfill a given task. This is a very
broad question, since the answer is application dependent,
and it drives the algorithmic design of the task solver.

Event cameras acquire information in an asynchronous
and sparse way, with high temporal resolution and low
latency. Hence, the temporal aspect, specially latency, plays
an essential role in the way events are processed. Depend-
ing on how many events are processed simultaneously, two
categories of algorithms can be distinguished: (i) methods
that operate on an event-by-event basis, where the state of the
system (the estimated unknowns) can change upon the
arrival of a single event, thus achieving minimum latency,
and (ii) methods that operate on groups or packets of events,
which introduce some latency. Discounting latency consid-
erations, methods based on groups (i.e., temporal windows)
of events can still provide a state update upon the arrival of
each event if the window slides by one event. Hence, the
distinction between both categories is more subtle: an event
alone does not provide enough information for estimation,
and so additional information, in the form of past events or
extra knowledge, is needed. We review this categorization.

Orthogonally, depending on how events are processed,
we can distinguish between model-based approaches and
model-free (i.e., data-driven, machine learning) approaches.
Assuming events are processed in an optimization frame-
work, another classification concerns the type of objective
or loss function used: geometric- versus temporal- versus
photometric-based (e.g., a function of the event polarity or
the event activity). Each category presents methods with
advantages and disadvantages and current research focuses
on exploring the possibilities that each method can offer.

3.1 Event Representations

Events are processed and often transformed into alternative
representations (Fig. 3) that facilitate the extraction of mean-
ingful information (“features”) to solve a given task. Here

we review popular representations of event data. Several of
them arise from the need to aggregate the little information
conveyed by individual events in the absence of additional
knowledge. Some representations are simple, hand-crafted
data transformations whereas others are more elaborate.

Individual events ek ¼: ðxk; tk; pkÞ are used by event-by-
event processing methods, such as probabilistic filters and
Spiking Neural Networks (SNNs) (Section 3.3). The filter or
SNN has additional information, built up from past events
or given by additional knowledge, that is fused with the
incoming event asynchronously to produce an output.
Examples include: [7], [24], [62], [84], [85].

Event Packet. Events E¼: fekgNe
k¼1 in a spatio-temporal

neighborhood are processed together to produce an output.
Precise timestamp and polarity information is retained by
this representation. Choosing the appropriate packet size
Ne is critical to satisfy the assumptions of the algorithm
(e.g., constant motion speed during the span of the packet),
which varies with the task. Examples are [18], [19], [86], [87].

Event Frame/Image or 2D Histogram. The events in a spa-
tio-temporal neighborhood are converted in a simple way
(e.g., by counting events or accumulating polarity pixel-
wise) into an image (2D grid) that can be fed to image-based
computer vision algorithms. Some algorithms may work in
spite of the different statistics of event frames and natural
images. Such histograms can provide a natural activity-
driven sample rate; see [88] for methods to accumulate such
frames for computing flow. However, this practice is not
ideal in the event-based paradigm because it quantizes
event timestamps, can discard sparsity (but see [89]), and
the resulting images are highly sensitive to the number of
events used. Nevertheless the high impact of event frames
in the literature [23], [26], [64], [88], [90], [91] is clear because
(i) they are a simple way to convert an unfamiliar event
stream into a familiar 2D representation containing spatial
information about scene edges, which are the most informa-
tive regions in natural images, (ii) they inform not only
about the presence of events but also about their absence
(which is informative), (iii) they have an intuitive interpreta-
tion (e.g., an edge map, a brightness increment image) and
(iv) they are the data structure compatible with conven-
tional computer vision.

Time Surface (TS). A TS is a 2Dmap where each pixel stores
a single time value (e.g., the timestamp of the last event at that
pixel [92], [93]). Thus events are converted into an image
whose “intensity” is a function of the motion history at that
location, with larger values corresponding to a more recent
motion. TSs are calledMotionHistory Images in classical com-
puter vision [94]. They explicitly expose the rich temporal
information of the events and can be updated asynchronously.

Fig. 3. Several event representations (Section 3.1) of the slider_depth sequence [81]. From let to right: events in space time, colored according to
polarity (positive in blue, negative in red). Event frame (brightness increment image DLðxÞ). Time surface with last timestamp per pixel (darker pixels
indicate recent time), only for negative events. Interpolated voxel-grid (240� 180� 10 voxels), colored according to polarity, from dark (negative) to
bright (positive). Motion-compensated event image [82] (sharp edges obtained by event accumulation are darker than pixels with no events, in white).
Reconstructed intensity image by [8]. Grid-like representations are compatible with conventional computer vision methods [83].

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 159



Using an exponential kernel, TSs emphasize recent events over
past events. To achieve invariance tomotion speed, normaliza-
tion is proposed [95], [96]. Compared to other grid-like repre-
sentations of events, TSs highly compress information as they
only keep one timestamp per pixel, thus their effectiveness
degrades on textured scenes, in which pixels spike frequently.
To make TSs less sensitive to noise, each pixel value may be
computed by filtering the events in a space-time window [97].
More examples include [21], [98], [99], [100].

Voxel Grid. is a space-time (3D) histogram of events,
where each voxel represents a particular pixel and time
interval. This representation preserves better the temporal
information of the events by avoiding to collapse them on a
2D grid (Fig. 3). If polarity is used the voxel grid is an intui-
tive discretization of a scalar field (polarity pðx; y; tÞ or
brightness variation @Lðx; y; tÞ=@t) defined on the image
plane, with absence of events marked by zero polarity. Each
event’s polarity may be accumulated on a voxel [101], [102]
or spread among its closest voxels using a kernel [8], [103],
[104]. Both schemes quantize event timestamps but the lat-
ter (interpolated voxel grid) provides sub-voxel accuracy.

3D Point Set. Events in a spatio-temporal neighbor-
hood are treated as points in 3D space, ðxk; yk; tkÞ2R3.
Thus the temporal dimension becomes a geometric one.
It is a sparse representation, and is used on point-based
geometric processing methods, such as plane fitting [21]
or PointNet [105].

Point Sets on Image Plane. Events are treated as an evolv-
ing set of 2D points on the image plane. It is a popular repre-
sentation among early shape tracking methods based on
mean-shift or ICP [106], [107], [108], [109], [110], where
events provide the only data needed to track edge patterns.

Motion-compensated event image [111], [112]: is a represen-
tation that depends not only on events but also on motion
hypothesis. The idea of motion compensation is that, as an
edge moves on the image plane, it triggers events on the
pixels it traverses; the motion of the edge can be estimated
by warping the events to a reference time and maximizing
their alignment, producing a sharp image (i.e., histogram)
of warped events (IWE) [112]. Hence, this representation
(IWE) suggests a criterion to measure how well events fit a
candidate motion: the sharper the edges produced by warp-
ing events, the better the fit [82]. Moreover, the resulting
motion-compensated images have an intuitive meaning
(i.e., the edge patterns causing the events) and provide a
more familiar representation of visual information than the
events. In a sense, motion compensation reveals a hidden
(“motion-invariant”) map of edges in the event stream. The
images may be useful for further processing, such as feature
tracking [64], [113]. There are motion-compensated versions
of point sets [114], [115] and time surfaces [116], [117].

Reconstructed Images. Brightness images obtained by
image reconstruction (Section 4.5) can be interpreted as a
more motion-invariant representation than event frames or
TSs, and be used for inference [8] yielding first-rate results.

A general framework for converting event data into some
of the above grid-based representations is presented in [83].
It also studies how the choice of representation passed to an
artificial neural network (ANN) affects task performance
and consequently proposes to automatically learn the repre-
sentation that maximizes such performance.

3.2 Methods for Event Processing

Event processing systems consist of several stages: pre-proc-
essing (input adaptation), core processing (feature extraction
and analysis) and post-processing (output creation). The
event representations in Section 3.1 may occur at different
stages: for example, in [111] an event packet is used at pre-
processing, and motion-compensated event images are the
internal representation at the core processing stage.

The methods used to process events are influenced by the
choice of representation and hardware platform available.
These three factors influence each other. For example, it is
natural to use dense representations and design algorithms
accordingly that are executed on standard processors (e.g.,
CPUs or GPUs). At the same time, it is also natural to pro-
cess events one-by-one on SNNs (Section 3.3) that are imple-
mented on neuromorphic hardware (Section 5.1), in search
for more efficient and low-latency solutions. Major expo-
nents of event-by-event methods are filters (deterministic or
probabilistic) and SNNs. For events processed in packets
there are also many methods: hand-crafted feature extrac-
tors, deep neural networks (DNNs), etc. Next, we review
some of the most common methods.

Event-by-Event–Based Methods. Deterministic filters, such
as (space-time) convolutions and activity filters have been
used for noise reduction, feature extraction [118], image
reconstruction [62], [119] and brightness filtering [63], among
other applications. Probabilistic filters (Bayesian methods),
such as Kalman- and particle filters have been used for pose
tracking in SLAM systems [7], [24], [25], [75], [84]. These
methods rely on the availability of additional information
(typically “appearance” information, e.g., grayscale images
or amap of the scene), whichmay be provided by past events
or by additional sensors. Then, each incoming event is com-
pared against such information and the resulting mismatch
provides innovation to update the filter state. Filters are a
dominant class of methods for event-by-event processing
because they naturally (i) handle asynchronous data, thus
providing minimum processing latency, preserving the
sensor’s characteristics, and (ii) aggregate information from
multiple small sources (e.g., events).

The other dominant class of methods takes the form of a
multi-layer ANN (whether spiking or not) containing many
parameters which must be computed from the event data.
Networks trained with unsupervised learning typically act
as feature extractors for a classifier (e.g., SVM), which still
requires some labeled data for training [15], [93], [120]. If
enough labeled data is available, supervised learning meth-
ods such as backpropagation can be used to train a network
without the need for a separate classifier. Many approaches
use packets of events during training (deep learning on
frames), and later convert the trained network to an SNN
that processes data event-by-event [121], [122], [123], [124],
[125]. Event-by-event model-free methods have mostly
been applied to classify objects [15], [93], [121], [122] or
actions [16], [17], [126], and have targeted embedded appli-
cations [121], often using custom SNN hardware [15], [17]
(Section 5.1). SNNs trained with deep learning typically
provide higher accuracy than those relying on unsupervised
learning for feature extraction, but there is growing interest
in finding efficient ways to implement supervised learning
directly in SNNs [126], [127] and in embedded devices [128].

160 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



Methods for Groups of Events. Because each event carries
little information and is subject to noise, several events are
often processed together to yield a sufficient signal-to-noise
ratio for the problem considered. Methods for groups of
events use the above representations (event packet, event
frame, etc.) to gather the information contained in the events
in order to estimate the problem unknowns, usually with-
out requiring additional data. Hence, events are processed
differently depending on their representation.

Many representations just perform data pre-processing
to enable the re-utilization of image-based computer vision
tools. In this respect, event frames are a practical repres-
entation that has been used by multiple methods on various
tasks. In [90], [129] event frames allow to re-utilize tradi-
tional stereo methods, providing modest results. They also
provide an adaptive frame rate signal that is profitable for
camera pose estimation [26] (by image alignment) or optical
flow computation [88] (by block matching). Event frames
are also a simple yet effective input for image-based learn-
ing methods (DNNs, SVMs, Random Forests) [22], [91],
[130], [131]. Few works design algorithms taking into
account their photometric meaning (4). This was done in
[23], showing that such a simple representation allows to
jointly compute several visual quantities of interest (optical
flow, brightness, etc.). Intensity increment images (4) are
also used for feature tracking [64], image deblurring [28] or
camera tracking [65].

Because time surfaces (TSs) are sensitive to scene edges and
the direction of motion they have been utilized for many
tasks involving motion analysis and shape recognition. For
example, fitting local planes to the TS yields optical flow
information [21], [132]. TSs are used as building blocks of
hierarchical feature extractors, similar to neural networks,
that aggregate information from successively larger space-
time neighborhoods and is then passed to a classifier for rec-
ognition [93], [97]. TSs provide proxy intensity images for
matching in stereo methods [100], [133], where the photo-
metric matching criterion becomes temporal: matching pix-
els based on event concurrence and similarity of event
timestamps across image planes. Recently, TSs have been
probed as input to convolutional ANNs (CNNs) to compute
optical flow [22], where the network acts both as feature
extractor and velocity regressor. TSs are popular for corner
detection using adaptations of image-based methods (Har-
ris, FAST) [95], [98], [99] or new learning-based ones [96].
However, their performance degrades on highly textured
scenes [99] due to the “motion overwriting” problem [94].

Methods working on voxel grids include variational opti-
mization and ANNs (e.g., DNNs). They require more mem-
ory and often more computations than methods working on
lower dimensional representations but are able to provide
better results because temporal information is better pre-
served. In these methods voxel grids are used as an internal
representation [101] (e.g., to compute optical flow) or as the
multichannel input/output of a DNN [103], [104]. Thus,
voxel grids are processed by means of convolutions [103],
[104] or the operations derived from the optimality condi-
tions of an objective function [101].

Once events have been converted to grid-like representa-
tions, countless tools from conventional vision can be
applied to extract information: from feature extractors (e.g.,

CNNs) to similarity metrics (e.g., cross-correlation) that
measure the goodness of fit or consistency between data
and task-model hypothesis (the degree of event alignment,
etc.). Such metrics are used as objective functions for classi-
fication (SVMs, CNNs), clustering, data association, motion
estimation, etc. In the neuroscience literature there are
efforts to design metrics that act directly on spikes (e.g.,
event stream), to avoid the issues that arise due to data
conversion.

Deep learning methods for groups of events consist of a
deep neural network (DNN). Sample applications include
classification [134], [135], image reconstruction [8], [102],
steering angle prediction [91], [136], and estimation of opti-
cal flow [22], [103], [137], depth [137] or ego-motion [103].
These methods differentiate themselves mainly in the repre-
sentation of the input and in the loss functions optimized
during training. Several representations have been used,
such as event images [91], [131], TSs [22], [117], [137], voxel
grids [103], [104] or point sets [105] (Section 3.1). While loss
functions in classification tasks use manually annotated
labels, networks for regression tasks from events may be
supervised by a third party ground truth (e.g., a pose) [91],
[131] or by an associated grayscale image [22] to measure
photoconsistency, or be completely unsupervised (depend-
ing only on the training input events) [103], [137]. Loss func-
tions for unsupervised learning from events are studied
in [82]. In terms of architecture, most networks have an
encoder-decoder structure, as in Fig. 4. Such a structure
allows the use of convolutions only, thus minimizing the
number of network weights. Moreover, a loss function can
be applied at every spatial scale of the decoder.

Finally, motion compensation is a technique to estimate the
parameters of the motion that best fits a group of events. It
has a continuous-time warping model that allows to exploit
the fine temporal resolution of events (Section 3.1), and
hence departs from conventional image-based algorithms.
Motion compensation can be used to estimate ego-motion
[111], [112], optical flow [103], [112], [114], [138], depth [19],
[82], [112], motion segmentation [116], [138], [139] or feature
motion for VIO [113], [115]. The technique in [87] also has a
continuous-time motion model, albeit not used for motion
compensation but rather to fuse event data with IMU data.
To find the parameters of the continuous-time motion mod-
els [82], [87], standard optimization methods, e.g., conjugate
gradient or Gauss-Newton, may be applied.

Fig. 4. Events in a space-time volume are converted into an interpolated
voxel grid (left) that is fed to a DNN to compute optical flow and ego-
motion in an unsupervised manner [103]. Thus, modern tensor-based
DNN architectures are re-utilized using novel loss functions (e.g., motion
compensation) adapted to event data.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 161



The number of events per group (i.e., size of the spatio-tem-
poral neighborhood) is an important hyper-parameter of
many methods. It highly depends on the processing algo-
rithm and the available resources, and accepts multiple
selection strategies [11], [88], [102], [111], such as constant
number of events, constant observation time (i.e., constant
frame rate), or more adaptive ones (thresholding the num-
ber of events in regions of the image plane) [88]. Utilizing a
constant number of events fits naturally with the cam-
era’s output rate but it does not account for spatial varia-
tions of the rate. A constant frame rate selects a varying
number of events, which may be too few or too many,
depending on the scene. Criteria more adapted to the
scene dynamics (in time and space) are often preferred
but nontrivial to design.

3.3 Biologically Inspired Visual Processing

Biological principles and computational primitives drive
the design of event camera pixels and some of the event-
processing algorithms (and hardware), such as Spiking
Neural Networks (SNNs).

Visual Pathways. The DVS [2] was inspired by the func-
tion of biological visual pathways, which have “transient”
pathways dedicated to processing dynamic visual informa-
tion in the so-called “where” pathway. Animals ranging
from insects to humans all have these transient pathways.
In humans, the transient pathway occupies about 30 percent
of the visual system. It starts with transient ganglion cells,
which are mostly found in retina outside the fovea. It con-
tinues with magno layers of the thalamus and particular
sublayers of area V1. It then continues to area MT and MST,
which are part of the dorsal pathway where many motion
selective cells are found [45]. The DVS corresponds to the
part of the transient pathway(s) up to retinal ganglion cells.
Similarly, the grayscale (EM) events of the ATIS correspond
to the “sustained” or “what” pathway through the parvo
layers of the brain [36], [43].

Event Processing by SNNs. Artificial neurons, such as
Leaky-Integrate and Fire or Adaptive Exponential, are
computational primitives inspired in neurons found in the
mammalian’s visual cortex. They are the basic building
blocks of artificial SNNs. A neuron receives input spikes
(“events”) from a small region of the visual space (a receptive
field), which modify its internal state (membrane potential)
and produce an output spike (action potential) when the
state surpasses a threshold. Neurons are connected in a hier-
archical way, forming an SNN. Spikes may be produced by
pixels of the event camera or by neurons of the SNN. Infor-
mation travels along the hierarchy, from the event camera
pixels to the first layers of the SNN and then through to
higher (deeper) layers. Most first layer receptive fields are
based on Difference of Gaussians (selective to center-sur-
round contrast), Gabor filters (selective to oriented edges),
and their combinations. The receptive fields become increas-
ingly more complex as information travels deeper into the
network. In ANNs, the computation performed by inner
layers is approximated as a convolution. One common
approach in artificial SNNs is to assume that a neuron will
not generate any output spikes if it has not received any
input spikes from the preceding SNN layer. This assumption
allows computation to be skipped for such neurons. The

result of this visual processing is almost simultaneous with
the stimulus presentation [140], which is very different from
traditional CNNs, where convolution is computed simulta-
neously at all locations at fixed time intervals.

Tasks. Bio-inspired models have been adopted for several
low-level visual tasks. For example, event-based optical flow
can be estimated by using spatio-temporally oriented fil-
ters [92], [118], [141] that mimic the working principle of
receptive fields in the primary visual cortex [142], [143]. The
same type of oriented filters have been used to implement a
spike-basedmodel of selective attention [144] based on the bio-
logical proposal from [145]. Bio-inspired models from binoc-
ular vision, such as recurrent lateral connectivity and
excitatory-inhibitory neural connections [146], have been
used to solve the event-based stereo correspondence prob-
lem [41], [147], [148], [149], [150] or to control binocular ver-
gence on humanoid robots [151]. The visual cortex has also
inspired the hierarchical feature extraction model proposed
in [152], which has been implemented in SNNs and used for
object recognition. The performance of such networks
improves the better they extract information from the precise
timing of the spikes [153]. Early networks were hand-crafted
(e.g., Gabor filters) [53], but recent efforts let the network
build receptive fields through brain-inspired learning, such
as Spike-Timing Dependent Plasticity (STDP), yielding bet-
ter recognition rates [120]. This research is complemented by
approaches where more computationally inspired types of
supervised learning, such as back-propagation, are used in
deep networks to efficiently implement spiking deep convo-
lutional networks [127], [154], [155], [156], [157]. The advan-
tages of the above methods over their traditional vision
counterparts are lower latency and higher efficiency.

4 ALGORITHMS / APPLICATIONS

In this section, we review several works on event-based
vision, presented according to the task addressed. We start
with low-level vision on the image plane, such as feature
detection, tracking, and optical flow estimation. Then, we
discuss tasks that pertain to the 3D structure of the scene,
such as depth estimation, visual odometry (VO) and histori-
cally related subjects, e.g., intensity image reconstruction.
Finally, we consider motion segmentation, recognition and
coupling perception with control.

4.1 Feature Detection and Tracking

Feature detection and tracking on the image plane are fun-
damental building blocks of many vision tasks such as
visual odometry, object segmentation and scene under-
standing. Event cameras make it possible to track asynchro-
nously, adapted to the dynamics of the scene and with low
latency, high dynamic range and low power (Section 2.2).
Thus, they allow to track in the “blind” time between the
frames of a standard camera. To do so, the methods devel-
oped need to deal with the unique space-time and photo-
metric characteristics of the visual signal: events report only
brightness changes, asynchronously (Section 2.3).

Challenges. Since events represent brightness changes,
which depend on motion direction, one of the main chal-
lenges of feature detection and tracking with event cameras
is overcoming the variation of scene appearance caused by

162 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



such motion dependency (Fig. 5). Tracking requires the
establishment of correspondences between events (or fea-
tures built from the events) at different times (i.e., data asso-
ciation), which is difficult due to the varying appearance.
The second main challenge consists of dealing with
sensor noise and possible event clutter caused by the cam-
era motion.

Literature Review. Early event-based feature methods
were very simple and focused on demonstrating the low-
latency and low-processing requirements of event-driven
vision systems. Hence they assumed a stationary camera
scenario and tracked moving objects as clustered blob-like
sources of events [6], [12], [14], [106], [158], circles [159] or
lines [54]. Only pixels that generated events needed to be
processed. Simple Gaussian correlation filters sufficed to
detect blobs of events, which could be modeled by Gaussian
Mixtures [160]. For tracking, each incoming event was asso-
ciated to the nearest existing blob/feature and used to asyn-
chronously update its parameters (location, size, etc.).
Circles [159] and lines [54] were treated as blobs in the
Hough transform space. These methods were used in traffic
monitoring and surveillance [14], [106], [160], high-speed
robotic tracking [6], [12] and particle tracking in fluids [158]
or microrobotics [159]. However, they worked only for a
limited class of object shapes.

Tracking of more complex, high-contrast user-defined
shapes has been demonstrated using event-by-event adapta-
tions of the Iterative Closest Point (ICP) algorithm [107],
gradient descent [108], Mean-shift and Monte-Carlo meth-
ods [161], or particle filtering [162]. The iterative methods
in [107], [108] used a nearest-neighbor strategy to associate
incoming events to the target shape and update its transfor-
mation parameters, showing very high-speed tracking
(200kHz equivalent frame rate). Other works [161] handled
geometric transformations of the target shape (aka “kernel”)
by matching events against a pool of rotated and scaled ver-
sions of it. The predefined kernels tracked the object with-
out overlapping themselves due to a built-in repulsion
mechanism. Complex objects, such as faces or human bod-
ies, have been tracked with part-based shape models [163],
where objects are represented as a set of basic elements
linked by springs [164]. The part trackers simply follow
incoming blobs of events generated by ellipse-like shapes,
and the elastic energy of this virtual mechanical system pro-
vides a quality criterion for tracking. In most tracking

methods events are treated as individual points (without
polarity) and update the system’s state asynchronously,
with minimal latency. The performance of the methods
strongly depends on the tuning of several model parame-
ters, which is done experimentally according to the object to
track [161], [163].

The previous methods require a priori knowledge or user
input to determine the objects to track. This restriction is
valid for scenarios like tracking cars on a highway or balls
approaching a goal, where knowing the objects greatly sim-
plifies the computations. But when the space of objects
becomes larger, methods to determine more realistic features
become necessary. The features proposed in [109], [114] con-
sist of local edge patterns that are represented as point sets.
Incoming events are registered to them by means of some
form of ICP. Other methods [27], [113] proposed to re-utilize
well-known feature detectors [165] and trackers [166] on
patches of motion-compensated event images (Section 3.1),
providing good results. All these methods allowed to track
features for cameras moving in natural scenes, hence
enabling ego-motion estimation in realistic scenarios [110],
[113], [115]. Features built from motion-compensated events
(in image form [113] or point-set form [114]) provide a use-
ful representation of edge patterns. However, they depend
on motion direction, and, therefore, trackers suffer from
drift as event appearance changes over time [64]. To track
with no drift, motion-invariant features are needed.

Combining Events and Frames. Data association (Fig. 5)
simplifies if the absolute intensity of the pattern to be
tracked (Fig. 5c, i.e., a motion-invariant representation or
“map” of the feature) is available. This is the approach fol-
lowed by works that leverage the strengths of a combined
frame- and event-based sensor (�a la DAVIS [4]). The algo-
rithms in [64], [109], [110] automatically detect arbitrary
edge patterns (features) on the frames and track them asyn-
chronously with events. The feature location is given by the
Harris corner detector [165] and the feature descriptor is
given by the edge pattern around the corner: [109], [110]
convert Canny edges to point sets used as templates for ICP
tracking, thus they assume events are mostly triggered at
strong edges. In contrast, the edge pattern in [64] is given by
the frame intensities, and tracking consists of finding the
motion parameters that minimize the photometric error
between the events and their frame prediction using a
generative model (4). A comparison of five feature track-
ers is provided in [64], showing that the generative
model is most accurate, with sub-pixel performance,
albeit it is computationally expensive. Finally, [64] also
shows the interesting fact that an event-based sensor suf-
fices: frames can be replaced by images reconstructed
from events (Section 4.5) and still achieve similar detec-
tion and tracking results.

Corner Detection and Tracking. Since event cameras natu-
rally respond to edges in the scene, they shorten the detec-
tion of lower-level primitives such as keypoints or “corners”.
Such primitives identify pixels of interest aroundwhich local
features can be extractedwithout suffering from the aperture
problem, and therefore provide reliable tracking informa-
tion. The method in [167] computes corners as the intersec-
tion of two moving edges, which are obtained by fitting
planes in the space-time stream of events. To deal with event

Fig. 5. The challenge of data association. Panels (a) and (b) show events
from a scene (c) under two different motion directions: (a) diagonal and
(b) up-down. Intensity increment images (a) and (b) are obtained by accu-
mulating event polarities over a short time interval: pixels that do not
change intensity are represented in gray, whereas pixels that increased
or decreased intensity are represented in bright and dark, respectively.
Clearly, it is not easy to establish event correspondences between (a)
and (b) due to the changing appearance of the edge patterns in (c) with
respect to themotion. Image adapted from [64].

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 163



noise, least-squares is supplemented by a sampling tech-
nique similar to RANSAC. This method of fitting planes
locally to time surfaces has also been profitable to estimate
optical flow [21] and “event lifetime” [132], which are
obtained from the coefficients of the planes. Recently, exten-
sions of popular frame-based keypoint detectors, such as
Harris [165] and FAST [168], have been developed for event
cameras [95], [98], [99], by operating on time surfaces (TSs)
as if they were natural intensity images. In [98] the TS is
binarized before applying the derivative filters of Harris’
detector. To speed up detection, [99] replaces the derivative
filters with pixelwise comparisons on two concentric circles
of the TS around the current event. Moving corners produce
local TSs with two clearly separated regions: recent versus
old events. Hence, corners are obtained by searching for arcs
of contiguous pixels with higher TS values than the rest. The
method in [95] improves the detector in [99] and proposes a
strategy to track the corners. Assuming corners follow con-
tinuous trajectories on the image plane and the detected
event corners are accurate, these are threaded by proximity
along trajectories, following a tree-based hypothesis graph.
The above TS-based hand-crafted corner detectors suffer
from variations of the TS due to changes in motion direction.
To overcome them, [96] proposes a data-driven method to
learn the TS appearance of intensity-image corners. To this
end, a grayscale input (from DAVIS or ATIS camera) pro-
vides the supervisory signal to label the corners. As a trade-
off between accuracy and speed, a random forest classifier is
used. Event corners findmultiple applications, such as visual
odometry or ego-motion segmentation [169]; yet there are
only a few demonstrations.

Opportunities. In spite of the abundance of detection and
tracking methods, they are rarely evaluated on common
datasets for performance comparison. Establishing bench-
mark datasets [170] and evaluation procedures will foster
progress in this and other topics. Also, in most algorithms,
parameters are defined experimentally according to the
tracking target. It would be desirable to have adaptive
parameter tuning to increase the range of operation of the
trackers. Learning-based feature detection and tracking
methods also offer considerable room for research.

4.2 Optical Flow Estimation

Optical flow estimation is the problem of computing the
velocity of objects on the image plane without knowledge
about the scene geometry or motion. The problem is ill-
posed and thus requires regularization to become tractable.

Event-based optical flow estimation is challenging
because of the unfamiliar way in which events encode
visual information (Section 2). In conventional cameras opti-
cal flow is obtained by analyzing two consecutive images.
These provide spatial and temporal derivatives that are
substituted in the brightness constancy assumption (p. 12),
which together with smoothness assumptions provide
enough equations to solve for the flow at each image pixel.
In contrast, events provide neither absolute brightness nor
spatially continuous data. Each event does not carry enough
information to determine flow, and so events need to be
aggregated to produce an estimate, which leads to the
unusual question of where in the x-y-t-space of the image
plane spanned by the events is flow computed. Ideally one

would like to know the flow field over the whole space,
which deems computationally expensive. In practice, opti-
cal flow is computed only at specific points: at the event
locations, or at images with artificially-chosen times. Never-
theless, computing flow from events is attractive because
they represent edges, which are the parts of the scene where
flow estimation is less ambiguous, and because their fine
timing information allows measuring high speed flow [11].
Finally, another challenge is to design a flow estimation
algorithm that is biologically plausible, i.e., compatible with
what is known from neuroscience about early processing in
the primate visual cortex, and that can be implemented effi-
ciently in neuromorphic processors.

Literature Review. Table 2 lists some event-based optical
flow methods, categorized according to different criteria.
Early works [172] tried to adapt classical approaches in
computer vision to event-based data (Fig. 6b). These are
based on the brightness constancy assumption [166], and
discussion focused on whether events carried enough infor-
mation to estimate flow with such approaches [118]. Events
allow to estimate the temporal derivative of brightness (3),
and so additional assumptions were needed to approximate
the spatial derivative rL in order to apply such classical
methods [166]. However, due to the potentially very small
number of events generated at each pixel as an edge crosses
over it, it is difficult to estimate derivatives (rL; @L=@t) reli-
ably [118], which leads gradient-based methods like [172] to
inconclusive flow estimates. Approaches that consider the
local distribution of events in the x-y-t-space, as in [21], are
more robust and therefore preferred.

The method in [21] reasons about the local distribution of
events geometrically, in terms of time surfaces and planar
approximations. As an edge moves it produces events that
resemble points on a surface in space-time (the time surface,
Section 3). The surface slopes in the x-t and y-t cross sections
encode the edge motion, thus optical flow is estimated by
fitting planes to the surface and reading the slopes from the
plane coefficients. In spite of providing only normal flow

TABLE 2
Classification of Several Optical Flow Methods According

to Their Output and Design

Reference N/F? S/D? Model? Bio?

Delbruck [92], [171] Normal Sparse Model Yes
Benosman et al. [171], [172] Full Sparse Model No
Orchard et al. [141] Full Sparse ANN Yes
Benosman et al. [21], [171] Normal Sparse Model No
Barranco et al. [173] Normal Sparse Model No
Brosch et al. [118] Normal Sparse Model Yes
Bardow et al. [101] Full Dense Model No
Liu et al. [88] Full Sparse Model No
Gallego [112], Stoffregen [138] Full Sparse Model No
Haessig et al. [174] Normal Sparse ANN Yes
Zhu et al. [22], [103] Full Dense ANN No
Ye et al. [137] Full Dense ANN No
Paredes-Vall�es [85] Full Sparse ANN Yes

Some methods provide full motion flow (F) whereas others only its component
normal to the local brightness edge (N). The output may be a dense (D) flow
field (i.e., optical flow for every pixel at some time) or sparse (S) (i.e., flow com-
puted at selected pixels). According to their design, methods may be model-
based or model-free (Artificial Neural Network - ANN), and neuro-biologically
inspired or not.

164 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



(i.e., the component of the optical flow perpendicular to the
edge), the method works even in the case of only a few gen-
erated events. Of course, the goodness of fit depends on the
size of the spatio-temporal neighborhood (this remark gen-
eralizes to other methods). If the neighborhood is too small
then the plane fit may become arbitrary. If the neighbor-
hood is too large then the event stream may not be well
approximated by a local plane.

A hierarchical architecture for optical flow estimation
building on experimental findings of the primate visual
system is proposed in [118]. It applies a set of spatio-tem-
poral filters on the event stream to yield selectivity to dif-
ferent motion speeds and directions (�a la Gabor filters)
while maintaining the sparse representation of events.
Such filters are formally equivalent to spatio-temporal
correlation detectors. Other biologically-inspired methods
[85], [141] can also be interpreted as filter banks sampling
the event stream along different spatio-temporal orienta-
tions; [141] and [118] define hand-crafted filters, whereas
[85] learns them from event data using a novel STDP
rule. The SNN in [141] detects motion patterns by delay-
ing events through synaptic connections and employing
neurons as coincidence detectors. Its neurons are sensitive
to 8 speeds and 8 directions (i.e., 64 velocities) over recep-
tive fields of 5� 5 pixels. These methods are implement-
able in neuromorphic hardware, offering low-power,
efficient computations.

Methods like [23], [101] estimate optical flow jointly with
other quantities, notably image intensity, so that the quanti-
ties involved bring in well-known equations and boost each
other towards convergence. Knowing image intensity, or
equivalently (rL; @L=@t), is desirable since it can be used on
the brightness constancy law to provide constraints on the
optical flow. In this respect, [101] combines multiple equa-
tions ((2), brightness constancy, smoothness priors, etc.) as
penalty terms into an objective function that is optimized
via calculus of variations. The method finds the optical flow
and image intensity on the image plane that minimizes the
objective function, i.e., that best explains the distribution of
events in the x-y-t-space (using a voxel grid). Thus, it out-
puts a dense flow (i.e., flow at every pixel). Flow vectors at
pixels where no events were produced (i.e., regions of
homogeneous brightness) are due to the smoothness priors,
thus they are less reliable than those computed at pixels
where events were triggered (i.e., at edges).

The method in [88] estimates optical flow by computing
event frames (Section 3) at an adaptive rate and applying

video coding techniques (block matching). It can be inter-
preted as finding the optical flow vector that best matches
the distributions of events within two cuboids (collapsed
into event frames). Thus, the optical flow problem is posed
as that of finding event correspondences, i.e., events trig-
gered by the same scene point (at different times). The
method defines two sets of events (“blocks”) and a similar-
ity metric to compare them. It is assumed that the appear-
ance of event frames do not change significantly for short
times and hence simple metrics, such as sum of absolute
distances, suffice to compare them. The method can be
implemented in FPGA, trading off efficiency for accuracy.

The framework in [82], [112], [138] computes optical flow
by maximizing the sharpness of image patches obtained by
warping cuboids of events, producing motion-compensated
images (Section 3). It can be interpreted as applying an
adaptive filter to the events, where the filter coefficients
define the spatio-temporal direction that maximizes the fil-
ter’s response. Motion compensation was also used to com-
pute flow in [114], albeit using point sets.

Recently, deep learning methods have emerged [22],
[103], [137]. These are based on the availability of large
amounts of event data paired with an ANN. In [22], an
encoder-decoder CNN is trained using a self-supervised
scheme to estimate dense optical flow. The loss function
measures the error betweenDAVIS grayscale images aligned
using the flow produced by the network. The trained net-
work is able to accurately predict optical flow from events
only, passed as time surfaces and event frames. The
work [137] presents the first monocular ANN architecture to
estimate dense optical flow, depth and ego-motion (i.e.,
learning structure from motion) from events only. The input
to theANNconsists of events overmultiple time slices, given
as event frames and time surfaces with average timestamps.
This reduces event noise and preserves the structure of the
event stream better than [22]. The network is trained unsu-
pervised, measuring the photometric error between the
events in neighboring time slices aligned using the estimated
flow. Later, [22] was extended to unsupervised learning of
flow and ego-motion in [103] using a motion-compensation
loss function in terms of time surfaces.

Evaluation. Optical flow estimation is computationally
expensive. Some methods [22], [101], [103], [137] require a
GPU, while other approaches are more lightweight [88],
albeit not as accurate. Few algorithms [21], [88], [118], [141]
have been pushed to hardware logic circuits that offload
CPU and minimize latency. The review [171] compared
some early event-based optical flowmethods [21], [92], [172],
but only on flow fields generated by a rotating camera, i.e.,
lacking motion parallax and occlusion. For newer methods,
there are multiple trade offs (accuracy versus efficiency ver-
sus latency) that have not been properly quantified yet.

Opportunities. Comprehensive datasets with accurate
ground truth optical flow in multiple scenarios (varying tex-
ture, speed, parallax, occlusions, illumination, etc.) and a
common evaluation methodology would be essential to
assess progress and reproducibility in this paramount low-
level vision task. Providing ground truth event-based optical
flow in real scenes is challenging, especially for moving
objects not conforming to the motion field induced by the
camera’s ego-motion. A thorough quantitative comparison

Fig. 6. Two optical flow estimation examples. (a) and (b): indoor flying
scene [175]. In (a), events (polarity shown in red/blue) are overlaid on a
grayscale frame from a DAVIS. (b) shows the sparse optical flow (col-
ored according to magnitude and direction) computed using [166] on
brightness increment images. (c) A different scene: dense optical flow of
a fidget spinner spinning at 750	/s in a dark environment [103]. Events
enable the estimation of optical flow in challenging scenarios.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 165



of existing event-based optical flow methods would help
identify key ideas to develop improved methods.

4.3 3D Reconstruction Monocular and Stereo

Depth estimation with event cameras is a broad field. It can
be divided according to the considered scenario and camera
setup ormotion, which determine the problem assumptions.

Instantaneous Stereo. Most works on depth estimation with
event cameras target the problem of “instantaneous” stereo,
i.e., 3D reconstruction using events on a very short time (ide-
ally on a per-event basis) from two or more synchronized
cameras that are rigidly attached. Being synchronized, the
events from different image planes share a common clock.
Theseworks follow the classical two-step stereo solution: first
solve the event correspondence problem across image planes
(i.e., epipolar matching) and then triangulate the location of
the 3D point [176]. Themain challenge is finding correspond-
ences between events; it is the computationally intensive
step. Events are matched (i) using traditional stereo metrics
(e.g., normalized cross-correlation) on event frames [129],
[177] or time surfaces [133] (Section 3), and/or (ii) by exploit-
ing simultaneity and temporal correlations of the events
across sensors [133], [178], [179]. These approaches are local,
matching events by comparing their neighborhoods since
events cannot be matched based on individual timestamps
[154], [180]. Additional constraints, such as the epipolar con-
straint [181], ordering, uniqueness, edge orientation and
polarity may be used to reduce matching ambiguities and
false correspondences, thus improving depth estimation [18],
[154], [182]. Event matching can also be done by comparing
local context descriptors [183], [184] of the spatial distribution
of events on both stereo image planes.

Global approaches produce better depth estimates (i.e.,
less sensitive to ambiguities) than local approaches by con-
sidering additional regularity constraints. In this category,
we find extensions of Marr and Poggio’s cooperative stereo
algorithm [146] for the case of event cameras [41], [148],
[149], [150], [185]. These approaches consist of a network of
disparity sensitive neurons that receive events from both
cameras and perform various operations (amplification,
inhibition) that implement matching constraints (unique-
ness, continuity) to extract disparities. They use not only the
temporal similarity to match events but also their spatio-
temporal neighborhoods, with iterative nonlinear opera-
tions that result in an overall globally-optimal solution. A
discussion of cooperative stereo is provided in [43]. Also in
this category are [186], [187], [188], which use Belief Propa-
gation on a Markov Random Field or semiglobal match-
ing [189] to improve stereo matching. These methods are
primarily based on optimization, trying to define a well-
behaved energy function whose minimizer is the correct
correspondence map. The energy function incorporates reg-
ularity constraints, which enforce coupling of correspond-
ences at neighboring points and therefore make the solution
map less sensitive to ambiguities than local methods, at the
expense of computational effort. A table comparing differ-
ent stereo methods is provided in [190]; however, it should
be interpreted with caution since the methods were not
benchmarked on the same dataset.

Recently, brute-force space-sweeping using dedicated
hardware (a GPU) has been proposed [191]. The method is

basedon ideas similar to [19], [112]: the correct depthmanifests
as “in focus” voxels of displaced events in the Disparity Space
Image [19], [192]. In contrast, other approaches pair event cam-
eras with neuromorphic processors (Section 5.1) to produce
fully event-based low-power (100mW), high-speed stereo sys-
tems [149], [190]. There is an efficiency versus accuracy trade-
off that has not been quantified yet.

Most of the methods above are demonstrated in scenes
with static cameras and few moving objects, so that corre-
spondences are easy to find due to uncluttered event data.
Event matching happens with low latency, at high rate
(
1kHz) and consuming little power, which shows that
event cameras are promising for high-speed 3D reconstruc-
tions of moving objects or in uncluttered scenes.

Monocular Depth Estimation. Depth estimation with a sin-
gle event camera has been shown in [19], [25], [112]. It is a
significantly different problem from previous ones because
temporal correlation between events across multiple image
planes cannot be exploited. These methods recover a semi-
dense 3D reconstruction of the scene (i.e., 3D edge map) by
integrating information from the events of a moving camera
over time, and therefore require knowledge of camera
motion. Hence they do not pursue instantaneous depth esti-
mation, but rather depth estimation for SLAM [193].

The method in [25] is part of a pipeline that uses three fil-
ters operating in parallel to jointly estimate the motion of
the event camera, a 3D map of the scene, and the intensity
image. Their depth estimation approach requires using an
additional quantity—the intensity image—to solve for data
association. In contrast, [19] (Fig. 7) proposes a space-sweep
method that leverages the sparsity of the event stream to
perform 3D reconstruction without having to establish
event matches or recover the intensity images. It back-proj-
ects events into space, creating a ray density volume [194],
and then finds scene structure as local maxima of ray den-
sity. It is computationally efficient and used for VO in [26].

Opportunities. Although there are many methods for
event-based depth estimation, it is difficult to compare their
performance since they are not evaluated on the same data-
set. In this sense, it would be desirable to (i) provide a com-
prehensive dataset and testbed for event-based depth
evaluation and (ii) benchmark many existing methods on
the dataset, to be able to compare their performance.

4.4 Pose Estimation and SLAM

Addressing the Simultaneous Localization and Mapping
(SLAM) problem with event cameras has been difficult
because most methods and concepts developed for conven-
tional cameras (feature detection, matching, iterative image
alignment, etc.) are not applicable or were not available;
events are fundamentally different from images. The chal-
lenge is therefore to design new SLAM techniques that are
able to unlock the camera’s advantages (Sections 2.3 and 2.2),
showing their usefulness to tackle difficult scenarios for cur-
rent frame-based cameras. Historically, the design goal of
such techniques has focused on preserving the low-latency
nature of the data, i.e., being able to produce a state estimate
for every incoming event (Section 3). However, each event
does not contain enough information to estimate the state
from scratch (e.g., the six degrees of freedom (DOF) pose of a
calibrated camera), and so the goal becomes that each event

166 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



be able to asynchronously update the state of the system.
Probabilistic (Bayesian) filters [195] are popular in event-
based SLAM [7], [24], [75], [196] because they naturally fit
with this description. Their main adaptation for event cam-
eras consists of designing sensible likelihood functions based
on the event generation process (Section 2.4).

Since events are caused by the apparent motion of inten-
sity edges, the majority of maps emerging from SLAM sys-
tems naturally consist only of scene edges, i.e., semi-dense
maps (Fig. 8 and [19]). However, note that an event camera
does not directly measure intensity gradients but only tem-
poral changes (2), and so the presence, orientation and
strength of edges (on the image plane and in 3D) must be
estimated together with the camera’s motion. The strength
of the intensity gradient at a scene point is correlated with
the firing rate of events corresponding to that point, and it
enables reliable tracking [86]. Edge information for tracking
may also be obtained from gradients of brightness maps [7],
[24], [25] used in generative models (Section 2.4).

The event-based SLAM problem in its most general set-
ting (6-DOF motion and natural 3D scenes) is a challenging
problem that has been addressed step-by-step in scenarios
with increasing complexity. Three complexity axes can be
identified: dimensionality of the problem, type of motion
and type of scene. The literature is dominated by methods
that address the localization subproblem first (i.e., motion
estimation) because it has fewer degrees of freedom to esti-
mate. Regarding the type of motion, solutions for con-
strained motions, such as rotational or planar (both being 3-
DOF), have been investigated before addressing the most
complex case of a freely moving camera (6-DOF) . Solutions
for artificial scenes in terms of photometry (high contrast)

and/or structure (line-based or 2D maps) have been pro-
posed before focusing on the most difficult case: natural
scenes (3D and with arbitrary photometric variations).
Some proposed solutions require additional sensing (e.g.,
RGB-D) to reduce the complexity of the problem. This, how-
ever, introduces some of the bottlenecks present in frame-
based systems (e.g., latency and motion blur). Table 3 classi-
fies the related work using these complexity axes.

Tracking and Mapping. Let us focus on methods that
address the tracking-and-mapping problem. Cook et al. [23]
proposed a generic message-passing algorithm within an
interacting network to jointly estimate ego-motion, image
intensity and optical flow from events. However, the system
was restricted to rotational motion. Joint estimation is
appealing because it allows to employ as many equations as
possible relating the variables (e.g., (4) and rotational prior)
in the hope of finding a better solution to the problem.

An event-based 2D SLAM system was presented in [196]
by extension of [84], and thus it was restricted to planar
motion and high-contrast scenes. The method used a parti-
cle filter for tracking, with the event likelihood function
inversely related to the the reprojection error of the event
with respect to the map. The map of scene edges was con-
currently built; it consisted of an occupancy map [195], with
each pixel representing the probability that the pixel trig-
gered events. The method was extended to 3D in [197], but
it relied on an external RGB-D sensor attached to the event
camera for depth estimation. The depth sensor introduced
bottlenecks, which deprived the system of the low latency
and high-speed advantages of event cameras.

The filter-based approach in [24] showed how to simulta-
neously track the 3D orientation of a rotating event camera
and create high-resolution panoramas of natural scenes. It
operated probabilistic filters in parallel for both subtasks. A
panoramic gradient was built using per-pixel Kalman fil-
ters, each one estimating the orientation and strength of the
scene edge at its location. This gradient map was then
upgraded to an absolute intensity one with super-resolution
and HDR properties by Poisson integration. SLAM during
rotational motion was also presented in [86], where camera

Fig. 7. Example of monocular depth estimation with a hand-held event
camera. (a) Scene, (b) semi-dense depth map, pseudo-colored from red
(close) to blue (far). Image courtesy of [19].

Fig. 8. Event-based SLAM. (a) Reconstructed scene from [81], with the
reprojected semi-dense map colored according to depth and overlaid on
the events (in gray), showing the good alignment between the map and
the events. (b) Estimated camera trajectory (several methods) and
semi-dense 3D map (i.e., point cloud). Image courtesy of [87].

TABLE 3
Event-Based Methods for Pose Tracking and/or

Mapping With an Event Camera

Reference Dim Track Depth Scene Event Additional requirements

Cook [23] 2D @ • natural @ rotational motion only
Weikersdorfer [196] 2D @ • B&W @ scene parallel to motion
Kim [24] 2D @ • natural @ rotational motion only
Gallego [111] 2D @ • natural @ rotational motion only
Reinbacher [86] 2D @ • natural @ rotational motion only
Censi [75] 3D @ • B&W • attached depth sensor
Weikersdorfer [197] 3D @ @ natural • attached RGB-D sensor
Mueggler [198] 3D @ • B&W @ 3D map of lines
Gallego [7] 3D @ • natural • 3D map of the scene
Rebecq [19] 3D • @ natural @ pose information
Kueng [110] 3D @ @ natural • intensity images
Kim [25] 3D @ @ natural @ image reconstruction
Rebecq [26] 3D @ @ natural @ �

The type of motion is noted with labels “2D” (3-DOF motions, e.g., planar or
rotational) and “3D” (free 6-DOF motion in 3D space). Columns indicate
whether the method performs tracking (“Track”) and depth estimation
(“Depth”) using only events (“Event”), the type of scene considered (“Scene”),
and any additional requirements. Only [25], [26] address the most general
scenario using only events.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 167



tracking was performed by minimization of a photometric
error at the event locations given a probabilistic edge map.
The map was simultaneously built, and each map point rep-
resented the probability of events being generated at that
location [196]. Hence it was a panoramic occupancy map
measuring the strength of the scene edges.

Recently, solutions to the full problem of event-based 3D
SLAM for 6-DOF motions and natural scenes, not relying on
additional sensing, have been proposed [25], [26] (Table 3).
The approach in [25] extends [24] and consists of three inter-
leaved probabilistic filters to perform pose tracking as well
as depth and intensity estimation. However, it suffers from
limited robustness (especially during initialization) due to
the assumption of uncorrelated depth, intensity gradient,
and camera motion. Furthermore, it is computationally
intensive, requiring a GPU for real-time operation. In con-
trast, the semi-dense approach in [26] shows that intensity
reconstruction is not needed for depth estimation or pose
tracking. The approach has a geometric foundation: it per-
forms space sweeping for 3D reconstruction [19] and edge-
map alignment (non-linear optimization with few events
per frame) for pose tracking. The resulting SLAM system
runs in real-time on a CPU.

Trading off latency for efficiency, probabilistic filters [24],
[25], [196] can operate on small groups of events. Other
approaches are natively designed for groups, based for
example on non-linear optimization [26], [111], [112], and
run in real time on the CPU. Processing multiple events
simultaneously is also beneficial to reduce noise.

Opportunities. The above-mentioned SLAM methods lack
loop-closure capabilities to reduce drift. Currently, the
scales of the scenes on which event-based SLAM has been
demonstrated are considerably smaller than those of frame-
based SLAM. However, trying to match both scales may not
be a sensible goal since event cameras may not be used to
tackle the same problems as standard cameras; both sensors
are complementary, as argued in [7], [27], [64], [75]. Stereo
event-based SLAM is another unexplored topic, as well as
designing more accurate, efficient and robust methods than
the existing monocular ones. Robustness of SLAM systems
can be improved by sensor fusion with IMUs [27], [193].

4.5 Image Reconstruction

Events represent brightness changes, and so, in ideal condi-
tions (noise-free scenario, perfect sensor response, etc.) inte-
gration of the events yields “absolute” brightness. This is
intuitive, since events are just a non-redundant (i.e.,
“compressed”) per-pixel way of encoding the visual content
in the scene. Event integration or, more generically, image
reconstruction (Fig. 9) can be interpreted as “decompressing”
the visual data encoded in the event stream. Due to the very
high temporal resolution of the events, brightness images can
be reconstructed at very high frame rate (e.g., 2 kHz to
5 kHz [8], [199]) or even continuously in time [62].

As the literature reveals, the insight about image recon-
struction from events is that it requires regularization. Event
cameras have independent pixels that report brightness
changes, and, consequently, per-pixel integration of such
changes during a time interval only produces brightness
increment images. To recover the absolute brightness at the
end of the interval, an offset image (i.e., the brightness image

at the start of the interval) would need to be added to the
increment [81], [200]. Surprisingly, some works have used
spatial and/or temporal smoothing [62], [119], [199], [201] to
reconstruct brightness starting from a zero initial condition,
i.e., without knowledge of the offset image. Other forms of
regularization, using learned features fromnatural scenes [8],
[102], [104], [199] are also effective.

Literature Review. Image reconstruction from events was
first established in [23] under rotational camera motion and
static scene assumptions. These assumptions together with
the brightness constancy (4) were used in a message-passing
algorithm between pixels in a network of visual maps to
jointly estimate several quantities, such as scene brightness.
Also under the above motion and scene assumptions, [24]
showed how to reconstruct high-resolution panoramas
from the events, and they popularized the idea of event-
based HDR image reconstruction. Each pixel of the pan-
oramic image used a Kalman filter to estimate the bright-
ness gradient (based on (4)), which was then integrated
using Poisson reconstruction to yield absolute brightness.
The method in [203] exploited the constrained motion of a
platform rotating around a single axis to reconstruct images
that were then used for stereo depth estimation.

Motion restrictions were then replaced by regularizing
assumptions to enable image reconstruction for generic
motions and scenes [101]. In this work, image brightness and
optical flow were simultaneously estimated using a varia-
tional framework that contained several penalty terms (on
data fitting (1) and smoothness of the solution) to best
explain a space-time volume of events discretized as a voxel
grid. This method was the first to show reconstructed video
from events in dynamic scenes. Later [119], [199], [201]
showed that image reconstructionwas possible evenwithout
having to estimate motion. This was done using a variational
image denoising approach based on time surfaces [119],
[201] or using sparse signal processing with a patch-based
learned dictionary that mapped events to image gradients,
which were then Poisson-integrated [199]. Concurrently, the
VO methods in [25], [26] extended the image reconstruction
technique in [24] to 6-DOF cameramotions by using the com-
puted scene depth and poses: [25] used a robust variational
regularizer to reduce noise and improve contrast of the
reconstructed image, whereas [26] showed image recon-
struction as an ancillary result, since it was not needed to
achieve VO. Recently, [62] proposed a temporal smoothing
filter for image reconstruction and for continuously fusing
events and frames. The filter acted independently on every
pixel, thus showing that no spatial regularization on the

Fig. 9. Image reconstruction. In the scenario of a car driving out of a tun-
nel the frames from a consumer camera (Huawei P20 Pro) (Left) suffer
from under- or over-exposure, while events capture a broader dynamic
range of the scene, which is recovered by image reconstruction methods
(Middle). Events also enable the reconstruction of high-speed scenes,
such as a exploding mug (Right). Images courtesy of [8], [202].

168 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



image plane was needed to recover brightness, although it
naturally reduced noise and artefacts at the expense of
sacrificing some real detail. More recently, [8], [104] has
presented a deep learning approach that achieves consi-
derable gains over previous methods and mitigates visual
artefacts. Reflecting back on earlier works, the motion rest-
rictions or hand-crafted regularizers that enabled image
reconstruction have been replaced by perceptual, data-
driven priors from natural scenes that consequently pro-
duced more natural-looking images. Note that image recon-
struction methods used in VO or SLAM [23], [24], [25]
assume static scenes, whereas methods with weak or no
motion assumptions [8], [62], [101], [104], [119], [199], [201]
are naturally used to reconstruct videos of arbitrary (e.g.,
dynamic) scenes.

Besides image reconstruction from events, another cate-
gory of methods tackles the problem of fusing events and
frames (e.g., from the DAVIS [4]), thus enhancing the bright-
ness information from the frames with high temporal resolu-
tion and HDR properties of events [28], [62], [200]. These
methods also do not rely on motion knowledge and are ulti-
mately based on (2). The method in [200] performs direct
event integration between frames, pixel-wise. However, the
fused brightness becomes quickly corrupted by event noise
(due to non-ideal effects, sensitivity mismatch, missing
events, etc.), and so fusion is reset with every incoming
frame. To mitigate noise, events and frames are fused in [62]
using a per-pixel, temporal complementary filter that is
high-pass in the events and low-pass in the frames. It is an
efficient solution that takes into account the complementary
sensing modality of events and frames: frames carry slow-
varying brightness information (i.e., low temporal fre-
quency), whereas events carry “change” information (i.e.,
high frequency). The fusion method in [28] exploits the high
temporal resolution of the events to additionally remove
motion blur from the frames, producing high frame-rate,
sharp video from a single blurry frame and events. It is based
on a double integral model (one integral to recover bright-
ness and another one to remove blur) within an optimization
framework. A limitation of the above methods is that they
still suffer from artefacts due to event noise. These might be
mitigated if combinedwith learning-based approaches [8].

Applications. Image reconstruction implies that, in princi-
ple, it is possible to convert the events into brightness images
and then apply mature computer vision algorithms [8],
[104], [204]. This can have a high impact on both, event- and
frame-based communities. The resulting images capture
high-speed motions and HDR scenes, which may be benefi-
cial in some applications, but it comes at the expense of
computational cost, latency and power consumption.

Despite image reconstruction having been useful to sup-
port tasks such as recognition [199], SLAM [25] or optical
flow estimation [101], there are also works in the literature,
such as [97], [103], [112], [137], showing that it is not
needed to fulfill such tasks. One of the most valuable
aspects of image reconstruction is that it provides scene rep-
resentations (e.g., appearance maps [7], [24]) that are more
invariant to motion than events and also facilitate establish-
ing event correspondences, which is one of the biggest chal-
lenges of some event data processing tasks, such as feature
tracking [64].

4.6 Motion Segmentation

Segmentation of moving objects viewed by a stationary
event camera is simple because events are solely imputable
to the motion of the objects (assuming constant illumina-
tion) [106], [108], [161]. The challenges arise in the scenario
of a moving camera because events are triggered every-
where on the image plane [13], [116], [139] (Fig. 10), pro-
duced by moving objects and the static scene (whose
apparent motion is induced by the camera’s ego-motion)
and the goal is to infer this causal classification for each
event. However, each event carries very little information,
and therefore it is challenging to perform the mentioned
per-event classification.

Overcoming these challenges has been done by tackling
segmentation scenarios of increasing complexity, obtained
by reducing the amount of additional information given to
solve the problem. Such additional information adopts the
form of known object shape or known motion, i.e., the algo-
rithm knows “what object to look for” or “what type of
motion it expects” and objects are segmented by detecting
(in-)consistency with respect to the expectation. The less
additional information is provided, the more unsupervised
the problem becomes (e.g., clustering). In such a case, seg-
mentation is enabled by the key insight that moving objects
produce distinctive traces of events on the image plane and
it is possible to infer the trajectories of the objects that gener-
ate those traces, yielding the segmented objects [139]. Like
clustering, this is a joint optimization problem in the motion
parameters of the objects (i.e., the “clusters”) and the event-
object associations (i.e., the segmentation).

Literature Review. Considering known object shape, [13]
presents a method to detect and track a circle in the pres-
ence of event clutter caused by the moving camera. It is
based on the Hough transform using optical flow informa-
tion extracted from temporal windows of events. The
method was extended in [162] using a particle filter to
improve tracking robustness: the duration of the observa-
tion window was dynamically selected to accommodate for
sudden motion changes due to accelerations of the object.
More generic object shapes were detected and tracked
by [169] using event corners (Section 4.1) as geometric prim-
itives. In this method, additional knowledge of the robot
joints controlling the camera motion was required.

Segmentation has been addressed by [116], [138], [139]
under mild assumptions leveraging the idea of motion-com-
pensated event images [111] (Section 3). Essentially this
technique associates events that produce sharp edges when
warped according to a motion hypothesis. The simplest

Fig. 10. The iCub humanoid robot from IIT has two event cameras in the
eyes. Here, it segments and tracks a ball under event clutter produced
by the motion of the head. Right: space-time visualization of the events
on the image frame, colored according to polarity (positive in green,
negative in red). Image courtesy of [162].

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 169



hypothesis is a linear motion model (i.e., constant optical
flow), yet it is sufficiently expressive: for short times, scenes
may be described as collections of objects producing events
that fit different linear motion models. Such a scene descrip-
tion is what the cited segmentation algorithms seek for. Spe-
cifically, the method in [138] first fits a linear motion-
compensation model to the dominant events, then removes
these and fits another linear model to the remaining events,
greedily. Thus, it clusters events according to optical flow,
yielding motion-compensated images with sharp object con-
tours. Similarly, [116] detects moving objects in clutter by fit-
ting a motion-compensation model to the dominant events
(i.e., the background) and detecting inconsistencies with
respect to it (i.e., the objects). They test the method in chal-
lenging scenarios inaccessible to standard cameras (HDR,
high-speed) and release a dataset. The work in [139] pro-
poses an iterative clustering algorithm that jointly estimates
the event-object associations (i.e., segmentation) and the
motion parameters of the objects (i.e., clusters) that produce
sharpest motion-compensated event images. It allows for
general parametric motion models [112] to describe each
object and produces better results than greedymethods [116],
[138]. In [117] a learning-based approach for segmentation
using motion-compensation is proposed: ANNs are used to
estimate depth, ego-motion, segmentation masks of inde-
pendentlymoving objects and object 3D velocities. An event-
based dataset is provided for supervised learning, which
includes accurate pixel-wise motion masks of 3D-scanned
objects that are reliable even in poor lighting conditions and
during fast motion.

Segmentation is a paramount topic in frame-based vision,
yet it is rather unexplored in event-based vision. As more
complex scenes are addressed and more advanced event-
based vision techniques are developed, more works target-
ing this challenging problem are expected to appear.

4.7 Recognition

Algorithms. Recognition algorithms for event cameras have
grown in complexity, from template matching of simple
shapes to classifying arbitrary edge patterns using either tra-
ditional machine learning on hand-crafted features or mod-
ern deep learningmethods. This evolution aims at endowing
recognition systems with more expressibility (i.e., approxi-
mation capacity) and robustness to data distortions.

Early research with event-based sensors began with
tracking a moving object using a static sensor. An event-
driven update of the position of a model of the object shape
was used to detect and track objects with a known simple
shape, such as a blob [6], circle [53], [205] or line [54]. Simple
shapes can also be detected by matching against a prede-
fined template, which removes the need to describe the
geometry of the object. This template matching approach was
implemented using convolutions in early hardware [53].

For more complex objects, templates can be used to
match low level features instead of the entire object, after
which a classifier can be used to make a decision based on
the distribution of features observed [93]. Nearest Neighbor
classifiers are typically used, with distances calculated in
feature space. Accuracy can be improved by increasing fea-
ture invariance, which can be achieved using a hierarchical

model where feature complexity increases in each layer.
With a good choice of features, only the final classifier needs
to be retrained when switching tasks. This leads to the prob-
lem of selecting which features to use. Hand-crafted orienta-
tion features were used in early works, but far better results
are obtained by learning the features from the data itself. In
the simplest case, each template can be obtained from an
individual sample, but such templates are sensitive to noise
in the sample data [15]. One may follow a generative
approach, learning features that enable to accurately recon-
struct the input, as was done in [122] with a Deep Belief Net-
work (DBN). More recent work obtains features by
unsupervised learning, clustering the event data and using
the center of each cluster as a feature [93]. During inference,
each event is associated to its closest feature, and a classifier
operates on the distributions of features observed. With the
rise of deep learning in frame-based computer vision, many
have sought to leverage deep learning tools for event-based
recognition, using back-propagation to learn features. This
approach has the advantage of not requiring a separate clas-
sifier at the output, but the disadvantage of requiring far
more labeled data for training. Image recognition with
events also suffers from the practical problem of the avail-
ability of training data in the event domain [206]. In [207]
the authors use wormhole learning, a semi-supervised
approach in which, starting from a detector in the RGB
domain, one is able to train a detector in the event domain;
moreover, in a second phase the teacher becomes the stu-
dent, and some of the illumination invariance of the event
sensor is transferred to the RGB-only detector.

Most learning-based approaches convert events/spikes
into (dense) tensors, a convenient representation for image-
based hierarchical models, e.g., ANNs (Fig. 11). There are
different ways the value of each tensor element can be com-
puted (Section 3.1). Simple methods use the time surfaces,
or event histogram frames. A more robust method uses
time surfaces with exponential decay [93] or with average
timestamps [97]. Image reconstruction methods (Section 4.5)
may also be used. Some recognition approaches rely on con-
verting spikes to frames during inference [134], [199], while
others convert the trained ANN to an SNN which can oper-
ate directly on the event data [121]. Similar ideas can be
applied for tasks other than recognition [22], [91]. As neuro-
morphic hardware advances (Section 5.1), there is increas-
ing interest in learning directly in SNNs [127] or even
directly in the neuromorphic hardware itself [128].

Fig. 11. Recognition of moving objects. (a) A DAVIS240C sensor with
FPGA attached tracks and sends regions of events to IBM’s TrueNorth
NS1e evaluation platform for classification. Results on a street scene
show red boxes around tracked and classified cars. (b) In [121] very high
speed object recognition (browsing a full deck of 52 cards in just 0.65s)
was illustrated with event-driven convolutional neural networks.

170 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



Tasks. Early tasks focused on detecting the presence of a
simple shape (such as a circle) from a static sensor [6], [53],
[205], but soon progressed to the classification of more com-
plex shapes, such as card pips [121] (Fig. 11b), block let-
ters [15] and faces [93], [199]. A popular task throughout
has been the classification of hand-written digits. Inspired
by the role it has played in frame-based computer vision, a
few event-based MNIST datasets have been generated from
the original MNIST dataset [58], [208]. These datasets
remain a good test for algorithm development, with many
algorithms now achieving over 98 percent accuracy on the
task [97], [126], [127], [209], [210], [211], but few would pro-
pose digit recognition as a strength of event-based vision.
More difficult tasks involve either more difficult objects,
such as the Caltech-101 and Caltech-256 datasets (both of
which are still considered easy by computer vision) or more
difficult scenarios, such as recognition from on-board a
moving vehicle [97]. Very few works tackle these tasks so
far, and those that do typically fall back on generating event
frames and processing them using a traditional deep learn-
ing framework.

A key challenge for recognition is that event cameras
respond to relative motion in the scene (Section 2.3), and
thus require either the object or the camera to bemoving. It is
therefore unlikely that event cameras will be a strong choice
for recognizing static or slow moving objects, although little
has been done to combine the advantages of frame- and
event-based cameras for these applications. The event-based
appearance of an object is highly dependent on the above-
mentioned relative motion (Fig. 5), thus tight control of the
cameramotion could be used to aid recognition [208].

Since the camera responds to dynamic signals, obvious
applications include recognizing objects by the way they
move [212], or recognizing dynamic scenes such as gestures
or actions [16], [17]. These tasks are typically more challeng-
ing than static object recognition because they include a time
dimension, but this is exactly where event cameras excel.

Opportunities. Event cameras exhibit many alluring prop-
erties, but event-based recognition has a long way to go if it
is to compete withmodern frame-based approaches.While it
is important to compare event- and frame-based methods,
one must remember that each sensor has its own strengths.
The ideal acquisition scenario for a frame-based sensor con-
sists of both the sensor and object being static, which is the
worst possible scenario for event cameras. For event-based
recognition to find widespread adoption, it will need to find
applications which play to its strengths. Such applications
are unlikely to be similar to well established computer vision
recognition tasks which play to the frame-based sensor’s
strengths. Instead, such applications are likely to involve
resource constrained recognition of dynamic sequences, or
recognition from on-board a moving platform. Finding and
demonstrating the use of event-based sensors in such appli-
cations remains an open challenge.

Although event-based datasets have improved in quality
in recent years, there is still room for improvement. Data
collection and annotation is a tiresome and thankless task,
but developing an easy-to-use pipeline for collecting and
annotating event-based data would be a significant contri-
bution to the field, especially if the tools can mature to the
stage where the task can be outsourced to laymen.

4.8 Neuromorphic Control

In living creatures, most information processing happens
through spike-based representation: spikes encode the sen-
sory data; spikes perform the computation; and spikes
transmit actuator “commands”. Therefore, biology shows
that the event-based paradigm is, in principle, applicable
not just to perception and inference, but also to control.

Neuromorphic-Vision-Driven Control Architecture. In this
type of architecture (Fig. 12), there is a neuromorphic sen-
sor, an event-based estimator, and a traditional controller.
The estimator computes a state, and the controller computes
the control based on the provided state. The controller is not
aware of the asynchronicity of the architecture.

Neuromorphic-vision-driven control architectures have
been demonstrated since the early days of neuromorphic
cameras, and they have proved the two advantages of low
latency and computational efficiency. The earliest demon-
strators were the spike-based convolutional target tracking
demo in the CAVIAR project [53] and the “robot goalie”
described in [6], [12]. Another early example was the pencil-
balancing robot [54]. In that demonstrator two DVS’s
observed a pencil as inverted pendulum placed on a small
movable cart. The pencil’s state in 3D was estimated in
below 1ms latency. A simple hand tuned PID controller
kept the pencil balanced upright. It was also demonstrated
on an embedded system, thereby establishing the ability to
run on severely constrained computing resources.

Event-Based Control Theory. Event-based techniques can
be motivated from the perspective of control and decision
theory. Using a biological metaphor, event-based control
can be understood as a form of what economics calls rational
inattention [213]: more information allows for better deci-
sions, but if there are costs associated to obtaining or proc-
essing the information, it is rational to take decisions with
only partial information available.

In event-based control, the control signal is changed asyn-
chronously [214]. There are several variations of the concept
depending on how the “control events” are generated. One
important distinction is between event-triggered control and
self-triggered control [215]. In event-based control the events are

Fig. 12. Control architectures based on neuromorphic events. In a neuro-
morphic-vision-driven control architecture (a), a neuromorphic sensor
produces events, an event-based perception system produces state esti-
mates, and a traditional controller is called asynchronously to compute
the control signal. In a native neuromorphic-based architecture (b), the
events generate directly changes in control. Finally, (c) shows an archi-
tecture in which the task informs the events that are generated.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 171



generated “exogenously” based on certain condition; for
example, a “recompute control” request might be triggered
when the trajectory’s tracking error exceeds a threshold. In
self-triggered control, the controller decides by itself when is
the next time it should be called based on the situation. For
example, a controller might decide to “sleep” for longer if
the state is near the target, or to recompute the control signal
sooner if it is required.

The advantages of event-based control are usually justified
considering a trade-off between computation / communica-
tion cost and control performance. The basic consideration is
that, while the best control performance is obtained by recom-
puting the control infinitely often (for an infinite cost), there
are strongly diminishing returns. A solid principle of control
theory is that the control frequency depends on the time con-
stant of the plant and the sensor: it does not make sense to
change the control much quicker than the new incoming
information or the speed of the actuators. This motivates
choosing control frequencies that are comparable with the
plant dynamics and adapt to the situation. For example, one
can show that an event-triggered controller achieves the same
performance with a fraction of the computation; or, con-
versely, a better performance with the same amount of com-
putation. In some cases (scalar linear Gaussian) these trade-
offs can be obtained in closed form [216], [217]. (Analogously,
certain trade-offs can be obtained in closed form for
perception [218].)

Unfortunately, the large literature in event-based control
is of restricted utility for the embodied neuromorphic set-
ting. Beyond the superficial similarity of dealing with
“events” the settings are quite different. For example, in net-
work-based control, one deals with typically low-dimen-
sional states and occasional events—the focus is on making
the most of each single event. By contrast, for an autono-
mous vehicle equipped with event cameras, the problem is
typically how to find useful signals in potentially millions
of events per second. Particularizing the event-based con-
trol theory to the neuromorphic case is a relatively young
avenue of research [219], [220], [221], [222]. The challenges
lie in handling the non-linearities typical of the vision
modality, which prevents clean closed-form results.

Open Questions in Neuromorphic Control. Finally, we
describe some of open problems in this topic.

Task-Driven Sensing. In animals, perception has value
because it is followed by action, and the information col-
lected is actionable information that helps with the task. A sig-
nificant advance would be the ability for a controller to
modulate the sensing process based on the task and the con-
text. In current hardware there is limited software-modu-
lated control for the sensing processing, though it is
possible to modulate some of the hardware biases. Integra-
tion with region-of-interest mechanisms, heterogeneous
camera bias settings, etc. would provide additional flexibil-
ity and more computationally efficient control.

Thinking Fast and Slow. Existing research has focused on
obtaining low-latency control, but there has been little work
on how to integrate this sensorimotor level into the rest of an
agent’s cognitive architecture.Using again a bio-inspiredmet-
aphor, and following Kahneman [223], the fast/instinctive/
“emotional” system must be integrated with the slower/
deliberative system.

5 EVENT-BASED SYSTEMS AND APPLICATIONS

5.1 Neuromorphic Computing

Neuromorphic engineering tries to capture some of the
unparalleled computational power and efficiency of the
brain by mimicking its structure and function. Typically
this results in a massively parallel hardware accelerator for
SNNs (Section 3.3), which is how we will define a neuro-
morphic processor. Since the neuron spikes within such a
processor are inherently asynchronous, a neuromorphic
processor is the best computational partner for an event
camera. Neuromorphic processors act on the events injected
by the event camera directly, without conversion, and offer
better data-processing locality (spatially and temporally)
than standard architectures such as CPUs, yielding low
power and low latency computer vision systems.

Neuromorphic processors may be categorized by their
neuron model implementations (Table 4), which are
broadly divided between analog neurons (Neurogrid,
BrainScaleS, ROLLS, DYNAP-se), digital neurons (True-
North, Loihi, ODIN) and software neurons (SpiNNaker).
Some architectures also support on-chip learning (Loihi,
ODIN, DYNAP-le). When evaluating a neuromorphic pro-
cessor for an event-based vision system, the following cri-
teria should be considered in addition to the processor’s
functionality and performance: (i) the software develop-
ment ecosystem: a minimal toolchain includes an API to
compose and train a network, a compiler to prepare the
network for the hardware, and a runtime library to deploy
the network in hardware, (ii) event-based vision systems
typically require that a processor be available as a stand-
alone system suitable for mobile applications, and not just
hosted in a remote server, (iii) the availability of neuro-
morphic processors.

Several developments are necessary to enable a more
widespread use of these processors, such as: (i) developing
a more user-friendly ecosystem (an easier way to program
the desired method for deployment in hardware), (ii)
enabling more processing capabilities of the hardware plat-
form, (iii) increasing the availability of devices beyond early
access programs targeted at selected partners.

The following processors (Table 4) have the most mature
developer workflows, combined with the widest availability
of standalone systems. More details are given in [229], [230].

TABLE 4
Comparison Between Selected Neuromorphic Processors,

Ordered by Neuron Model Type

Processor SpiNNaker TrueNorth Loihi DYNAP Braindrop

Reference [224] [225] [226] [227] [228]

Manufacturer U. Manchester IBM Intel aiCTX Stanford U.
Year 2011 2014 2018 2017 2018
Neuron model Software Digital Digital Analog Analog
On-chip learning Yes No Yes No No
CMOS technol. 130nm 28nm 14nm 180nm 28nm
Neurons/chip 4 k* 1024 k 131 k 1 k 4 k
Neurons/core 255* 256 1024 256 4096
Cores/chip 16* 4096 128 4 1
Synapses/chip 16 M 268 M 130 M 128 k 16 M
Boards 4- or 48-chip 1- or 16-chip 4- or 8-chip, 1-chip 1-chip
Software stack sPyNNaker CPE/Eedn Nengo cAER Nengo

PACMAN NSCP Nx SDK libcAER

172 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



SpiNNaker (Spiking Neural Network Architecture) uses gen-
eral-purpose ARM cores to simulate biologically realistic
models of the human brain [231]. SpiNNaker implements
neurons as software running on the cores, sacrificing hard-
ware acceleration to maximize model flexibility. The SpiN-
Naker has been coupled with event cameras for stereo
depth estimation [149], [232], optic flow computation [232],
[233], and for object tracking [234] and recognition [235].

TrueNorth uses digital neurons to perform real-time infer-
ence. Each chip simulates 1 M (million) neurons and 256 M
synapses, distributed among 4,096 neurosynaptic cores.
There is no on-chip learning, so networks are trained offline
using a GPU or other processor [236].

TrueNorth has been paired with event cameras to pro-
duce end-to-end, low power and low-latency event-based
vision systems for gesture recognition [17], stereo recon-
struction [190] and optical flow estimation [174].

Loihi uses digital neurons to perform real-time inference
and online learning. Each chip simulates up to 131 thousand
spiking neurons and 130 M synapses. A learning engine in
each neuromorphic core updates each synapse using rules
that includes STDP and reinforcement learning [226]. Non-
spiking networks can be trained in TensorFlow and approx-
imated by spiking networks for Loihi using the Nengo Deep
Learning toolkit fromApplied Brain Research [237].

DYNAP. The Dynamic Neuromorphic Asynchronous
Processor has two variants, one optimized for scalable infer-
ence (Dynap-se), and another for online learning (Dynap-le).

Braindrop prototypes a single core of the 1M-neuron Brain-
storm system [228]. It is programmed using Nengo [238] and
implements theNeural Engineering Framework [239].

5.2 Applications in Real-Time On-Board Robotics

As event-based vision sensors often produce significantly
less data per time interval compared to traditional cameras,
multiple applications can be envisioned where extracting
relevant vision information can happen in real-time within
a simple computing system directly connected to the sensor,
avoiding USB connection. Fig. 13 shows an example of
such, where a dual-core ARM micro controller running at
200 MHz with 136 kB on-board SRAM fetches and processes
events in real-time. The combined embedded system of sen-
sor andmicro controller here operate a simple wheeled robot
in tasks such as line following, active and passive object
tracking, distance estimation, and simplemapping [240].

A different example of near-sensor processing (“edge
computing”) is the Speck SoC,9 which combines a DVS and
the Dynap-se neuromorphic CNN processor. Its peak power
consumption is less than 1mW and latency is less than
30ms. Application domains are low-power, continuous
object detection, surveillance, and automotive systems.

Event cameras have also been used on-board quadrotors
with limited computational resources, both for autonomous
landing [241] or flight [27] (Fig. 13b), in challenging scenes.

6 DISCUSSION

Event-based vision is a topic that spans many fields, such as
computer vision, robotics and neuromorphic engineering.
Each community focuses on exploiting different advantages
of the event-based paradigm. Some focus on the low power
consumption for “always on” or embedded applications on
resource-constrained platforms; others favor low latency to
enable highly reactive systems, and others prefer the avail-
ability of information to better perceive the environment
(high temporal resolution and HDR), with fewer constraints
on computational resources.

Event-based vision is an emerging technology in the era
of mature frame-based camera hardware and software.
Comparisons are, in some terms, unfair since they are not
carried out under the same maturity level. Nevertheless
event cameras show potential, able to overcome some of the
limitations of frame-based cameras, reaching new scenarios
previously inaccessible. There is considerable room for
improvement (research and development), as pointed out
in numerous opportunities throughout the paper.

There is no agreement on what the best method (and
representation) to process events is, notably because it
depends on the application. There are different trade-offs
involved, such as latency versus power consumption and
accuracy, or sensitivity versus bandwidth and processing
capacity. For example, reducing the contrast threshold and/
or increasing the resolution produces more events, which
will be processed by an algorithm and platform with finite
capacity. A challenging research area is to quantify such
trade-offs and to develop techniques to dynamically adjust
the sensor and/or algorithm parameters for optimal
performance.

Another big challenge is to develop bio-inspired systems
that are natively event-based end-to-end (from perception
to control and actuation) that are also more efficient and
long-term solutions than synchronous, frame-based sys-
tems. Event cameras pose the challenge of rethinking per-
ception, control and actuation, and, in particular, the
current main stream of deep learning methods in computer
vision: adapting them or transferring ideas to process
events while being as top-performing. Active vision (pair-
ing perception and control) is specially relevant on event
cameras because the events distinctly depends on motion,
which may be due to the actuation of a robot.

Event cameras can be seen as an entry point for more effi-
cient, near-sensor processing, such that only high-level,
non-redundant information is transmitted, thus reducing
bandwidth, latency and power consumption. This could be

Fig. 13. (a) Embedded DVS128 on Pushbot as standalone closed-loop
perception-computation-action system, used in navigation and obstacle-
avoidance tasks [240]. (b) Drone with a down-looking DAVIS, used for
autonomous flight [27]. The high speed and dynamic range of events are
leveraged to operate in difficult illumination conditions. The same visual-
inertial odometry algorithm [27] is also demonstrated on high-speed sce-
narios, such as an event camera spinning tied to a rope.

9. https://www.speck.ai/

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 173

https://www.speck.ai/


done by pairing an event camera with hardware on the
same sensor device (Speck in Section 5.2), or by alternative
bio-inspired imaging sensors, such as cellular processor
arrays [242] which every pixel has a processor that allows to
perform several types of computations with the brightness
of the pixel and its neighbors.

7 CONCLUSION

Event cameras are revolutionary sensors that offer many
advantages over traditional, frame-based cameras, such as
low latency, low power, high speed and high dynamic range.
Hence, they have a large potential for computer vision and
robotic applications in challenging scenarios currently inac-
cessible to traditional cameras. We have provided an over-
view of the field of event-based vision, covering perception,
computing and control, with a focus on the working princi-
ple of event cameras and the algorithms developed to unlock
their outstanding properties in selected applications, from
low-level vision to high-level vision. Neuromorphic percep-
tion and control are emerging topics; and so, there are plenty
of opportunities, as we have pointed out throughout the text.
Many challenges remain ahead, and we hope that this paper
provides an introductory exposition of the topic, as a step in
humanity’s longstanding quest to build intelligent machines
endowed with a more efficient, bio-inspired way of perceiv-
ing and interactingwith theworld.

ACKNOWLEDGMENTS

The work of G. Gallego and D. Scaramuzza was supported
by the SNSF-ERC Starting Grant and the Swiss National Sci-
ence Foundation through the National Center of Compe-
tence in Research (NCCR) Robotics. The authors would like
to thank all the people who contributed to this paper. The
authors would like to thank the event camera manufac-
turers for providing the values in Table 1 and for discussing
the difficulties in their comparison due to the lack of a com-
mon testbed. In particular, we thank Hyunsurk Eric Ryu
(Samsung Electronics), Chenghan Li (iniVation), Davide
Migliore (Prophesee), Marc Osswald (Insightness) and Prof.
Chen (CelePixel). We are also thankful to all members of
our research laboratories, for discussion and comments on
early versions of this document. We thank the Editors and
anonymous reviewers of IEEE TPAMI for their suggestions,
which led us to improve the paper.

REFERENCES

[1] M. Mahowald and C. Mead, “The silicon retina,” Sci. Amer.,
vol. 264, no. 5, pp. 76–83, May 1991.

[2] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128�128 120 dB 15
ms latency asynchronous temporal contrast vision sensor,” IEEE
J. Solid-State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[3] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB
dynamic range frame-free PWM image sensor with lossless
pixel-level video compression and time-domain CDS,” IEEE J.
Solid-State Circuits, vol. 46, no. 1, pp. 259–275, Jan. 2011.

[4] C. Brandli, R. Berner,M.Yang, S.-C. Liu, andT.Delbruck, “A240x 180
130 dB 3ms latency global shutter spatiotemporal vision sensor,”
IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341, Oct. 2014.

[5] B. Son et al., “A 640 x 480 dynamic vision sensor with a 9mm pixel
and 300Meps address-event representation,” in Proc. IEEE Int.
Solid-State Circuits Conf., 2017, pp. 66–67.

[6] T. Delbruck and P. Lichtsteiner, “Fast sensory motor control
based on event-based hybrid neuromorphic-procedural system,”
in Proc. IEEE Int. Symp. Circuits Syst., 2007, pp. 845–848.

[7] G. Gallego, J. E. A. Lund, E. Mueggler, H. Rebecq, T. Delbruck,
and D. Scaramuzza, “Event-based, 6-DOF camera tracking from
photometric depth maps,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 10, pp. 2402–2412, Oct. 2018.

[8] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed
and high dynamic range video with an event camera,” IEEE
Trans. Pattern Anal. Mach. Intell., early access, Dec. 31, 2019,
doi: 10.1109/TPAMI.2019.2963386.

[9] Accessed: Jun. 2020. [Online]. Available: https://github.com/uzh-
rpg/event-based_vision_resources

[10] T. Delbruck, “Neuromorphic vision sensing and processing,” in
Proc. Eur. Solid-State Device Res. Conf., 2016, pp. 7–14.

[11] S.-C. Liu, B. Rueckauer, E. Ceolini, A. Huber, and T. Delbruck,
“Event-driven sensing for efficient perception: Vision and audition
algorithms,” IEEE Signal Process. Mag., vol. 36, no. 6, pp. 29–37,
Nov 2019.

[12] T. Delbruck and M. Lang, “Robotic goalie with 3ms reaction time
at 4% CPU load using event-based dynamic vision sensor,”
Front. Neurosci., vol. 7, 2013, Art. no. 223.

[13] A. Glover and C. Bartolozzi, “Event-driven ball detection and
gaze fixation in clutter,” in Proc. IEEE Int. Conf. Intell. Robots
Syst., 2016, pp. 2203–2208.

[14] M. Litzenberger et al., “Estimation of vehicle speed based on
asynchronous data from a silicon retina optical sensor,” in Proc.
IEEE Intell. Transp. Syst. Conf., 2006, pp. 653–658.

[15] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor,
and R. Benosman, “HFirst: A temporal approach to object rec-
ognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 10,
pp. 2028–2040, Oct. 2015.

[16] J. H. Lee et al., “Real-time gesture interface based on event-
driven processing from stereo silicon retinas,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 25, no. 12, pp. 2250–2263, Dec.
2014.

[17] A. Amir et al., “A low power, fully event-based gesture recogni-
tion system,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 7388–7397.

[18] P. Rogister, R. Benosman, S.-H. Ieng, P. Lichtsteiner, and
T. Delbruck, “Asynchronous event-based binocular stereo
matching,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23,
no. 2, pp. 347–353, Feb. 2012.

[19] H. Rebecq, G. Gallego, E. Mueggler, and D. Scaramuzza, “EMVS:
Event-based multi-view stereo—3D reconstruction with an event
camera in real-time,” Int. J. Comput. Vis., vol. 126, no. 12,
pp. 1394–1414, 2018.

[20] N. Matsuda, O. Cossairt, and M. Gupta, “MC3D: Motion contrast
3D scanning,” in Proc. IEEE Int. Conf. Comput. Photography, 2015,
pp. 1–10.

[21] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 2, pp. 407–417, Feb. 2014.

[22] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “EV-FlowNet:
Self-supervised optical flow estimation for event-based cam-
eras,” in Proc. Robot.: Sci. Syst., 2018, pp. 1–9, doi: 10.15607/
RSS.2018.XIV.062.

[23] M. Cook, L. Gugelmann, F. Jug, C. Krautz, and A. Steger,
“Interacting maps for fast visual interpretation,” in Proc. Int. Joint
Conf. Neural Netw., 2011, pp. 770–776.

[24] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davison,
“Simultaneous mosaicing and tracking with an event camera,”
in Proc. Brit. Mach. Vis. Conf., 2014, pp. 1–12.

[25] H. Kim, S. Leutenegger, and A. J. Davison, “Real-time 3D recon-
struction and 6-DoF tracking with an event camera,” in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 349–364.

[26] H. Rebecq, T. Horstsch€afer, G. Gallego, and D. Scaramuzza,
“EVO: A geometric approach to event-based 6-DOF parallel
tracking and mapping in real-time,” IEEE Robot. Autom. Lett.,
vol. 2, no. 2, pp. 593–600, Apr. 2017.

[27] A. Rosinol Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza,
“Ultimate SLAM? Combining events, images, and IMU for robust
visual SLAM in HDR and high speed scenarios,” IEEE Robot.
Autom. Lett., vol. 3, no. 2, pp. 994–1001, Apr. 2018.

[28] L. Pan, C. Scheerlinck, X. Yu, R. Hartley, M. Liu, and Y. Dai,
“Bringing a blurry frame alive at high frame-rate with an event
camera,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 6813–6822.

[29] G. Cohen et al., “Event-based sensing for space situational
awareness,” in Proc. Adv. Maui Opt. Space Surveillance Technol.
Conf., 2017, pp. 1–13.

174 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

http://dx.doi.org/10.1109/TPAMI.2019.2963386
https://github.com/uzh-rpg/event-based_vision_resources
https://github.com/uzh-rpg/event-based_vision_resources
http://dx.doi.org/10.15607/RSS.2018.XIV.062
http://dx.doi.org/10.15607/RSS.2018.XIV.062


[30] T.-J. Chin, S. Bagchi, A. Eriksson, and A. van Schaik, “Star track-
ing using an event camera,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit. Workshops, 2019, pp. 1646–1655.

[31] P. Lichtsteiner and T. Delbruck, “64 x 64 event-driven logarith-
mic temporal derivative silicon retina,” in Proc. IEEE Workshop
Charge-Coupled Devices Adv. Image Sensors, 2005, pp. 157–160.

[32] P. Lichtsteiner and T. Delbruck, “A 64x64 AER logarithmic tem-
poral derivative silicon retina,” in Proc. Res. Microelectron. Elec-
tron., 2005, pp. 202–205.

[33] P. Lichtsteiner, “An AER temporal contrast vision sensor,” PhD
Thesis, Dept. Phys., ETH Zurich, Zurich, Switzerland, 2006.

[34] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120 dB
30 mW asynchronous vision sensor that responds to relative
intensity change,” in Proc. IEEE Int. Solid-State Circuits Conf.,
2006, pp. 2060–2069.

[35] D. Neil, “Deep neural networks and hardware systems for event-
driven data,” PhD dissertation, Dept. Inf. Tech. Elec, Eng. ETH-
Zurich, Zurich, Switzerland, 2017.

[36] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and
T. Delbruck, “Retinomorphic event-based vision sensors: Bioins-
pired cameras with spiking output,” Proc. IEEE, vol. 102, no. 10,
pp. 1470–1484, Oct. 2014.

[37] K. A. Boahen, “A burst-mode word-serial address-event link-I:
Transmitter design,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 51, no. 7, pp. 1269–1280, Jul. 2004.

[38] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas,
Event-Based Neuromorphic Systems. Hoboken, NJ, USA: Wiley,
2015.

[39] Y. Suh et al., “A 1280x960 dynamic vision sensor with a 4.95-mm
pixel pitch and motion artifact minimization,” in Proc. IEEE Int.
Symp. Circuits Syst., 2020, pp. 1–5.

[40] T. Delbruck, Y. Hu, and Z. He, “V2E: From video frames to real-
istic DVS event camera streams,” 2020, arXiv:2006.07722v1.

[41] M. Mahowald, “VLSI analogs of neuronal visual processing: A
synthesis of form and function,” PhD dissertation, Dept. Com-
put. Neural Syst., California Inst. Technol., Pasadena, CA, USA,
May 1992.

[42] C. Dong-il“Dan” and T. Lee, “A review of bioinspired vision sen-
sors and their applications,” Sensors Mater., vol. 27, no. 6,
pp. 447–463, 2015.

[43] L. Steffen, D. Reichard, J. Weinland, J. Kaiser, A. R€onnau, and
R. Dillmann, “Neuromorphic stereo vision: A survey of bio-
inspired sensors and algorithms,” Front. Neurorobot., vol. 13,
2019, Art. no. 28.

[44] T. Delbruck and C. A. Mead, “Time-derivative adaptive silicon
photoreceptor array,” in Proc. SPIE Infrared Sensors: Detect. Elec-
tron. Signal Process., vol. 1541, 1991, pp. 92–99.

[45] S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,”
Current Opinion Neurobiol., vol. 20, no. 3, pp. 288–295, 2010.

[46] T. Delbruck, B. Linares-Barranco, E. Culurciello, and C. Posch,
“Activity-driven, event-based vision sensors,” in Proc. IEEE Int.
Symp. Circuits Syst., 2010, pp. 2426–2429.

[47] T. Delbruck, “Fun with asynchronous vision sensors and proc-
essing,” inProc. Eur. Conf. Comput. Vis.Workshops, 2012, pp. 506–515.

[48] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB
dynamic range asynchronous address-event PWM dynamic
image sensor with lossless pixel-level video compression,” in
Proc. IEEE Int. Solid-State Circuits Conf., 2010, pp. 400–401.

[49] E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A bio-
morphic digital image sensor,” IEEE J. Solid-State Circuits, vol. 38,
no. 2, pp. 281–294, Feb. 2003.

[50] G. Orchard, D. Matolin, X. Lagorce, R. Benosman, and C. Posch,
“Accelerated frame-free time-encoded multi-step imaging,” in
Proc. IEEE Int. Symp. Circuits Syst., 2014, pp. 2644–2647.

[51] R. Berner, C. Brandli, M. Yang, S.-C. Liu, and T. Delbruck, “A
240x180 10mw 12ms latency sparse-output vision sensor for
mobile applications,” in Proc. Symp. VLSI Circuits, 2013,
pp. C186–C187.

[52] E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-
chip,” IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1689–1698,
Oct. 1997.

[53] R. Serrano-Gotarredona et al., “CAVIAR: A 45k neuron, 5M syn-
apse, 12G connects/s AER hardware sensory-processing-learning-
actuating system for high-speed visual object recognition and
tracking,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1417–1438,
Sep. 2009.

[54] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas, and
T. Delbruck, “A pencil balancing robot using a pair of AER
dynamic vision sensors,” in Proc. IEEE Int. Symp. Circuits Syst.,
2009, pp. 781–784.

[55] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of
driving models from large-scale video datasets,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3530–3538.

[56] Y. Nozaki and T. Delbruck, “Temperature and parasitic photo-
current effects in dynamic vision sensors,” IEEE Trans. Electron
Devices, vol. 64, no. 8, pp. 3239–3245, Aug. 2017.

[57] Y. Nozaki and T. Delbruck, “Authors reply to comment on temper-
ature and parasitic photocurrent effects in dynamic vision
sensors,” IEEE Trans. Electron Devices, vol. 65, no. 7, pp. 3083–3083,
Jul. 2018.

[58] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128�128
1.5% contrast sensitivity 0.9% FPN 3 ms latency 4 mW asynchro-
nous frame-free dynamic vision sensor using transimpedance
preamplifiers,” IEEE J. Solid-State Circuits, vol. 48, no. 3, pp. 827–838,
Mar. 2013.

[59] M. Yang, S.-C. Liu, and T. Delbruck, “A dynamic vision sensor
with 1% temporal contrast sensitivity and in-pixel asynchronous
delta modulator for event encoding,” IEEE J. Solid-State Circuits,
vol. 50, no. 9, pp. 2149–2160, Sep. 2015.

[60] D. P. Moeys et al., “A sensitive dynamic and active pixel vision
sensor for color or neural imaging applications,” IEEE Trans.
Biomed. Circuits Syst., vol. 12, no. 1, pp. 123–136, Feb. 2018.

[61] A. Rose, Vision: Human and Electronic. New York, NY, USA: Ple-
num, 1973.

[62] C. Scheerlinck, N. Barnes, and R. Mahony, “Continuous-time
intensity estimation using event cameras,” in Proc. Asian Conf.
Comput. Vis., 2018, pp. 308–324.

[63] C. Scheerlinck, N. Barnes, and R. Mahony, “Asynchronous spa-
tial image convolutions for event cameras,” IEEE Robot. Autom.
Lett., vol. 4, no. 2, pp. 816–822, Apr. 2019.

[64] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “EKLT:
Asynchronous photometric feature tracking using events and
frames,” Int. J. Comput. Vis., vol. 128, pp. 601–618, 2020.

[65] S. Bryner, G. Gallego, H. Rebecq, and D. Scaramuzza, “Event-
based, direct camera tracking from a photometric 3D map using
nonlinear optimization,” in Proc. IEEE Int. Conf. Robot. Autom.,
2019, pp. 325–331.

[66] G. Gallego, C. Forster, E. Mueggler, and D. Scaramuzza, “Event-
based camera pose tracking using a generative event model,”
2015, arXiv:1510.01972v1.

[67] Prophesee Evaluation Kits, 2020. [Online]. Available: https://
www.prophesee.ai/event-based-evk/

[68] T. Finateu et al., “A 1280 x 720 back-illuminated stacked temporal
contrast event-based vision sensor with 4.86 mm pixels, 1.066GEPS
readout, programmable event-rate controller and compressive
data-formatting pipeline,” in Proc. IEEE Int. Solid-State Circuits
Conf., 2020, pp. 112–114.

[69] H. E. Ryu, “Industrial DVS design; key features and applications.”
Jun. 2019. [Online]. Available: http://rpg.ifi.uzh.ch/docs/
CVPR19workshop/CVPRW19_Eric_Ryu_Samsung.pdf

[70] M. Guo, J. Huang, and S. Chen, “Live demonstration: A 768 x 640
pixels 200Meps dynamic vision sensor,” in Proc. IEEE Int. Symp.
Circuits Syst., 2017, pp. 1–1.

[71] S. Chen and M. Guo, “Live demonstration: CeleX-V: A 1M pixel
multi-mode event-based sensor,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, 2019, pp. 1682–1683.

[72] Insightness Event-based Sensor Modules, 2020. [Online]. Avail-
able: http://www.insightness.com/technology/

[73] M. L. Katz, K. Nikolic, and T. Delbruck, “Live demonstration:
Behavioural emulation of event-based vision sensors,” in Proc.
IEEE Int. Symp. Circuits Syst., 2012, pp. 736–740.

[74] H. Rebecq, D. Gehrig, and D. Scaramuzza, “ESIM: An open event
camera simulator,” in Proc. Conf. Robot. Learn., 2018, pp. 969–982.

[75] A. Censi and D. Scaramuzza, “Low-latency event-based visual
odometry,” in Proc. IEEE Int. Conf. Robot. Autom., 2014, pp. 703–710.

[76] M. Yang, S.-C. Liu, and T. Delbruck, “Analysis of encoding degra-
dation in spiking sensors due to spike delay variation,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 64, no. 1, pp. 145–155, Jan. 2017.

[77] T. Delbruck, V. Villanueva, and L. Longinotti, “Integration of
dynamic vision sensor with inertial measurement unit for elec-
tronically stabilized event-based vision,” in Proc. IEEE Int. Symp.
Circuits Syst., 2014, pp. 2636–2639.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 175

https://www.prophesee.ai/event-based-evk/
https://www.prophesee.ai/event-based-evk/
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Eric_Ryu_Samsung.pdf
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Eric_Ryu_Samsung.pdf
http://www.insightness.com/technology/


[78] R. Berner, “Highspeed USB2.0 AER interfaces,” Master’s thesis,
Dept. Elect. Inf. Eng. (D-ITET), ETH Zurich, Zurich, Switzerland,
2006.

[79] iniVation, “Understandingthe performance of neuromorphic
event-based vision sensors,” May 2020. [Online]. Available:
https://inivation.com/dvp/white-papers/

[80] G. Taverni et al., “Front and back illuminated dynamic and active
pixel vision sensors comparison,” IEEE Trans. Circuits Syst., II,
Exp. Briefs, vol. 65, no. 5, pp. 677–681, May 2018.

[81] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scara-
muzza, “The event-camera dataset and simulator: Event-based
data for pose estimation, visual odometry, and SLAM,” Int. J.
Robot. Res., vol. 36, no. 2, pp. 142–149, 2017.

[82] G. Gallego, M. Gehrig, and D. Scaramuzza, “Focus is all you need:
Loss functions for event-based vision,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 12272–12281.

[83] D. Gehrig, A. Loquercio, K. Derpanis, and D. Scaramuzza, “End-
to-end learning of representations for asynchronous event-based
data,” in Proc. Int. Conf. Comput. Vis., 2019, pp. 5632–5642.

[84] D. Weikersdorfer and J. Conradt, “Event-based particle filtering
for robot self-localization,” in Proc. IEEE Int. Conf. Robot. Biomi-
metics, 2012, pp. 866–870.

[85] F. Paredes-Vall�es, K. Y. W. Scheper, and G. C. H. E. de Croon,
“Unsupervised learning of a hierarchical spiking neural network
for optical flow estimation: From events to global motion
perception,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp. 2051–2064, Aug. 2020.

[86] C. Reinbacher, G. Munda, and T. Pock, “Real-time panoramic
tracking for event cameras,” in Proc. IEEE Int. Conf. Comput. Pho-
tography, 2017, pp. 1–9.

[87] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza,
“Continuous-time visual-inertial odometry for event cameras,”
IEEE Trans. Robot., vol. 34, no. 6, pp. 1425–1440, Dec. 2018.

[88] M. Liu and T. Delbruck, “Adaptive time-slice block-matching
optical flow algorithm for dynamic vision sensors,” in Proc. Brit.
Mach. Vis. Conf., 2018, pp. 1–12.

[89] A. Aimar et al., “NullHop: A flexible convolutional neural net-
work accelerator based on sparse representations of feature
maps,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 3,
pp. 644–656, Mar. 2019.

[90] J. Kogler, C. Sulzbachner, and W. Kubinger, “Bio-inspired stereo
vision systemwith silicon retina imagers,” in Proc. Int. Conf. Com-
put. Vis. Syst., 2009, pp. 174–183.

[91] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garc�ıa, and
D. Scaramuzza, “Event-based vision meets deep learning on
steering prediction for self-driving cars,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 5419–5427.

[92] T. Delbruck, “Frame-free dynamic digital vision,” in Proc. Int.
Symp. Secure-Life Electron., 2008, pp. 21–26.

[93] X. Lagorce, G. Orchard, F. Gallupi, B. E. Shi, and R. B. Benosman,
“HOTS: A hierarchy of event-based time-surfaces for pattern rec-
ognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 7,
pp. 1346–1359, Jul. 2017.

[94] M. A. R. Ahad, J. K. Tan, H. Kim, and S. Ishikawa, “Motion his-
tory image: Its variants and applications,”Mach. Vis. Appl., vol. 23,
no. 2, pp. 255–281,Mar. 2012.

[95] I. Alzugaray and M. Chli, “Asynchronous corner detection and
tracking for event cameras in real time,” IEEE Robot. Autom. Lett.,
vol. 3, no. 4, pp. 3177–3184, Oct. 2018.

[96] J. Manderscheid, A. Sironi, N. Bourdis, D. Migliore, and V. Lepetit,
“Speed invariant time surface for learning to detect corner points
with event-based cameras,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 10237–10246.

[97] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benos-
man, “HATS: Histograms of averaged time surfaces for robust
event-based object classification,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 1731–1740.

[98] V. Vasco, A. Glover, and C. Bartolozzi, “Fast event-based Harris
corner detection exploiting the advantages of event-driven cam-
eras,” inProc. IEEE Int. Conf. Intell. Robots Syst., 2016, pp. 4144–4149.

[99] E. Mueggler, C. Bartolozzi, and D. Scaramuzza, “Fast event-
based corner detection,” in Proc. Brit. Mach. Vis. Conf., 2017,
pp. 1–11.

[100] Y. Zhou, G. Gallego, H. Rebecq, L. Kneip, H. Li, and D. Scara-
muzza, “Semi-dense 3D reconstruction with a stereo event
camera,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 242–258.

[101] P. Bardow, A. J. Davison, and S. Leutenegger, “Simultaneous
optical flow and intensity estimation from an event camera,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 884–892.

[102] L. Wang, I. S. M. Mostafavi, Y.-S. Ho, and K.-J. Yoon, “Event-
based high dynamic range image and very high frame rate video
generation using conditional generative adversarial networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 10073–10082.

[103] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis,
“Unsupervised event-based learning of optical flow, depth,
and egomotion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2019, pp. 989–997.

[104] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-to-
video: Bringing modern computer vision to event cameras,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3852–3861.

[105] Y. Sekikawa, K. Hara, and H. Saito, “EventNet: Asynchronous
recursive event processing,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2019, pp. 3882–3891.

[106] M. Litzenberger et al., “Embedded vision system for real-time
object tracking using an asynchronous transient vision sensor,”
in Proc. Digit. Signal Process. Workshop, 2006, pp. 173–178.

[107] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. R�egnier,
“Asynchronous event-based visual shape tracking for stable hap-
tic feedback in microrobotics,” IEEE Trans. Robot., vol. 28, no. 5,
pp. 1081–1089, Oct. 2012.

[108] Z. Ni, S.-H. Ieng, C. Posch, S. R�egnier, and R. Benosman, “Visual
tracking using neuromorphic asynchronous event-based cam-
eras,”Neural Comput., vol. 27, no. 4, pp. 925–953, 2015.

[109] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza,
“Feature detection and tracking with the dynamic and active-
pixel vision sensor (DAVIS),” in Proc. Int. Conf. Event-Based Con-
trol Commun. Signal Process., 2016, pp. 1–7.

[110] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza, “Low-
latency visual odometry using event-based feature tracks,” in
Proc. IEEE Int. Conf. Intell. Robots Syst., 2016, pp. 16–23.

[111] G. Gallego and D. Scaramuzza, “Accurate angular velocity esti-
mation with an event camera,” IEEE Robot. Autom. Lett., vol. 2,
no. 2, pp. 632–639, Apr. 2017.

[112] G. Gallego, H. Rebecq, and D. Scaramuzza, “A unifying contrast
maximization framework for event cameras, with applications to
motion, depth, and optical flow estimation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 3867–3876.

[113] H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Real-time
visual-inertial odometry for event cameras using keyframe-
based nonlinear optimization,” in Proc. Brit. Mach. Vis. Conf.,
2017, pp. 1–12.

[114] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature
tracking with probabilistic data association,” in Proc. IEEE Int.
Conf. Robot. Autom., 2017, pp. 4465–4470.

[115] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual
inertial odometry,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2017, pp. 5816–5824.

[116] A. Mitrokhin, C. Fermuller, C. Parameshwara, and Y. Aloimo-
nos, “Event-based moving object detection and tracking,” in
Proc. IEEE Int. Conf. Intell. Robots Syst., 2018, pp. 1–9.

[117] A. Mitrokhin, C. Ye, C. Fermuller, Y. Aloimonos, and T. Delbruck,
“EV-IMO: Motion segmentation dataset and learning pipeline for
event cameras,” in Proc. IEEE Int. Conf. Intell. Robots Syst., 2019,
pp. 6105–6112.

[118] T. Brosch, S. Tschechne, and H. Neumann, “On event-based
optical flow detection,” Front. Neurosci., vol. 9, Apr. 2015,
Art. no. 137.

[119] C. Reinbacher, G. Graber, and T. Pock, “Real-time intensity-
image reconstruction for event cameras using manifold regu-
larisation,” in Proc. Brit. Mach. Vis. Conf., 2016, pp. 1–12.

[120] H. Akolkar, S. Panzeri, and C. Bartolozzi, “Spike time based unsu-
pervised learning of receptive fields for event-driven vision,” in
Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 4258–4264.

[121] J. A. P�erez-Carrasco et al., “Mapping from frame-driven to frame-
free event-driven vision systems by low-rate rate coding and coin-
cidence processing–application to feedforward ConvNets,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2706–2719,
Nov. 2013.

[122] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer,
“Real-time classification and sensor fusion with a spiking deep
belief network,” Front. Neurosci., vol. 7, 2013, Art. no. 178.

176 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

https://inivation.com/dvp/white-papers/


[123] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing,” in Proc. Int. Joint Conf. Neural
Netw., 2015, pp. 2933–2940.

[124] S. K. Esser et al., “Convolutional networks for fast, energy-
efficient neuromorphic computing,” Proc. Nat. Acad. Sci. USA,
vol. 113, no. 41, pp. 11 441–11 446, 2016.

[125] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu,
“Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification,” Front. Neurosci.,
vol. 11, 2017, Art. no. 682.

[126] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reas-
signment in time,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2018, pp. 1412–1421.

[127] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking
neural networks using backpropagation,” Front. Neurosci., vol. 10,
2016, Art. no. 508.

[128] E. Neftci, “Data and power efficient intelligence with neuromor-
phic learning machines,” iScience, vol. 5, pp. 52–68, 2018.

[129] J. Kogler, C. Sulzbachner, M. Humenberger, and F. Eibensteiner,
“Address-event based stereo vision with bio-inspired silicon ret-
ina imagers,” in Advances in Theory and Applications of Stereo
Vision. Rijeka, Croatia: InTech, 2011, pp. 165–188.

[130] H. Li, G. Li, and L. Shi, “Classification of spatiotemporal events
based on random forest,” in Proc. Int. Conf. Brain Inspired Cogn.
Syst., 2016, pp. 138–148.

[131] A. Nguyen, T.-T. Do, D. G. Caldwell, and N. G. Tsagarakis,
“Real-time 6DOF pose relocalization for event cameras with
stacked spatial LSTM networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, 2019, pp. 1638–1645.

[132] E.Mueggler, C. Forster, N. Baumli, G. Gallego, andD. Scaramuzza,
“Lifetime estimation of events from dynamic vision sensors,” in
Proc. IEEE Int. Conf. Robots Autom., 2015, pp. 4874–4881.

[133] S.-H. Ieng, J. Carneiro, M. Osswald, and R. Benosman,
“Neuromorphic event-based generalized time-based stereovision,”
Front. Neurosci., vol. 12, 2018, Art. no. 442.

[134] D. P. Moeys et al., “Steering a predator robot using a mixed
frame/event-driven convolutional neural network,” in Proc. Int.
Conf. Event-Based Control Commun. Signal Process., 2016, pp. 1–8.

[135] I.-A. Lungu, F. Corradi, and T. Delbruck, “Live demonstration:
Convolutional neural network driven by dynamic vision sensor
playing RoShamBo,” in Proc. IEEE Int. Symp. Circuits Syst., 2017,
pp. 1–1.

[136] J. Binas, D. Neil, S.-C. Liu, and T. Delbruck, “DDD17: End-to-end
DAVIS driving dataset,” in Proc. ICML Workshop Mach. Learn.
Auton. Veh., 2017, pp. 1–9.

[137] C. Ye, A. Mitrokhin, C. Parameshwara, C. Ferm€uller, J. A. Yorke,
and Y. Aloimonos, “Unsupervised learning of dense optical
flow, depth and egomotion with event-based sensors,” IEEE/RSJ
Int. Conf. Intell. Robots and Systems (IROS), 2020.

[138] T. Stoffregen and L. Kleeman, “Simultaneous optical flow and
segmentation (SOFAS) using dynamic vision sensor,” in Proc.
Australas. Conf. Robot. Autom., 2017, pp. 1–10.

[139] T. Stoffregen, G. Gallego, T. Drummond, L. Kleeman, and
D. Scaramuzza, “Event-based motion segmentation by motion
compensation,” inProc. Int. Conf. Comput. Vis., 2019, pp. 7243–7252.

[140] L. A. Camu~nas-Mesa, T. Serrano-Gotarredona, and B. Linares-
Barranco, “Event-driven sensing and processing for high-speed
robotic vision,” in Proc. IEEE Biomed. Circuits Syst. Conf., 2014,
pp. 516–519.

[141] G. Orchard, R. Benosman, R. Etienne-Cummings, and
N. V. Thakor, “A spiking neural network architecture for
visual motion estimation,” in Proc. IEEE Biomed. Circuits Syst.
Conf., 2013, pp. 298–301.

[142] E. Chicca, P. Lichtsteiner, T. Delbruck, G. Indiveri, and
R. J. Douglas, “Modeling orientation selectivity using a neuro-
morphic multi-chip system,” in Proc. IEEE Int. Symp. Circuits
Syst., 2006.

[143] R. L. D. Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, and
J. Wilson, “Spatial and temporal receptive fields of geniculate
and cortical cells and directional selectivity,” Vis. Res.,
vol. 40, no. 27, pp. 3685–3702, 2000.

[144] F. Rea, G. Metta, and C. Bartolozzi, “Event-driven visual atten-
tion for the humanoid robot iCub,” Front. Neurosci., vol. 7, 2013,
Art. no. 234.

[145] L. Itti and C. Koch, “Computational modelling of visual
attention,” Nat. Rev. Neurosci., vol. 2, no. 3, pp. 194–203, 2001.

[146] D. Marr and T. Poggio, “Cooperative computation of stereo dis-
parity,” Science, vol. 194, no. 4262, pp. 283–287, 1976.

[147] M. Mahowald, The Silicon Retina. Boston, MA, USA: Springer,
1994, pp. 4–65.

[148] M. Osswald, S.-H. Ieng, R. Benosman, and G. Indiveri, “A spik-
ing neural network model of 3D perception for event-based neu-
romorphic stereo vision systems,” Sci. Rep., vol. 7, no. 1, Jan. 2017,
Art. no. 40703.

[149] G. Dikov, M. Firouzi, F. R€ohrbein, J. Conradt, and C. Richter,
“Spiking cooperative stereo-matching at 2ms latency with neuro-
morphic hardware,” in Proc. Conf. Biomimetic Biohybrid Syst.,
2017, pp. 119–137.

[150] E. Piatkowska, A. N. Belbachir, and M. Gelautz, “Asynchronous
stereo vision for event-driven dynamic stereo sensor using an
adaptive cooperative approach,” in Proc. Int. Conf. Comput. Vis.
Workshops, 2013, pp. 45–50.

[151] V. Vasco, A. Glover, Y. Tirupachuri, F. Solari, M. Chessa, and
C. Bartolozzi, “Vergence control with a neuromorphic iCub,” in
Proc. IEEE-RAS Int. Conf. Humanoid Robots, 2016, pp. 732–738.

[152] M. Riesenhuber and T. Poggio, “Hierarchical models of object rec-
ognition in cortex,” Nat. Neurosci., vol. 2, no. 11, pp. 1019–1025,
Nov. 1999.

[153] H. Akolkar et al. “What can neuromorphic event-driven precise
timing add to spike-based pattern recognition?” Neural Comput.,
vol. 27, no. 3, pp. 561–593, Mar. 2015.

[154] L. A. Camunas-Mesa, T. Serrano-Gotarredona, S. H. Ieng,
R. B. Benosman, and B. Linares-Barranco, “On the use of orienta-
tion filters for 3D reconstruction in event-driven stereo vision,”
Front. Neurosci., vol. 8, 2014, Art. no. 48.

[155] M. B. Milde, D. Neil, A. Aimar, T. Delbr€uck, and G. Indiveri,
“ADaPTION: Toolbox and benchmark for training convolutional
neural networks with reduced numerical precision weights and
activation,” 2017, arXiv:1711.04713.

[156] E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-
Barranco, “An event-driven classifier for spiking neural net-
works fed with synthetic or dynamic vision sensor data,” Front.
Neurosci., vol. 11, Jun. 2017, Art. no. 350.

[157] E. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-
driven random back-propagation: Enabling neuromorphic
deep learning machines,” Front. Neurosci., vol. 11, 2017,
Art. no. 324.

[158] D. Drazen, P. Lichtsteiner, P. H€afliger, T. Delbr€uck, and A. Jensen,
“Toward real-time particle tracking using an event-based dynamic
vision sensor,” Experiments Fluids, vol. 51, no. 5, pp. 1465–1469,
2011.

[159] Z. Ni, C. Pacoret, R. Benosman, S.-H. Ieng, and S. R�egnier,
“Asynchronous event-based high speed vision for microparticle
tracking,” J. Microscopy, vol. 245, no. 3, pp. 236–244, 2012.

[160] E. Piatkowska, A. N. Belbachir, S. Schraml, and M. Gelautz,
“Spatiotemporal multiple persons tracking using dynamic vision
sensor,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work-
shops, 2012, pp. 35–40.

[161] X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, and R. Benosman,
“Asynchronous event-based multikernel algorithm for high-
speed visual features tracking,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 8, pp. 1710–1720, Aug. 2015.

[162] A. Glover and C. Bartolozzi, “Robust visual tracking with a
freely-moving event camera,” in Proc. IEEE Int. Conf. Intell. Robots
Syst., 2017, pp. 3769–3776.

[163] D. R. Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S.-H. Ieng, and
R. Benosman, “An asynchronous neuromorphic event-driven
visual part-based shape tracking,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 26, no. 12, pp. 3045–3059, Dec. 2015.

[164] M. A. Fischler and R. A. Elschlager, “The representation and
matching of pictorial structures,” IEEE Trans. Comput., vol. C-22,
no. 1, pp. 67–92, Jan. 1973.

[165] C. Harris and M. Stephens, “A combined corner and edge
detector,” in Proc. 4th Alvey Vis. Conf., 1988, pp. 147–151.

[166] B. D. Lucas and T. Kanade, “An iterative image registration tech-
nique with an application to stereo vision,” in Proc. Int. Joint
Conf. Artif. Intell., 1981, pp. 674–679.

[167] X. Clady, S.-H. Ieng, and R. Benosman, “Asynchronous event-
based corner detection and matching,” Neural Netw., vol. 66,
pp. 91–106, 2015.

[168] E. Rosten and T. Drummond, “Machine learning for high-
speed corner detection,” in Proc. Eur. Conf. Comput. Vis., 2006,
pp. 430–443.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 177



[169] V. Vasco, A. Glover, E. Mueggler, D. Scaramuzza, L. Natale, and
C. Bartolozzi, “Independent motion detection with event-driven
cameras,” in Proc. IEEE Int. Conf. Adv. Robot., 2017, pp. 530–536.

[170] Y. Hu, H. Liu, M. Pfeiffer, and T. Delbruck, “DVS benchmark
datasets for object tracking, action recognition, and object recog-
nition,” Front. Neurosci., vol. 10, 2016, Art. no. 405.

[171] B. Rueckauer and T. Delbruck, “Evaluation of event-based algo-
rithms for optical flow with ground-truth from inertial measure-
ment sensor,” Front. Neurosci., vol. 10, 2016, Art. no. 176.

[172] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Sriniva-
san, “Asynchronous frameless event-based optical flow,” Neural
Netw., vol. 27, pp. 32–37, 2012.

[173] F. Barranco, C. Fermuller, and Y. Aloimonos, “Contour motion
estimation for asynchronous event-driven cameras,” Proc. IEEE,
vol. 102, no. 10, pp. 1537–1556, Oct. 2014.

[174] G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, and G. Orchard,
“Spiking optical flow for event-based sensors using IBM’s True-
North neurosynaptic system,” IEEE Trans. Biomed. Circuits Syst.,
vol. 12, no. 4, pp. 860–870, Aug. 2018.

[175] A. Z. Zhu, D. Thakur, T. Ozaslan, B. Pfrommer, V. Kumar, and
K. Daniilidis, “The multivehicle stereo event camera dataset: An
event camera dataset for 3D perception,” IEEE Robot. Autom.
Lett., vol. 3, no. 3, pp. 2032–2039, Jul. 2018.

[176] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed., Cambridge, U.K.: Cambridge Univ. Press, 2003.

[177] S. Schraml, A. N. Belbachir, N. Milosevic, and P. Sch€on,
“Dynamic stereo vision system for real-time tracking,” in Proc.
IEEE Int. Symp. Circuits Syst., 2010, pp. 1409–1412.

[178] J. Kogler, M. Humenberger, and C. Sulzbachner, “Event-based
stereo matching approaches for frameless address event stereo
data,” in Proc. Int. Symp. Adv. Vis. Comput., 2011, pp. 674–685.

[179] J. Lee et al., “Live demonstration: Gesture-based remote control
using stereo pair of dynamic vision sensors,” in Proc. IEEE Int.
Symp. Circuits Syst., 2012, pp. 741–745.

[180] E. Piatkowska, A. N. Belbachir, and M. Gelautz, “Cooperative
and asynchronous stereo vision for dynamic vision sensors,”
Meas. Sci. Technol., vol. 25, no. 5, Apr. 2014, Art. no. 055108.

[181] R. Benosman, S.-H. Ieng, P. Rogister, and C. Posch,
“Asynchronous event-based Hebbian epipolar geometry,” IEEE
Trans. Neural Netw., vol. 22, no. 11, pp. 1723–1734, Nov. 2011.

[182] J. Carneiro, S.-H. Ieng, C. Posch, and R. Benosman, “Event-based
3D reconstruction from neuromorphic retinas,” Neural Netw.,
vol. 45, pp. 27–38, 2013.

[183] D. Zou et al., “Context-aware event-driven stereo matching,” in
Proc. IEEE Int. Conf. Image Process., 2016, pp. 1076–1080.

[184] D. Zou et al., “Robust dense depth map estimation from sparse
DVS stereos,” in Proc. Brit. Mach. Vis. Conf., 2017, pp. 1–11.

[185] M. Firouzi and J. Conradt, “Asynchronous event-based coopera-
tive stereo matching using neuromorphic silicon retinas,” Neural
Proc. Lett., vol. 43, no. 2, pp. 311–326, 2016.

[186] J. Kogler, F. Eibensteiner, M. Humenberger, C. Sulzbachner,
M. Gelautz, and J. Scharinger, “Enhancement of sparse silicon ret-
ina-based stereo matching using belief propagation and two-stage
postfiltering,” J. Electron. Imag., vol. 23, no. 4, pp. 1–15, 2014.

[187] Z. Xie, S. Chen, and G. Orchard, “Event-based stereo depth esti-
mation using belief propagation,” Front. Neurosci., vol. 11, 2017,
Art. no. 535.

[188] Z. Xie, J. Zhang, and P. Wang, “Event-based stereo matching
using semiglobal matching,” Int. J. Adv. Robot. Syst., vol. 15, no. 1,
pp. 1–11, 2018.

[189] H. Hirschmuller, “Stereo processing by semiglobal matching and
mutual information,” IEEE Trans. Pattern Anal.Mach. Intell., vol. 30,
no. 2, pp. 328–341, Feb. 2008.

[190] A. Andreopoulos, H. J. Kashyap, T. K. Nayak, A. Amir, and
M. D. Flickner, “A low power, high throughput, fully event-
based stereo system,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2018, pp. 7532–7542.

[191] A. Z. Zhu, Y. Chen, and K. Daniilidis, “Realtime time synchro-
nized event-based stereo,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 433–447.

[192] R. Szeliski, Computer Vision: Algorithms and Applications. Berlin,
Germany: Springer, 2010.

[193] C. Cadena et al., “Past, present, and future of simultaneous locali-
zation and mapping: Toward the robust-perception age,” IEEE
Trans. Robot., vol. 32, no. 6, pp. 1309–1332, Dec. 2016.

[194] R. T. Collins, “A space-sweep approach to true multi-image
matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
1996, pp. 358–363.

[195] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cam-
bridge, MA, USA: MIT Press, 2005.

[196] D. Weikersdorfer, R. Hoffmann, and J. Conradt, “Simultaneous
localization and mapping for event-based vision systems,” in
Proc. Int. Conf. Comput. Vis. Syst., 2013, pp. 133–142.

[197] D.Weikersdorfer, D. B. Adrian, D. Cremers, and J. Conradt, “Event-
based 3D SLAM with a depth-augmented dynamic vision sensor,”
inProc. IEEE Int. Conf. Robot. Autom., 2014, pp. 359–364.

[198] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-DOF
pose tracking for high-speed maneuvers,” in Proc. IEEE Int. Conf.
Intell. Robots Syst., 2014, pp. 2761–2768.

[199] S. Barua, Y. Miyatani, and A. Veeraraghavan, “Direct face detec-
tion and video reconstruction from event cameras,” in Proc. IEEE
Winter Conf. Appl. Comput. Vis., 2016, pp. 1–9.

[200] C. Brandli, L. Muller, and T. Delbruck, “Real-time, high-speed
video decompression using a frame- and event-based DAVIS
sensor,” in Proc. IEEE Int. Symp. Circuits Syst., 2014, pp. 686–689.

[201] G. Munda, C. Reinbacher, and T. Pock, “Real-time intensity-image
reconstruction for event cameras using manifold regularisation,”
Int. J. Comput. Vis., vol. 126, no. 12, pp. 1381–1393, 2018.

[202] C. Scheerlinck, H. Rebecq, D. Gehrig, N. Barnes, R. E. Mahony, and
D. Scaramuzza, “Fast image reconstruction with an event camera,”
inProc. IEEEWinter Conf. Appl. Comput. Vis., 2020, pp. 156–163.

[203] A. N. Belbachir, S. Schraml, M. Mayerhofer, and M. Hofst€aetter,
“A novel HDR depth camera for real-time 3D 360-degree pan-
oramic vision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2014, pp. 425–432.

[204] C. Scheerlinck, H. Rebecq, T. Stoffregen, N. Barnes, R. Mahony,
and D. Scaramuzza, “CED: Color event camera dataset,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2019,
pp. 1684–1693.

[205] G. Wiesmann, S. Schraml, M. Litzenberger, A. N. Belbachir,
M. Hofstatter, and C. Bartolozzi, “Event-driven embodied sys-
tem for feature extraction and object recognition in robotic
applications,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2012, pp. 76–82.

[206] D. Gehrig, M. Gehrig, J. Hidalgo-Carri�o, and D. Scaramuzza,
“Video to events: Recycling video datasets for event cameras,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 3583–3592.

[207] A. Zanardi, A. J. Aumiller, J. Zilly, A. Censi, and E. Frazzoli,
“Cross-modal learning filters for RGB-neuromorphic wormhole
learning,” in Proc. Robot.: Sci. Syst., 2019, Art. no. P45.

[208] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor,
“Converting static image datasets to spiking neuromorphic data-
sets using saccades,” Front. Neurosci., vol. 9, 2015, Art. no. 437.

[209] D. Neil and S.-C. Liu, “Effective sensor fusion with event-based
sensors and deep network architectures,” in Proc. IEEE Int. Symp.
Circuits Syst., 2016, pp. 2282–2285.

[210] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal back-
propagation for training high-performance spiking neural
networks,” Front. Neurosci., vol. 12, 2018, Art. no. 331.

[211] A. Yousefzadeh, G. Orchard, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Active perception with dynamic vision
sensors. Minimum saccades with optimum recognition,” IEEE
Trans. Biomed. Circuits Syst., vol. 12, no. 4, pp. 927–939, Aug. 2018.

[212] X. Clady, J.-M. Maro, S. Barr�e, and R. B. Benosman, “A motion-
based feature for event-based pattern recognition,” Front. Neuro-
sci., vol. 10, Jan. 2017, Art. no. 594.

[213] C. A. Sims, “Implications of rational inattention,” J. Monetary
Econ., vol. 50, pp. 665–690, 2003.

[214] M. Miskowicz, Event-Based Control and Signal Processing. Boca
Raton, FL, USA: CRC Press, 2018.

[215] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An
introduction to event-triggered and self-triggered control,” in
Proc. IEEE Conf. Decis. Control, 2012, pp. 3270–3285.

[216] K. J. Astr€om, Event Based Control. Berlin, Germany: Springer,
2008, pp. 127–147.

[217] B. Wang and M. Fu, “Comparison of periodic and event-based
sampling for linear state estimation,” IFAC Proc. Vol., vol. 47,
pp. 5508–5513, 2014.

[218] A. Censi, E. Mueller, E. Frazzoli, and S. Soatto, “A power-perfor-
mance approach to comparing sensor families, with application to
comparing neuromorphic to traditional vision sensors,” in Proc.
IEEE Int. Conf. Robot. Autom., 2015, pp. 3319–3326.

[219] E. Mueller, A. Censi, and E. Frazzoli, “Low-latency heading feed-
back control with neuromorphic vision sensors using efficient
approximated incremental inference,” in Proc. IEEE Conf. Decis.
Control, 2015, pp. 992–999.

178 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



[220] P. Singh, S. Z. Yong, J. Gregoire, A. Censi, and E. Frazzoli,
“Stabilization of linear continuous-time systems using neuro-
morphic vision sensors,” in Proc. IEEE Conf. Decis. Control, 2016,
pp. 3030–3036.

[221] A. Censi, “Efficient neuromorphic optomotor heading regulation,”
in Proc. IEEE Amer. Control Conf., 2015, pp. 3854–3861.

[222] E. Mueller, A. Censi, and E. Frazzoli, “Efficient high speed
signal estimation with neuromorphic vision sensors,” in Proc.
Int. Conf. Event-Based Control Commun. Signal Process., 2015,
pp. 1–8.

[223] D. Kahneman, Thinking, Fast and Slow. New York, NY, USA: Far-
rar, Straus, 2011.

[224] S. B. Furber et al., “Overview of the SpiNNaker system
architecture,” IEEE Trans. Comput., vol. 62, no. 12, pp. 2454–2467,
Dec. 2013.

[225] F. Akopyan et al., “TrueNorth: Design and tool flow of a 65 mW 1
million neuron programmable neurosynaptic chip,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 10,
pp. 1537–1557, Oct. 2015.

[226] M. Davies et al., “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99,
Jan./Feb. 2018.

[227] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable mul-
ticore architecture with heterogeneous memory structures for
dynamic neuromorphic asynchronous processors (DYNAPs),”
IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 1, pp. 106–122, Feb.
2018.

[228] A. S. Neckar, “Braindrop: A mixed signal neuromorphic archi-
tecture with a dynamical systems-based programming model,”
PhD dissertation, Dept. Elec. Eng., Stanford Univ., Stanford, CA,
USA, Jun. 2018.

[229] L. A. Camunas-Mesa, B. Linares-Barranco, and T. Serrano-Gotar-
redona, “Neuromorphic spiking neural networks and their mem-
ristor-CMOS hardware implementations,” Materials, vol. 12,
no. 17, Aug. 2019, Art. no. 2745.

[230] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and
E. Eleftheriou, “Low-power neuromorphic hardware for signal
processing applications: A review of architectural and system-
level design approaches,” IEEE Signal Process. Mag., vol. 36,
no. 6, pp. 97–110, Nov. 2019.

[231] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiN-
Naker project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[232] G. Haessig, F. Galluppi, X. Lagorce, and R. Benosman,
“Neuromorphic networks on the SpiNNaker platform,” in Proc.
IEEE Int. Conf. Artif. Intell. Circuits Syst., 2019, pp. 86–91.

[233] C. Richter, F. R€ohrbein, and J. Conradt, “Bio inspired optic flow
detection using neuromorphic hardware,” in Proc. Bernstein
Conf., 2014, pp. 1–1.

[234] A. Glover, A. B. Stokes, S. Furber, and C. Bartolozzi, “ATIS + SpiN-
Naker: A fully event-based visual tracking demonstration,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst.Workshops, 2018, pp. 1–2.

[235] T. Serrano-Gotarredona, B. Linares-Barranco, F. Galluppi,
L. Plana, and S. Furber, “ConvNets experiments on SpiNNaker,”
in Proc. IEEE Int. Symp. Circuits Syst., 2015, pp. 2405–2408.

[236] P. A. Merolla et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014.

[237] P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith,
“Benchmarking keyword spotting efficiency on neuromorphic
hardware,” 2018, arXiv: 1812.01739.

[238] T. Bekolay et al., “Nengo: A Python tool for building large-
scale functional brain models,” Front. Neuroinf., vol. 7, 2014,
Art. no. 48.

[239] C. Eliasmith et al., “A large-scale model of the functioning brain,”
Science, vol. 338, no. 6111, pp. 1202–1205, 2012.

[240] N. Waniek, J. Biedermann, and J. Conradt, “Cooperative SLAM
on small mobile robots,” in Proc. IEEE Int. Conf. Robot. Biomimet-
ics, 2015, pp. 1810–1815.

[241] B. J. P. Hordijk, K. Y. Scheper, and G. C. D. Croon, “Vertical land-
ing for micro air vehicles using event-based optical flow,” J. Field
Robot., vol. 35, no. 1, pp. 69–90, Jan. 2017.

[242] S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek, “A
100,000 fps vision sensor with embedded 535 GOPS/W 256x256
SIMD processor array,” in Proc. VLSI Circuits Symp., 2013,
pp. 182–183.

Guillermo Gallego (Senior Member, IEEE)
received the PhD degree in electrical and com-
puter engineering from the Georgia Institute of
Technology, Atlanta, Georgia, in 2011. He is cur-
rently an associate professor at the Department
of Electrical Engineering and Computer Science,
Technische Universit€at Berlin, Berlin, Germany.
From 2011 to 2014, he was a Marie Curie
researcher with the Universidad Politecnica de
Madrid, Spain, and from 2014 to 2019 he was a
postdoctoral researcher with the University of
Zurich, Switzerland.

Tobi Delbr€uck (Fellow, IEEE) received the BSc
degree in physics from the UC San Diego, San
Diego, California, in 1986, and the PhD degree
from the Caltech, Pasadena, California, in 1993.
He is a professor of physics and electrical engi-
neering with the Institute of Neuroinformatics,
ETH Zurich, Zurich, Switzerland, where he has
been since 1998. His group with S.-C. Liu focuses
on neuromorphic sensory processing and effi-
cient deep learning.

Garrick Orchard received the PhD degree in
electrical and computer engineering from Johns
Hopkins University, Baltimore, Maryland, in 2012.
He is currently a researcher with the Neuromor-
phic Computing Laboratory, Intel Labs, Santa
Clara, California. From 2012 to 2019, he was
senior research scientist with Temasek Laborato-
ries and Singapore Institute for Neurotechnology,
National University of Singapore.

Chiara Bartolozzi (Member, IEEE) received the
degree in engineering from the University of Gen-
ova, Genoa, Italy, and the PhD degree in neuroin-
formatics from ETH Zurich, Zurich, Switzerland,
developing analog subthreshold circuits for emu-
lating biophysical neuronal properties onto silicon
and modelling selective attention on hierarchical
multi-chip systems. She is currently a researcher
with the Istituto Italiano di Tecnologia (IIT), Italy.
She leads the Neuromorphic Systems and Inter-
faces Group, IIT, with the aim of applying neuro-
morphic engineering to design autonomous
robotic machines.

Brian Taba received the BS degree in electrical
engineering from the California Institute of Tech-
nology, Pasadena, California, in 1999, and the
PhD degree in bioengineering from the University
of Pennsylvania, Philadelphia, Pennsylvania. He
is currently a researcher with IBM, within the
SyNAPSE Project.

Andrea Censi received the PhD degree in con-
trol & dynamical systems from the California Insti-
tute of Technology, Pasadena, California, in 2012.
He is currently a deputy director for the Chair of
Dynamic Systems and Control (Prof. Frazzoli) at
the Institute for Dynamic Systems and Control,
Department of Mechanical and Process Engi-
neering, ETH Z€urich. From 2013 to 2017, he was
a postdoctoral researcher with the Laboratory for
Information and Decision Systems, Massachu-
setts Institute of Technology, Cambridge, Massa-
chusetts.

GALLEGO ETAL.: EVENT-BASED VISION: A SURVEY 179



Stefan Leutenegger received the PhD degree in
mechanical engineering from Autonomous Sys-
tems Lab, ETH Zurich, Zurich, Switzerland, in
2014. He is currently a senior lecturer in robotics
at the Department of Computing, Imperial Col-
lege London, U.K. 2014, Since 2014, he leads the
Smart Robotics Lab, Imperial College London
and co-leads research with the Dyson Robotics
Lab together with Prof. A. Davison. He is co-
founder of the startup SLAMcore.

Andrew J. Davison is currently a professor of
robot vision and director of the Dyson Robotics
Laboratory, Imperial College London. His
research focus is on SLAM and its evolution
towards general “Spatial AI.” He has also had
strong involvement in taking this technology into
real applications, in particular through his work
with Dyson and as co-founder of SLAMcore. He
was elected fellow of the Royal Academy of Engi-
neering, in 2017.

J€org Conradt (Senior Member, IEEE) received
the PhD degree in physics/neuroscience from
ETH Zurich, Zurich, Switzerland. He is currently
an associate professor at the School of Electrical
Engineering and Computer Science, KTH, Stock-
holm, Sweden. Before joining KTH, he was W1
professor with the Technische Universit€at
M€unchen, Germany. He was the founding director
of the Elite Master Program NeuroEngineering,
Technische Universit€at M€unchen.

Kostas Daniilidis (Fellow, IEEE) received the
PhD degree in computer science from the Univer-
sity of Karlsruhe, Karlsruhe, Germany, in 1992.
He is currently the currently Ruth Yalom Stone
professor of computer and information science
with the University of Pennsylvania where he has
been faculty since 1998. He was the director of
the interdisciplinary GRASP Laboratory from
2008 to 2013, associate dean for graduate edu-
cation from 2012-2016, and director of online
learning since 2016. His main interest include in

deep learning of 3D representations, data association, event-based
cameras, semantic localization and mapping, and vision based manipu-
lation.

Davide Scaramuzza (Senior Member, IEEE)
received the PhD degree in robotics and com-
puter vision from ETH Z€urich, Z€urich, Switzer-
land, in 2008. He is currently an associate
professor of robotics and perception at the Uni-
versity of Z€urich, Switzerland, where he does
research on autonomous, vision-based naviga-
tion of mini drones and event cameras. For his
research contributions, he received a European
Research Council (ERC) Grant, the IEEE Robot-
ics and Automation Early Career Award, and sev-
eral industry and paper awards.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

180 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


